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We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of

hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes

the second kind of fluctuation dissipation theorem and the other makes use of the scattering method.

We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of

spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission.

We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the

regimes suitable for experimental verification of our predicted effects. The results reveal that

far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole

responses as expected from Kirchoff’s laws. Our work should aid both theorists and experimentalists

to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications

in thermal photonics. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883243]

I. INTRODUCTION

The foundations of analyzing thermal and vacuum fluc-

tuations of the electromagnetic field inside matter were laid

in the seminal work of Rytov.1 This later gave rise to a uni-

fied approach of understanding fluctuational forces2 (Lifshitz

theory of Casimir forces), near field thermal emission and

radiative heat transfer.3–26 (Polder and Van Hove theory3).

Recent developments in nanoengineering and detection have

led to experimental regimes24–30 where these effects can play

a dominant role. Simultaneously, theoretical work has shed

light on the fact that the classical scattering matrix along with

the temperatures of objects of various geometries can com-

pletely characterize these fluctuations in both equilibrium and

non-equilibrium situations.31–43

Metamaterials are artificial media designed to achieve ex-

otic electromagnetic responses that are beyond those available

in conventional materials.44–46 A large body of work has

emerged in the last decade which, in principle, engineers the

classical scattering matrix to achieve effects such as negative

refraction,47,48 enhanced chirality,47–51 invisibility,52–54 and

subwavelength imaging.52–56 Recently, it was shown that a spe-

cific class of metamaterials, known as hyperbolic media56–62

(indefinite media) has the potential for thermal engineering.

Such media support unique modes which can be thermally

excited and detected in the near-field due to the super-

Planckian nature of their thermal emission spectrum.8,63–66

In this paper, we adopt the techniques of fluctuational

electrodynamics to provide a first-principle account of the

thermal emission characteristics of hyperbolic media. We

show that the conventional approach of utilizing the second

kind of fluctuation dissipation theorem (FDT)1,67,68 is equiv-

alent to the scattering matrix method31,39,67,68 for calculat-

ing the metamaterial energy density. We specifically

provide the derivations of the fluctuational effects in both

effective medium theory (EMT) and practical thin film mul-

tilayer metamaterial designs.57,69 While the characteristics

can, in principle, be obtained from formulas related to the

reflection coefficients, it does not shed light on various

aspects of equilibrium or non-equilibrium fluctuations in the

context of metamaterials. Our aim is to provide an insightful

look at prevailing approaches adopted to the case of hyper-

bolic media.

We also consider the case of a practical phonon-

polaritonic metamaterial8,70 and show the stark contrast in

the far-field and near-field thermal emission characteristics.7

This should help experimentalists design experiments start-

ing from analyzing the far-field characteristics, retrieving

effective medium characteristics and then look for our pre-

dicted near-field effects. We show that the far-field charac-

teristics are dominated by the epsilon-near-zero and epsilon-

near-pole responses as expected from Kirchoff’s laws.71 This

is true independent of material choice and can occur for both

nanowire and multilayer hyperbolic media.71 We comment

here that for practical applications high temperature plas-

monics and metamaterials would be needed.71

We also study the limitations of EMT but focus on cases

where there is good agreement between practical structures

and EMT.57,69,72 We emphasize that it is known in the meta-

materials community that the unit cell of a metamaterial can

show characteristics similar to the bulk medium.57 In the

context of thin film hyperbolic media, this was experimen-

tally elucidated in Ref. 73 and theoretically explained in

detail in Ref. 57.

In this paper, we also describe another effect connected

to hyperbolic super-Planckian thermal emission.8 We ana-

lyze the spatial coherence9,74–77 of the near-field thermal

emission and relate it to the metamaterial modes. We show

that there is a subtle interplay in near-field spatial coherence

due to competition between surface waves and hyperbolic

modes. We expect our work to aid experimentalists in isolat-

ing thermal effects related to metamaterials and also form

the theoretical foundation for developing the macroscopic

quantum electrodynamics78 of hyperbolic media.
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II. FLUCTUATION DISSIPATION THEOREM

In global thermal equilibrium, the first kind of FDT1,68

directly specifies the correlation function of electric fields. It

is expressed by

h~Eðr1;xÞ � ~E
�ðr2;x

0Þi

¼ l0x
p

Hðx; TÞIm G
$
ðr1; r2;xÞdðx� x0Þ: (1)

Here, G
$

is the dyadic Green’s function79,80 (DGF),

Hðx; TÞ ¼ �hx=ðe�hx=kBT � 1Þ is the mean energy of a thermal

oscillator.

Equation (1) has two main applications. First, it can be

used to derive the electromagnetic stress tensor at a certain

point. Second, it directly gives the cross-spectral density ten-

sor74,77 which characterizes the spatial coherence of a ther-

mal radiative source. The second kind of FDT1,68 that

specifies the correlation function of thermally generated ran-

dom currents is

h~jðr1;xÞ �~j
�ðr2;x

0Þi

¼ x�0

p
�00ðxÞHðx; TÞdðr1 � r2Þdðx� x0Þ: (2)

We assume the permittivity � is a diagonal matrix; �00

denotes the imaginary part.

The first kind of FDT can only be used in global thermal

equilibrium. In non-equilibrium situation, we should first

employ Maxwell equations to obtain the electromagnetic

fields generated by random currents through the DGF

~EðrÞ ¼ ixl0

ððð
G
$
ðr; r0Þ~jðr0Þdr0; (3)

~HðrÞ ¼
ððð
r� G

$
ðr; r0Þ~jðr0Þdr0; (4)

and then calculate the electromagnetic stress tensor or the

cross-spectral density tensor.

The DGF satisfies an important identity68,81

Im G
$
ðr1; r2;xÞ

¼ x2

c2

ð
V

G
$
ðr1; r

0;xÞ�00ðr0;xÞG
$†

ðr2; r
0;xÞd3r0: (5)

This identity ensures that at global thermal equilibrium the

first kind and the second kind of FDT lead to identical

results.

III. THERMAL EMISSION FROM HALF SPACE
UNIAXIAL MEDIA

In this section, we consider an uniaxial medium located

in the lower space (z< 0) at temperature T while the upper

space vacuum part is at zero temperature. The relative per-

mittivity of the uniaxial medium is a diagonal matrix,

� ¼ diag½�jj; �jj; �?�. Note that hyperbolic metamaterials

(HMMs) are a special kind of uniaxial medium satisfying

�k�?< 0. As mentioned before, we should employ the second

kind of FDT because this is a non-equilibrium problem.

To solve DGF in planar structures, it is convenient to

work in the wavevector space. DGF in vacuum80 is (z > z0)

G
$
ðr; r0;xÞ ¼ i

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

� fŝ0
þŝ0
þeikz0ðz�z0Þ þ p̂0

þp̂0
þeikz0ðz�z0Þg: (6)

Here, we define k̂þ ¼ ðkx; ky; kz0Þ=k0 is the normalized

wave-vector of upward waves (z > z0) in free space, k?

¼ðkx;kyÞ; kq¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
y

q
; kz0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0�k2
q

q
, and r?¼ðx;yÞ.

ŝ0
þ¼ k̂þ� ẑ¼ðky;�kx;0Þ=kq is the unit direction vector of

s-polarized waves, p̂0
þ¼ ŝ0

þ� k̂þ¼ð�kxkz0;�kykz0;k
2
qÞ=k0kq

is the unit direction vector of p-polarized waves.

Correspondingly and for later use, k̂�¼ðkx;ky;�kz0Þ=k0 is

the normalized wave-vector of downward waves (when

z<z0), ŝ0
�¼ k̂�� ẑ¼ðky;�kx;0Þ=kq same with ŝ0

þ, and

p̂0
�¼ ŝ0

�� k̂�¼ðkxkz0;kykz0;k
2
qÞ=k0kq.

The DGF relating thermally generated random currents

inside the medium in the lower space to the fields in upper

space vacuum is

G
$

01ðr; r0Þ ¼
i

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

� ftsŝ0
þŝ1
þeikz0z�ikzsz

0 þ tpp̂0
þp̂1
þeikz0z�ikzpz0 g: (7)

Here, kzs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jjk

2
0 � k2

q

q
; kzp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jjk

2
0 �

�jj
�?

k2
q

q
. ŝ1
þ ¼ ŝ0

þ and

p̂1
þ ¼ ð�kxkzp;�kykzp; k

2
q�jj=�?Þ=k0kq

ffiffiffiffi
�jj
p

which are the unit

direction vectors of s- and p-polarized waves inside the uni-

axial medium, respectively. Note the transmission coeffi-

cients incident from the vacuum side should be in terms of

the electric fields

ts ¼ 2kz0

kz0 þ kzs
; tp ¼

2kz0
ffiffiffiffi
�jj
p

�jjkz0 þ kzp
: (8)

To calculate the magnetic fields, we should evaluate

r� G
$

01, which can be easily done in the wavevector space.

The curl operator will work on the first vector of G
$

01

r� G
$

01ðr; r0Þ ¼
k0

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

� ftsp̂0
þŝ1
þeikz0z�ikzsz

0 � tpŝ0
þp̂1
þeikz0z�ikzpz0 g:

(9)

The free space energy density is defined by

uðx; rÞ ¼ 2
1

2
�0Trh~Eðx; rÞ � ~E

�ðx; rÞi þ 1

2
l0Trh~Hðx; rÞ � ~H

�ðx; rÞi
� �

; (10)
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where the prefactor 2 accounts for the negative frequency

counterpart. Following the formalism in Ref. 77, we define

geðk?;z;z0;xÞ¼�
1

2kz0

tsŝ0
þŝ1
þeikz0z�ikzsz

0 þ tpp̂0
þp̂1
þeikz0z�ikzpz0

n o
;

(11)

ghðk?;z;z0;xÞ¼
1

2kz0

tsp̂0
þŝ1
þeikz0z�ikzsz

0 � tpŝ0
þp̂1
þeikz0z�ikzpz0

n o
:

(12)

One can then find

uðx; zÞ ¼ x3

pc4
Hðx; TÞ

ð0

�1
dz0
ðþ1
�1

d2k?
4p2

� Tr ge�
00g†

e

� �
þ Tr gh�

00g†
h

� �� �
: (13)

Inserting the expressions of ge and gh, we have

uðx; zÞ ¼ x3

8p2c4
Hðx; TÞe�2Imðkz0Þz

ð0

�1
dz0
ðþ1

0

kqdkq
1

jkz0j2
1þ

k2
q þ jk2

z0j
k2

0

 !

� �00jjjtsj2e2ImðkzsÞz0 þ
�00?j�jj=�?j

2k2
q þ �00jjjk2

zpj
k2

0j�2
jjj

0
@

1
Ajtpj2e2ImðkzpÞz0

0
@

1
A: (14)

The integration on z0 can be easily done. Further by taking the imaginary part of the dispersion relation

k2
q

�jj
þ k2

zs

�jj
¼ x2

c2
;

k2
q

�?
þ

k2
zp

�jj
¼ x2

c2
; (15)

for s- and p-polarized waves, this result can be simplified as

uðx; zÞ ¼ UBBðx; TÞ
2

ðk0

0

kqdkq

k0jkz0j
ð1� jrsj2Þ þ ð1� jrpj2Þ

2
þ
ð1

k0

k3
qdkq

k3
0jkz0j

e�2Imðkz0ÞzðImðrsÞ þ ImðrpÞÞ
( )

: (16)

Here, UBB ¼ x2

p2c3 Hðx; TÞ is the energy density of black-

body. rs and rp are the standard reflection coefficients given

by

rs ¼ kz0 � kzs

kz0 þ kzs
; rp ¼

�jjkz0 � kzp

�jjkz0 þ kzp
: (17)

The propagating wave part 1� jrj2 in Eq. (16) is the

far field emissivity, equivalent to Kirchhoff’s law.

Correspondingly, the evanescent wave part can be inter-

preted as Kirchhoff’s law in the near field and 2 Im(r) is the

near field emissivity,13,18,64,82 which is widely used in heat

transfer problems. 2 Im(r) is also proportional to the near

field local density of states (LDOS) proposed in Ref. 18 and

is related to the tunneling and subsequent absorption of

energy carried by evanescent waves. Recently, extensive

theoretical and experimental works have demonstrated the

ability of HMMs to enhance the near field LDOS.57,59,83

Thus, we expect the use of HMMs in thermal and energy

management.

A. Energy in matter and fields

We can use the above definitions to compare the energy

density in the near-field of the hyperbolic media to any other

control sample. A pertinent question is about how much

energy density is in matter degrees of freedom as opposed to

the fields. This is difficult to answer inside the medium but

can be done unambiguously in the near-field.

In the high-k approximation, where the wavevector par-

allel to the interface kq is sufficiently large, the near-field

energy density is governed by the tunneling parameter which

we define as the imaginary part of the p-polarized reflection

coefficient. Thus, studying the behavior of this tunneling pa-

rameter sheds light on the near-field energy density. In the

low loss limit, the reflection for p-polarized waves incident

on an interface between vacuum and HMM can be expressed

by8,84

ImðrHMM
p Þ �

2
ffiffiffiffiffiffiffiffiffiffiffiffi
j�jj�?j

p
1þ j�jj�?j

: (18)

While for an isotropic medium, the high-k approximation

gives

Imðriso
p Þ �

2�00

j1þ �j2
: (19)

The most striking difference between the above equations is

that for a conventional isotropic medium the near-field

energy density is completely dominated by the imaginary

part of the dielectric constant. These fluctuations disappear
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in the low loss limit and can be attributed to matter degrees

of freedom. This is because the imaginary part of the dielec-

tric constant which governs field fluctuations also character-

izes the irreversible conversion of electromagnetic energy

into thermal energy of matter degrees of freedom. On the

other hand, the hyperbolic medium shows near-field fluctua-

tions arising from high-k modes completely independent of

material losses and the energy resides in the field.

Let us analyze what would happen at mid-infrared fre-

quencies where phonon polaritonic materials can give rise to

this low loss high-k limit for hyperbolic media. We clearly

see from Eq. (19) that the near field emissivity would be

very small when the frequency is away from the surface pho-

non polariton resonance (SPhPR) frequency where

Re(�)¼�1. However, for HMMs made of phonon polari-

tonic materials and dielectrics, the near field emissivity (Eq.

(18)) can be comparably large in broad frequency region,

though in this approximation its magnitude cannot exceed

one. Note here we do not account for surface wave resonan-

ces which can change the picture considerably especially if

one wants to optimize near-field heat transfer.84 Our aim is

to focus on the bulk modes only.

IV. THERMAL EMISSION FROM MULTILAYERED
STRUCTURES

In this section, we will consider multilayered structures.

In the field of metamaterials, multilayered structures are

widely used to achieve effective uniaxial media. The aim

here is to go beyond effective medium theory and calculate

the exact thermal emission from multilayered structures

using the second kind of FDT. We assume that the medium

in all layers is isotropic and non-magneto-optical for simplic-

ity. To find DGFs relating the random currents in each layer

to the vacuum region, we will follow the method in Ref. 80.

First, assuming the current source is in the vacuum region,

we can calculate the fields induced by the source in all the

layers by transfer matrix method which matches the bound-

ary conditions at all the interfaces. Thus, the DGFs with

source in the vacuum region are ready to be employed. Next,

we use the reciprocal property of the DGF to achieve DGF

when the sources are in the lower space.

DGF in the vacuum region (z < z0) is

G00

$
ðr; r0Þ ¼ i

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

�
	

ŝ0
�e�ikz0z þ rsŝ0

þeikz0z
� �

ŝ0
�eikz0z0

þðp̂0
�e�ikz0z þ rpp̂0

þeikz0zÞp̂0
�eikz0z0



: (20)

DGF in the intermediate slabs are

Gl0

$
ðr; r0Þ ¼ i

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

�
	

Blŝ
l
�e�ikzlz þ Alŝ

l
þeikzlz

� �
ŝ0
�eikz0z0

þðDlp̂
l
�e�ikzlz þ Clp̂

l
þeikzlzÞp̂0

�eikz0z0


: (21)

DGF in the last layer is

GðNþ1Þ0
$
ðr; r0Þ ¼ i

8p2

ð ð
dkxdky

kz0

eik?�ðr?�r0?Þ

� tsŝ
t
�e�ikztzŝ0

�eikz0z0 þ tpp̂t
�e�ikztzp̂0

�eikz0z0
n o

:

(22)

Note in the last layer we only have the downward waves,

namely, the transmission.

The boundary conditions give80

Ale
ikzlzl þ Ble

�ikzlzl ¼ Alþ1eikzðlþ1Þzl þ Blþ1e�ikzðlþ1Þzl ; (23)

kzlðAle
ikzlzl �Ble

�ikzlzlÞ ¼ kzðlþ1ÞðAlþ1eikzðlþ1Þzl �Blþ1e�ikzðlþ1ÞzlÞ;
(24)

for s-polarized waves, andffiffiffiffi
�l
p ðCle

ikzlzlþDle
�ikzlzlÞ¼ ffiffiffiffiffiffiffiffi

�lþ1
p ðClþ1eikzðlþ1ÞzlþDlþ1e�ikzðlþ1ÞzlÞ;

(25)

kzlffiffiffiffi
�l
p ðCle

ikzlzl�Dle
�ikzlzlÞ¼

kzðlþ1Þffiffiffiffiffiffiffiffi
�lþ1
p ðClþ1eikzðlþ1Þzl�Dlþ1e�ikzðlþ1ÞzlÞ;

(26)

for p-polarized waves. Following the same steps as in the

uniaxial case, the final expression is

uðx; zÞ ¼ x3

8p2c4
Hðx; TÞe�2Imðkz0Þz

XNþ1

l¼1

ðzl�1

zl

dz0
ðþ1

0

kqdkq
1

jkz0j2
1þ

k2
q þ jk2

z0j
k2

0

 !
�00l

� jAle
ikzlz

0 þ Ble
�ikzlz

0 j2 þ
���� kzlðCle

ikzlz
0 � Dle

�ikzlz
0 Þ

k0
ffiffiffiffi
�l
p

����
2

þ
���� kqðCle

ikzlz
0 þ Dle

�ikzlz
0 Þ

k0
ffiffiffiffi
�l
p

����
2

 !
; (27)

where N is the total number of layers in the structure.

To simplify the above result, we first note that the integral

ðzl�1

zl

dz0k2
0�
00
l jAle

ikzlz
0 þ Ble

�ikzlz
0 j2 ¼ Re kzlð�Ale

ikzlz þ Ble
�ikzlzÞðAle

ikzlz þ Ble
�ikzlzÞ�

� 

jzl�1

zl
¼ Qlðzl�1Þ � QlðzlÞ; (28)
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which is valid for all layers. From the boundary condition,

we have

QlðzlÞ ¼ Qlþ1ðzlÞ: (29)

Thus, we find

XNþ1

l¼1

ðzl�1

zl

dz0k2
0�
00
l jAle

ikzlz
0 þ Ble

�ikzlz
0 j2 ¼ Q0ðz0Þ � QNþ1ðzNþ1Þ:

(30)

For the last term, zNþ1¼�1, so QNþ1(zNþ1)¼ 0, and in our

convention, z0¼ 0. The final result is

Re kz0ð1� rsÞð1þ rsÞ�
� 


¼ ð1� jrsj2Þjkz0j; kq < k0

2 ImðrsÞjkz0j; kq > k0:

(

(31)

This is the contribution from s-polarized waves. For p-

polarized waves, the corresponding identity is

ðzl�1

zl

dz0k2
0�
00
l

���� kzlðCle
ikzlz

0 � Dle
�ikzlz

0 Þ
k0

ffiffiffiffi
�l
p

����
2

þ
���� kqðCle

ikzlz
0 þ Dle

�ikzlz
0 Þ

k0
ffiffiffiffi
�l
p

����
2

 !

¼ Re
kzlffiffiffiffi
�l
p ðCle

ikzlz � Dle
�ikzlzÞð ffiffiffiffi�l

p ðCle
ikzlz þ Dle

�ikzlzÞÞ�
� �����

zl�1

zl

: (32)

Then, the contribution from p-polarized waves can be evaluated in the similar way. The final expression for thermal emission

from a half space multilayered structure will be given by Eq. (16). The reflection coefficients should be that of the whole structure.

If we are interested in a slab inside vacuum rather than a half space structure, we can eliminate the contribution from the

last layer vacuum part. To do so, in Eq. (28), for the last layer ANþ1¼ 0 and BNþ1¼ ts, the right hand side is therefore

Reðkz0Þjtsj2, which vanishes for evanescent waves. Subtracting this term from Eq. (16) gives the thermal emission from a mul-

tilayered slab inside vacuum

uðx; zÞ ¼ UBBðx; TÞ
2

ðk0

0

kqdkq

k0jkz0j
ð1� jrsj2 � jtsj2Þ þ ð1� jrpj2 � jtpj2Þ

2
þ
ð1

k0

k3
qdkq

k3
0jkz0j

e�2Imðkz0ÞzðImðrsÞ þ ImðrpÞÞ
( )

: (33)

The above expression can be also obtained by replacing 1�
jrj2 in Eq. (16) with 1� jrj2 � jtj2, which is consistent with

Kirchoff’s law.

V. SCATTERING MATRIX METHOD AND SPATIAL
COHERENCE

We now describe another approach to evaluating the

near-field energy density near metamaterials using the scatter-

ing matrix approach. However, first we will discuss a few im-

portant points related to the concept of the thermal

environment. We note that when the lower space is vacuum,

the reflection coefficients are zero. As a result of Eq. (16), the

contribution from the evanescent waves part is zero while that

from the propagating waves is nonzero. However, this is not

very intuitive from FDT. The reason is that losses of vacuum,

i.e., �00 of vacuum is zero and from the second kind of FDT,

the correlation function of random currents of vacuum should

be zero, suggesting a zero field correlation. It turns out that

for an unbounded vacuum region, we should add an infinitesi-

mal imaginary part to �0, integrate over the region and then

take the limit of the imaginary part to be zero in the final

expression.33,85 This is needed to preserve causality require-

ments. In the derivation of Eq. (16), we have integrated the

source region z0 from �1 to 0. However, for a vacuum gap

with any finite width, the final fields correlation originating

from the gap can be shown to be zero.68 For this reason, fluc-

tuations in vacuum can be interpreted to come from infinity.

It is then natural to think about the thermal emission

from the upper space vacuum region as well. If the vacuum

region is also at temperature T, the system is at global ther-

mal equilibrium. Therefore, we can employ the first kind of

FDT to calculate the thermal energy density. This approach

is used in Ref. 86 to define the local density of states. Here,

we directly cite the final result

ueqðz;x; TÞ ¼
UBBðx; TÞ

2

ðk0

0

kqdkq

k0jkz0j

�
2þ

k2
q

k2
0

½Reðrse2ikz0zÞ þ Reðrpe2ikz0zÞ�
�
þ
ð1

k0

k3
qdkq

k3
0jkz0j

e�2Imðkz0ÞzðImðrsÞ þ ImðrpÞÞ
( )

: (34)

Note again that the contribution from evanescent waves

equals that of Eq. (16), implying no evanescent waves contri-

bution from the upper space vacuum region. However, in

non-equilibrium, to determine electromagnetic fields induced

by every random current inside the medium using second

kind of FDT is quite laborious. We note from the second
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kind of FDT that the currents are not spatially correlated,

which suggests that the thermal emission from different spa-

tial regions can be calculated separately. In thermal equilib-

rium, we can calculate the thermal energy density by the first

kind of FDT. Thus, if we can calculate the thermal emission

from the upper space vacuum part at temperature T, thermal

emission only from the lower space can be achieved by

excluding the vacuum part from the total thermal energy

density.

The electric field generated by the upper half vacuum

space can be written as39

~Ef ðx; rÞ ¼
ð

d2k?
4p2

~Ef ðx; k?; zÞeik?�r? ; (35)

where

~Ef ðx; k?; zÞ ¼ ðasðx; k?Þŝ0
� þ apðx; k?Þp̂0

�Þe�ikz0z; (36)

where as and ap are the field amplitude for s- and p-polarized

waves, respectively. The operator a¼ (as, ap)T satisfies the

correlation function39

haðx;k?Þ�a†ðx0;k0?Þi¼4p2Cðx;k?Þdðx�x0Þd2ðk?�k0?Þ:
(37)

The coefficient C can be read directly from FDT and the

free space DGF

Cðx; k?Þ ¼
l0x
4p

Hðx; TÞRe
1

kz0

� �
; (38)

which vanishes for evanescent waves. These fluctuations

from the upper vacuum region shines on the interface and

get reflected. The total fields due to fluctuations in the vac-

uum part are

~E0ðz;x; k?Þ ¼ ðasðx; k?Þs0
� þ apðx; k?Þp0

�Þe�ikz0z

þðrsasðx; k?Þs0
þ þ rpapðx; k?Þp0

þÞeikz0z:

(39)

The magnetic fields can be calculated using Eq. (39) and

Maxwell equations. Then, one can find the energy density

due to the fluctuations in the upper space vacuum

u0ðz;x; TÞ ¼
UBBðx; TÞ

2

ðk0

0

kqdkq

k0jkz0j
1þ jr

sj2 þ jrpj2

2
þ

k2
q

k2
0

½Reðrse2ikz0dÞ þ Reðrpe2ikz0dÞ�
( )

: (40)

Subtracting Eq. (40) from Eq. (34), we recover the expression by the second kind of FDT.

From the definition of the cross-spectral density tensor

Wðr1; r2;xÞdðx� x0Þ ¼ h~Eðr1;xÞ � ~E
�ðr2;x

0Þi; (41)

one can find the spatial coherence due to fluctuations in the upper space vacuum

W0
zzðr1; r2;xÞ ¼

UBBðx; TÞ
4�0

ðk0

0

k3
qdkq

k3
0jkz0j

J0ðkqdÞ
�

1þ jrpj2

2
þ Reðrpe2ikz0dÞ

�
; (42)

where r1 ¼ ð0; 0; zÞ; r2 ¼ ðd; 0; zÞ, and
Ð 2p

0
dheikqdcos h ¼ 2pJ0ðkqdÞ is used; J0(kqd) is the zeroth order Bessel function of the

first kind. Further, from Eq. (1), the first kind of FDT, we have

Weq
zz ðr1; r2;xÞ ¼

UBBðx; TÞ
4�0

ðk0

0

k3
qdkq

k3
0jkz0j

J0ðkqdÞ½1þ Reðrpe2ikz0dÞ� þ
ð1

k0

k3
qdkq

k3
0jkz0j

J0ðkqdÞImðrpÞe�2Imðkz0Þz

)
:

8<
: (43)

Then, the contribution from the lower space structure is

Wzzðr1; r2;xÞ ¼
UBBðx; TÞ

4�0

ðk0

0

k3
qdkq

k3
0jkz0j

J0ðkqdÞ 1� jr
pj2

2
þ
ð1

k0

k3
qdkq

k3
0jkz0j

J0ðkqdÞImðrpÞe�2Imðkz0Þz

)
:

8<
: (44)

Only p-polarized waves contributes to Wzz since s-polarized waves do not have Ez components.

Once again, if the structure is a multilayered slab in vacuum, the contribution from the lower vacuum space can be eval-

uated using the scattering matrix method in a similar way to the upper vacuum space. The fields due to the vacuum fluctuations

in the lower space transmit through the planar structure
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~Etðx; k?; zÞ ¼ ðtsasðx; k?Þŝ0
� þ tpapðx; k?Þp̂0

�Þeikz0z: (45)

It is clear that the contributing energy density will be propor-

tional to the jtj2, so that we recover the result of Eq. (33).

Note that due to the reciprocal property, the transmission

coefficients from two sides of the structure should be

identical.

Generally speaking, considering a single object in ther-

mal equilibrium, the energy density can be determined by

the first kind of FDT, which is simply a single scattering

event. To find the contribution from the object only, we can

exclude the contribution from the environment, which can be

also expressed by the scattering matrix of the object. If there

are several objects at different temperatures, we can first

decide the thermal emission from one specific object in the

absence of other objects and then build the scattering part

from other objects, in which procedure the temperatures of

the other objects and the environment are assumed to be

zero. Note this is the basic idea of Kardar and co-authors in

sequent works.32,33,87 Beyond the multilayered structures

considered here, the authors also give the scattering matrix

of various geometries including sphere and cylinder. For

more complicated objects, numerical methods are also well

developed.42,43,88,89

VI. RESULTS AND DISCUSSIONS

There are multiple approaches to achieving hyperbolic

dispersion.57,58 Two of the prominent geometries consists of

1D or 2D periodic metal-dielectric structures. We consider

here a multilayer combination of silicon dioxide (SiO2) and

silicon carbide (SiC) which has a metallic response in the

Reststrahlen band due to phonon polaritons (Re(�)< 0

between xTO¼ 149.5� 1012 Hz and xLO¼ 182.7� 1012 Hz,

the transverse and longitudinal optical phonon resonance

frequencies). The permittivity of SiC is given by �m

¼ �1ðx2
LO � x2 � icxÞ=ðx2

TO � x2 � icxÞ, where x is the

frequency of operation, x1¼ 6.7, and c¼ 0.9� 1012 Hz. We

note that this realization formed the testbed for the first com-

plete characterization of the modes of hyperbolic media due

to their low loss as compared to plasmonic media.70 The

modes of this HMM can be excited at relatively lower tem-

peratures (400–500 K) when the peak of black body emission

lies within the Reststrahlen band of SiC. To understand the

thermal properties of phonon-polaritonic hyperbolic meta-

materials, we need to focus only on the Reststrahlen band of

SiC where it is metallic. The multilayer structure (see sche-

matic in Fig. 1(a)) shows a host of different electromagnetic

responses as predicted by effective medium theory �jj ¼ �mf
þ�dð1� f Þ and �? ¼ �m�d=ð�df þ �mð1� f ÞÞ, here f is the

fill fraction of the metallic medium.57

We classify the effective uniaxial medium57,58 using the

isofrequency surface of extraordinary waves which follow

k2
z =�jj þ ðk2

x þ k2
yÞ=�? ¼ x2=c2 and the media are hyperbo-

loidal only when �k�?< 0. We can effectively achieve a type

I hyperbolic metamaterial with only one negative component

in the dielectric tensor (�k> 0, �?< 0), type II hyperbolic

metamaterial with two negative components (�k< 0, �?> 0),

effective anisotropic dielectric (�k> 0, �?> 0) or effective

anisotropic metal (�k< 0, �?< 0). In Fig. 1(b), we plot the

effective permittivities of a SiO2-SiC multilayered structure

with the fill fraction 0.4 and label the two hyperbolic regions.

As the purpose of this work is to examine how extraordinary

waves in HMMs impact thermal emission properties, we

only consider p-polarized waves in our numerical

simulations.

A. Far field thermal emission

We first characterize the thermal emission of a HMM

slab in the far field. This is extremely important for experi-

ments currently being pursued in multiple groups. We clearly

observe two peaks in Fig. 2 in agreement with the previous

work on epsilon-near-zero and epsilon-near-pole resonances

for thermal emission.71 The right one occurs when �? is

close to zero. From the displacement field boundary condi-

tion, �0E0?¼ �?E1?, when �? ! 0, the fields inside HMM

E1? should be very large. Thus, large absorption is expected

at this epsilon near zero region. The epsilon-near-pole reso-

nance results in narrowband thermal emission due to the

increase in the imaginary part of the dielectric constant in

this ENP spectral region. The most critical aspect is the

direction of the dielectric tensor components which show

FIG. 1. (a) Schematic of the multilayered structure and the coordinates. The

spatial coherence are calculated between r1¼ (0, 0, z) and r2¼ (d, 0, z). (b)

Effective permittivities of a SiO2-SiC multilayered structure, where the fill

fraction of SiC is 0.4. Only real part of the permittivity is plotted. The insets

from left to right denote the iso-frequency dispersion of dielectric type II

HMM and type I HMM.
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ENZ or ENP.71 An ENZ in the component parallel to the

interface or an ENP perpendicular to the interface does not

show such effects.

B. Near field thermal emission

Here, we analyze the near-field thermal emission from

multilayer hyperbolic media.8 We first focus on how thermal

emission will depend on the thickness of the slabs. In Fig. 3,

we plot the wavevector resolved thermal emission from a

structure consists of 40 layers of SiO2/SiC, 30 nm/20nm

achieving a net thickness of 1 lm. We clearly see multiple

discrete high-k modes in both the type I and type II hyper-

bolic region. Note the thickness 1 lm is about one tenth of

the operating wavelength, so these high-k modes will not

occur in conventional isotropic dielectrics. The excellent

agreement between the EMT prediction and the practical

multilayered structure is seen, which validates the use of

EMT in our structure. Further, we increase the thickness of

the slab to 3 lm and 30 lm while keeping the same unit cell.

The waveguide modes will be denser as expected. At the

thickness of 30 lm, the high-k modes are almost continuous

and result in two bright bands in Fig. 4(b). This is close to

the bulk metamaterial limit.

We show the thermal emission spectrum in Fig. 5(a) for

various thicknesses of the metamaterial. The two main peaks

are due to the high-k modes in the hyperbolic region. In Fig.

5(b), we plot the wavevector resolved thermal emission at a

specific frequency x¼ 1.6� 1014 Hz within the type II

hyperbolic region where the structure supports both surface

mode and high-k modes. The sharp peaks at the left are due

to the surface mode while the high-k modes emerge at larger

kq. In the high-k modes region, the curve for 30 lm slab is

almost flat indicative of a continuum of high-k modes. In

contrast, the curves of 1 lm and 3 lm slabs clearly show the

existence of discrete high-k waveguide modes featured by

crests and troughs.

FIG. 2. Normalized far field thermal emission of a 3 lm SiO2-SiC multilay-

ered structure, with fill fraction of SiC is 0.4.

FIG. 3. Wavevector resolved thermal emission (normalized to blackbody

emission into the upper space) from a SiO2-SiC multilayered structure calcu-

lated by (a) transfer matrix method and (b) EMT at z¼ 200 nm. The thermal

emission is normalized to the black body emission to the upper half-space

and in log scale. The structure consists of 40 layers of SiO2/SiC,

30 nm/20nm achieving a net thickness of 1 lm. The presence of high-k

modes are clearly evident in both the EMT calculation and the multilayer

practical realization which takes into account all non-idealities due to disper-

sion, losses, finite unit cell size, and finite sample size. The bright curves

denote the enhanced thermal emission due to high-k modes in the HMM. In

the practical multilayered structure, the high-k modes come from the

coupled short range surface phonon polaritons at the silicon carbide and sili-

con dioxide interfaces.

FIG. 4. Wavevector resolved thermal emission (normalized to blackbody

emission into the upper space) from (a) a 3 lm thickness HMM slab and (b)

a 30 lm thickness HMM slab. The fill fraction of SiC is 0.4, same as the 1

lm HMM slab. The two hyperbolic regions where the thermal emission is

enhanced are evident. The modes supported by 3 lm thickness slab are

denser than that of 1 lm slab, and the modes supported by the 30 lm slab

are almost continuous.
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C. Spatial coherence of hyperbolic metamaterial slab

Surface waves can lead to large spatial coherence length

in the near field.74 To see this, we first show in Fig. 6 the

wavevector resolved thermal emission from a 30 lm thick

SiC slab. The bright curve gives the dispersion of surface

phonon polariton (SPhP) between the vacuum and SiC inter-

face. Note we will not see the splitting of the vacuum-SiC

interface SPhP mode into long range and short range modes

since 30 lm is in the order of several operating wavelengths.

In the time domain, the temporal coherence is best for mono-

chromatic waves. Thus, for the spatial coherence, one can

imagine it will be favorable if a single wavevector dominates

the fields among all the wavevectors. This is indeed the case

for surface waves. In Fig. 7(a), we plot the spatial coherence

of the SiC slab at x¼ 1.6� 1014 Hz and x¼ 1.79� 1014 Hz.

At the frequency x¼ 1.6� 1014 Hz, the SPhP mode wave-

vector kq is about 1.1k0. Large spatial coherence length is

seen at both 0.2 lm and 1 lm from the interface. However,

near the SPhPR frequency x¼ 1.79� 1014 Hz, where

�SiC¼�1, the mode dispersion curve is almost a horizontal

line, which means that multiple modes with different wave-

vectors can be thermally excited. Thus, a poor spatial

FIG. 5. (a) Normalized thermal emission from slabs with various thick-

nesses. The dashed black line is calculated using transfer matrix method

while the solid lines are calculated using EMT parameters, where “DM” in

the legend means the top layer of SiO2 (Dielectric)-SiC (Metal) multilayers

is SiO2. Despite the clear difference of the density of modes supported by

the slabs shown in Figs. 3 and 4, the thermal emission spectrum is interest-

ingly in good agreement. The two main peaks where the thermal emission is

largely enhanced are due to the high-k states in the two hyperbolic regions.

(b) Wavevector resolved thermal emission at x¼ 1.6� 1014 Hz. The sharp

peaks on the left (kq/k0< 2) are the surface modes. When kq/k0> 3, the

curve for 30 lm slab is almost flat with no oscillations, while that of 1 lm

and 3 lm slabs show the discrete modes denoted by crests and troughs.

FIG. 6. Thermal emission by a 30 lm SiC slab. The red bright curve repre-

sents the dispersion of the SPhP mode between the vacuum and SiC inter-

face since the slab is very thick.

FIG. 7. Spatial coherence of (a) a 30 lm SiC slab and (b) a 30 lm HMM

slab at 0.2 lm and 1 lm from the surface with x¼ 1.6� 1014 Hz and

x¼ 1.79� 1014 Hz. (a) At x¼ 1.6� 1014 Hz, the SiC slab supports a single

degenerate SPhP mode. As a result, SiC slab has large spatial coherence at

both 0.2 lm and 1 lm. At x¼ 1.79� 1014 Hz, the SPhP resonance fre-

quency where Re�SiC¼�1, this frequency corresponds to a bright horizontal

line in the SPhP dispersion curve shown in Fig. 6. This means at this fre-

quency, multi-modes with different wavevectors can be thermally excited.

Thus, the spatial coherence is poor both at 0.2 lm and 1 lm. (b)At

x¼ 1.6� 1014 Hz, the HMM slab supports high-k states besides the SPhP

mode. At 0.2 lm, the high-k states contribute a lot to the fluctuating electric

fields, and consequently the spatial coherence is poor. But when the distance

becomes larger at 1 lm, the high-k states will not reach that far because of

their large wavevector kq. Thus, the electric fields will be dominated by the

surface mode which has smaller kq. The spatial coherence length is large

due to this dominant surface mode. At x¼ 1.79� 1014 Hz, the HMM slab

can only supports multiple high-k states, and unlike the type II HMM region,

there is no lower bound for the high-k wavevectors. Thus, the spatial coher-

ence is poor both at 0.2 lm and 1 lm.
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coherence is expected. In Fig. 7(a), the spatial coherence is

poor at both 0.2 lm and 1 lm from the interface. This fea-

ture could be used to determine the resonance frequency.

Hyperbolic metamaterials can support multiple high-k

modes. Therefore, the spatial coherence length should not be

long in the hyperbolic region. This is true for type I HMM.

In Fig. 7(b), we plot Wzz at x¼ 1.79� 1014 Hz, where the

multilayered structure effectively behaves in the type I

hyperbolic region. The spatial coherence lengths are only a

fraction of the operating wavelength at both 0.2 lm and 1

lm from the interface.

But the situation for type II hyperbolic region is interest-

ingly different. For a HMM slab in the type II hyperbolic

region (�k< 0, �?> 0), the slab can support a surface wave

mode as well as multiple high-k modes. Thus, we have two

sets of modes that can result in a unique interplay of spatial

coherence effects. Furthermore, these modes are separated in

wavevector space because of the lower bound of the high-k

states in type II hyperbolic region.57 High-k modes are con-

fined to the surface better than surface waves and these

high-k waves will dominate at a shorter distance from the

interface. We choose x¼ 1.6� 1014 Hz within the type II

hyperbolic region to confirm this point. At distance 0.2 lm,

the spatial coherence is very poor. However, at a larger dis-

tance 1 lm, the fluctuating fields have large spatial coher-

ence length. This is because at this distance, the contribution

from surface wave mode dominates the electric fields while

the high-k states rarely contribute to the fields. This distance

dependence behavior can have applications such as obtaining

the modes distribution at a given frequency.

D. Thermal topological transitions

Until now, we have fixed the fill fraction to be 0.4. It is

useful to examine the structure’s behavior at various fill

fractions. In Fig. 8(a), we plot the optical phase diagram8,57

of this metamaterial which shows the isofrequency surfaces

achieved at different frequencies and fill fractions of SiC.

The phase diagram is classified as effective dielectric,

effective metal, type I and type II HMM as introduced

before.57,58

Figure 8(b) shows the thermal energy density (normal-

ized to black body radiation into the upper half space) eval-

uated using Rytov’s fluctuational electrodynamics for an

effective medium slab at a distance of z¼ 200 nm from the

metamaterial. It is seen that the regions of hyperbolic behav-

ior exhibit super-Planckian thermal emission in agreement

with our previous analytical approximation, but here we will

go beyond effective medium theory and consider practical

structures. The role of the surface waves is very important

and can lead to significant deviations when the unit cell size

is not significantly subwavelength.64,69,72

The macroscopic homogenization utilized to define a

bulk electromagnetic response is valid when the wavelength

of operation exceeds the unit cell size (k 	 a). However,

even at such wavelengths if one considers incident evanes-

cent waves on the metamaterial, the unit cell microstructure

causes significant deviations from EMT. This is an important

issue to be considered for quantum and thermal applications

where the near-field properties essentially arise from evanes-

cent wave engineering (high-k modes).57,58 For the multi-

layer HMM, at distances below the unit cell size, the thermal

emission is dominated by evanescent waves with lateral

wavevectors kq 	 1/a. Since this is above the unit-cell cut

off of the metamaterial, the high-k modes do not contribute

to thermal emission at such distances. It is therefore neces-

sary to consider thermal emission from a practical

multi-layer structure taking into account the layer thick-

nesses. This is shown in Figs. 8(c) and 8(d). The unit cell

size is 200 nm, and we consider a semi-infinite multilayer

FIG. 8. (a) Optical phase diagram of

SiC-SiO2 multilayered structure pre-

dicted by EMT. Red region denotes

effective dielectric, blue region means

effective metal, yellow region stands

for type I hyperbolic metamaterial,

green region is type II hyperbolic

metamaterial. Thermal emission at

z¼ 200 nm (log scale plot normalized

to the black body radiation into the

upper half-space) by the multilayered

structure depending on the operating

frequency and the fill fraction calcu-

lated by (b) EMT, (c) SiO2-SiC multi-

layer (with first layer SiO2), (d)

SiC-SiO2 multilayer (with first layer

SiC). In the effective metal region, the

dark red line is due to surface phonon

polariton resonance. Both type I and

type II region have a clear thermal

emission enhancement due to bulk

high-k modes in agreement with the

optical phase diagram.
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medium using the formalism outlined in Ref. 69. An excel-

lent agreement is seen of the optical phases of the multilayer

structure with the EMT calculation.

VII. CONCLUSION

This work shows that extension of equilibrium and non-

equilibrium fluctuational electrodynamics to the case of

metamaterials can lead to novel phenomena and applications

in thermal photonics. We presented a unified picture of far-

field and near-field spectra for experimentalists and also

introduced the near-field spatial coherence properties of

hyperbolic media. We have analyzed in detail thermal topo-

logical transitions and super-Planckian thermal emission in

practical phonon-polaritonic hyperbolic metamaterials. We

paid particular attention not only to the effective medium

approximation but also discussed all non-idealities limiting

the super-planckian thermal emission from HMMs. We have

provided practical designs to experimentally measure and

isolate our predicted effect. Our work should lead to a class

of thermal engineering applications of metamaterials.
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