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Abstract

Quantum causality is an emerging field of study which has the potential to greatly advance
our understanding of quantum systems. In this paper, we put forth a theoretical framework
for merging quantum information science and causal inference by exploiting entropic prin-
ciples. For this purpose, we leverage the tradeoff between the entropy of hidden cause and
the conditional mutual information of observed variables to develop a scalable algorithmic
approach for inferring causality in the presence of latent confounders (common causes) in
quantum systems. As an application, we consider a system of three entangled qubits and
transmit the second and third qubits over separate noisy quantum channels. In this model,
we validate that the first qubit is a latent confounder and the common cause of the second
and third qubits. In contrast, when two entangled qubits are prepared and one of them
is sent over a noisy channel, there is no common confounder. We also demonstrate that
the proposed approach outperforms the results of classical causal inference for the Tubin-
gen database when the variables are classical by exploiting quantum dependence between
variables through density matrices rather than joint probability distributions. Thus, the
proposed approach unifies classical and quantum causal inference in a principled way.

Keywords: Structure learning, Confounder, Common Cause, Optimization, Quantum
causality

1. Introduction

Motivation Causal inference lies at the heart of science (Pearl, 2009; Pearl and Macken-
zie, 2018): the conclusions drawn from scientific studies almost always involve extracting
causation (cause and effect relationships) from association, even if researchers often refrain
from explicitly acknowledging the causal goal of research projects (Hernán, 2018; Hernán
et al., 2019). However, causal inference from observational data is an ambitious and difficult
task. Identifying cause and effect relationships from observational data is even more chal-
lenging in the presence of hidden common causes (latent confounders) (Heckerman, 2019).
The broad impact of this phenomena has been studied in multiple domains of science such
as epidemiologic studies (Lipsitch et al., 2010), biology and medicine (Skelly et al., 2012;
Meinshausen et al., 2016), experiential education (Ewert and Sibthorp, 2009; Kallus et al.,
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2018), economics and marketing (Varian, 2016; Hünermund and Bareinboim, 2019), among
others.

A similar concept is increasingly appreciated among quantum physicists, namely the
inference of quantum common causes (Wolfe et al., 2020; Allen et al., 2017; Ried et al.,
2015; Chaves et al., 2014a,b, 2015; Hofer-Szabó et al., 1999). It has been used to provide
a satisfactory causal explanation (i.e., non-fine-tuned) of Bell inequality violations (Allen
et al., 2017; Hofer-Szabó et al., 1999). This also has led to a formalization of quantum
causal models (Costa and Shrapnel, 2016; Barrett et al., 2019; Chiribella and Ebler, 2019;
Shrapnel, 2019). As shown in (Chaves et al., 2014a,b, 2015), in some cases, (hidden)
common causes can be distinguished from direct causation using information theoretical
generalization of Bell’s inequalities and causal directed acyclic graphs (DAGs). Also, as
shown in (Fitzsimons et al., 2015; Ried et al., 2015), observed quantum correlations alone
are sometimes enough to imply causation. However, the proposed approach in (Fitzsimons
et al., 2015; Ried et al., 2015) depends on the precise knowledge of the physical system
and the measurement apparatuses (Gachechiladze et al., 2020). In this paper, we propose
the first tractable algorithmic approach to distinguish between a hidden common cause and
direct causal influences among two observed quantum systems without any interventional
data.

To show the difficulty of causal structure discovery task even in the simplest classical
case, where our observation consists of only two jointly-distributed random variables X
and Y that are statically correlated, we recall Reichenbach’s common cause principle (Re-
ichenbach, 1991): If two random variables X and Y are statistically dependent, then there
exists a third variable Z that causally affects both. As a special case, Z may coincide with
either X or Y . Furthermore, this variable Z makes X and Y conditionally independent,
i.e., X ⊥⊥ Y |Z. So, possible candidates for representing causal relationships between X and
Y are: X → Y , X ← Y , and X ← Z → Y , and there is no easy way to determine which
one is the right structure based on the observational data alone. The variable Z in the
case X ← Z → Y is called unmeasured (latent) confounder or unmeasured (latent) common
cause. So, one of the fundamental questions in causality is to determine how cause-effect
relationships can be inferred from statistical information, encoded as a joint probability
distribution, obtained under normal, intervention-free experiments.

Co-existence of Quantum Systems To discover the true cause-effect relationships, sci-
entists normally perform randomized experiments where a sample of units drawn from the
population of interest is subjected to the specified manipulation directly. In many cases,
however, such a direct approach is not possible due to expense or ethical considerations.
Instead, investigators have to rely on observational studies to infer causality. This task
is even more challenging in quantum context due to quantum superpositions and entan-
glement relations. In this work, we are interested in quantum generalizations of causal
structures in the presence of latent common causes. These structures can be shown as a
directed acyclic graph (DAG), where nodes are quantum systems, and edges are quantum
operations1. However, the key theoretical distinction between an entirely classical causal
structure and a quantum casual structure is the concept of coexisting. Because of the im-
possibility of cloning, the outcomes and the quantum systems that led to them do not exist

1. In the context of quantum computation (Hogg, 1996), a quantum operation is called a quantum channel.
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simultaneously. If a system X is measured to produce Y , then ρXY is not defined and
hence neither is the entropy S(ρXY ) (Weilenmann and Colbeck, 2017). For a given causal
structure, a coexisting set of systems is one for which a joint state can be defined (Chaves
et al., 2015; Weilenmann and Colbeck, 2017, 2020).

If we pick a coexisting set of nodes (e.g., a classical system, or a set of nodes that are
created at the same instance of time, i.e., they do enjoy a joint density operator), then
we can investigate the identification of quantum causal structures in the presence of latent
confounders.

Contributions In this paper, we consider causality between two coexisting quantum sub-
systems. As a part of the evaluation framework, we provide a model of such a coexisting
system, where two entangled qubits are used, and one of the qubit is transmitted over a
quantum channel. Similarly, three entangled qubits are used, and two of them are trans-
mitted over two separate quantum channels. The models can be further generalized, while
note that the subsystems which are being considered for quantum causality relationships
have to coexist, unlike in the classical case where it is not necessary for the sub-systems to
coexist. To address this problem, we introduce a theoretical framework to merge quantum
information science with causal inference using entropic principles. Classically, it has been
proposed and tested that minimization of the trade-off between the entropy of the (hidden)
common cause Z (i.e., H(Z)) and the conditional mutual information of observed variables
X and Y given Z (i.e., I(X;Y |Z)) can be used to distinguish the latent graph X ← Z → Y
(Z is an unmeasured confounder) from the directed graphs X → Y and X ← Y based on
observational data alone under certain assumptions (Kocaoglu et al., 2020) (a brief review is
given in Section 2). We will provide the first generalization of this approach to the quantum
domain.

Even though the paper considers an approach for quantum causal inference, we also ap-
ply the proposed approach to a classical setup, where two bits are transmitted over a binary
symmetric channel (to illustrate the case of no confounder), or two bits are transmitted over
two separate channels (to illustrate the case of latent confounder). We note that finding the
optima over a quantum density matrix rather than over the probability distribution func-
tion provides larger degrees of freedom thus resulting in improved results. This example is
used to select the hyperparameters for our framework, and these hyperparameters are used
in the rest of the paper. This demonstrates that the proposed approach can also be used
for classical causal inference with improved results. Our main contributions are as follows:

• Inferring causality in the presence of latent confounders from observational data alone is
one of the most important and challenging problems in statistical inference. We propose
an iterative algorithm, called QInferGraph, for identifying latent confounders in Section 3.
Our method leverages the concept of quantum conditional matrices to unify the solution
for classical and quantum (latent) common cause problem in a principled way.
•We evaluate the proposed approach for classical causal inference. By leveraging optimiza-
tion over density matrices, the proposed approach is shown to outperform the results of
classical causal inference in (Kocaoglu et al., 2020) for Tubingen database (Mooij et al.,
2016) in section 4.

•We put forth an experimental scheme that can be used to confront our theoretical frame-
work. We consider a minimalistic model of an unknown message (possibly encrypted) with
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unknown origin in a two-node quantum network with the possibility of the presence of a
latent common cause, where nodes are a coexisting set of quantum systems for which a
joint density matrix can be defined. Entangled quantum subsystems are used, where sub-
systems are communicated over noisy channels (e.g., optical fiber) to create such coexisting
set of quantum systems. We show that only using the joint density matrix of the observed
two quantum systems, we can identify the originator of the message (i.e., the sub-system
that did not encounter the noisy channel). To verify the validation of the proposed method,
called QInferGraph, we use realistic quantum noisy links such as quantum symmetric chan-
nel and depolarizing channel (valid for quantum networking and quantum communications)
(Section 5).

The rest of the paper is organized as follows. In Section 2, we review the classical
causal inference approach proposed in (Kocaoglu et al., 2020) for the identification of causal
structures in the presence of hidden common causes. In Section 3, we generalize the classical
approach to the quantum domain. In Section 4 and 5, we put forward an experimental
scheme that can be used to validate our proposed approach using a minimalistic model
of an unknown message (possibly encrypted) with unknown origin in a two-node/three-
node classical/quantum network, respectively. In Section 6, we explain and show why
should we not map quantum to classical directly. Also, we evaluate the performance of
QInferGraph on the real dataset (section 4.2) with cause-effect pairs (Mooij et al., 2016),
and show that QInferGraph outperforms in identification of latent confounders as compared
to the classical approach. In Section 6, we explain and show why should we not map
quantum to classical directly.

2. Review of Classical Causal Inference Framework in Kocaoglu et al.
(2020)

In this section, we briefly review the proposed approach in (Kocaoglu et al., 2020) for
confounder discovery via solving an optimization problem that its aim is to discover the
trade-off between the entropy of the latent variable and the conditional mutual informa-
tion of the observed variables. Consider that the joint distribution P (X,Y ) between two
observed variables is given. The goal is to find a random variable Z that makes X and Y
conditionally independent given Z. Possible cases that can represent this situation is shown
in Figure 1.

Y

Z

X

(a)

Y

Z

X

(b)

XY

YX

(c)

or

Figure 1: (a) Latent Graph, (b) Triangle Graph, and (c) Direct Graph.

In the classical causal inference, Kocaoglu et al. (2020) distinguished between latent
graph in Figure 1(a) from others in Figure 1 based on unmeasured confounder having low
Shannon entropy under certain assumptions. Formally, the following was assumed:
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Algorithm 1: LatentSearch (Kocaoglu et al., 2020)

Input: Supports of X,Y , and Z, respectively; Joint probability distribution p(x, y); Number of
iterations N ; β in the loss function L = I(X;Y |Z) + βH(Z), Initialization of q1(z|x, y).

Output: Joint distribution q(x, y, z).
1 for i = 1 : N do

/* Form the joint distribution: */

2 qi(x, y, z)← qi(z|x, y)p(x, y), ∀x, y, z;
3 Calculate:

qi(z|x)←
∑
y∈Y qi(x, y, z)∑

y∈Y,z∈Z qi(x, y, z)
,

qi(z|y)←
∑
x∈X qi(x, y, z)∑

x∈X,z∈Z qi(x, y, z)
,

qi(z)←
∑

x∈X,y∈Y

qi(x, y, z)

4 Update:

qi+1(z|x, y)← 1

F (x, y)

qi(z|x)qi(z|y)

qi(z)1−β
, where

F (x, y) =
∑
z∈Z

qi(z|x)qi(z|y)

qi(z)1−β

5 end
6 return q(x, y, z) := qN+1(z|x, y)p(x, y).

Assumption 1 Consider any causal model with observed variables X and Y . Let Z repre-
sents the variable that captures all latent confounders between X and Y . Then H(Z) < θ, 2

where H(Z) = −
∑n

i=1 P (xi) log(P (xi)).

Note that I(X;Y |Z) = 0 means that Z makes the variables X and Y conditionally
independent, i.e., X ⊥⊥ Y |Z.3 To identify latent graphs, Kocaoglu et al. (2020) proposed
an iterative algorithm (Algorithm 1) that discovers the trade-off between the entropy of the
unmeasured confounder and the conditional mutual information of the observed variables.
This trade-off is formally defined as follows:

L = I(X;Y |Z) + βH(Z) (1)

In fact, LatentSearch (Algorithm 1) sets q(x, y, z) = q(z|x, y)p(x, y) and searches over
q(z|x, y) to find the stationary point of the loss function L in Equation (1). For this purpose,
LatentSearch returns a joint probability distribution q(X,Y, Z) from which the Shannon
entropy of the latent variable W , i.e., H(W ) can be computed. To verify whether the
causal graph G = (V = {X,Y }, E) is a latent graph or not, InferGraph (Algorithm 2)
(Kocaoglu et al., 2020) runs LatentSearch multiple times and selects the smallest H(W )
discovered by the algorithm among those that ensure the conditional independence of X

2. θ is the entropy threshold. The true H(Z) is not available in practice. As discussed in (Kocaoglu et al.,
2020) H(Z) is lower-bounded by the entropies of X and Y , up to a scaling by a constant. For example,
as suggested in (Kocaoglu et al., 2020), θ is set to 0.8 min{H(X), H(Y )} in experiments.

3. Note that this is different from the notion of causal independence, which refers to the situation where
multiple causes contribute independently to a common effect (Zhang and Poole, 1996).
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and Y given W , i.e., I(X;Y |W ) ≤ T for a practical threshold ( as suggested in (Kocaoglu
et al., 2020), T = 0.001). We refer readers to (Kocaoglu et al., 2020) for more experimental
settings. Kocaoglu et al. (2020) conjecture that, under Assumption 14, and in practice, the
Shannon entropy of observed variables X and Y for directed graphs and triangle graphs is
lower-bounded by Shannon entropy of X and Y , up to a scaling by a constant (as suggested
in (Kocaoglu et al., 2020), θ = 0.8 min{H(X), H(Y )}). For more detailed discussion see
(Kocaoglu et al., 2020).

Algorithm 2: InferGraph: Identifying the Latent Graph (Kocaoglu et al., 2020)

Input: Joint probability distribution p(x, y); Number of iterations N ; I(X;Y |Z) threshold T ;
H(Z) threshold that is determined by θ = αmin(H(X), H(Y )); {βi}Ni=1; Support size of
X,Y , and Z, i.e., r,m, and n, respectively.

Output: ”Latent Graph” if Z is an unmeasured confounder for X and Y , otherwise, returns
”Triangle or Direct Graph”.

1 for i = 1 : N do
2 qi(x, y, z)← LatentSearch(p(x, y), α, βi, r,m, n);
3 Calculate Ii(X;Y |Z) and Hi(Z) from qi(x, y, z);

4 end
5 S = {i : Ii(X;Y |Z) ≤ T};
6 if min(Hi(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

3. Proposed Entropic Approach for Confounder Discovery in Quantum
Systems

In this section, we provide an approach for identifying latent graphs in quantum systems,
where we assume the Assumption 1, with the entropy replaced by the von-Neumann entropy,
S(X) = −tr(ρX log ρX). We first briefly review the formalism of quantum density matrices,
which provides a solid framework for adapting classical iterative algorithms (Algorithm 1
and 2) to the quantum domain. Then, the proposed algorithm to identify latent graphs is
described.

3.1 Overview of Quantum Computing

Quantum theory can be understood as a non-commutative generalization of classical prob-
ability theory wherein probability measures are replaced by density operators (Leifer and
Spekkens, 2013). The density matrix describes the quantum state of a physical system, and
allows for the calculation of the probabilities of the outcomes of any measurement performed
upon this system. The density matrix is a positive semi-definite, Hermitian matrix of trace
one. The density matrix can be written as

∑
j pj |ψj〉〈ψj | for some states |ψj〉 and coefficients

4. Note that in (Kocaoglu et al., 2020) to distinguish the latent graph in Figure 1(a) from mediator graphs
(i.e., X →M → Y , where M is a latent variable), the following is also assumed: Consider a causal model
where X causes Y . If X causes Y only through a latent mediator Z, i.e., X → Z → Y , then H(Z) ≥ θ.
In this work, we only focus on distinguishing between latent graphs and direct/triangle graphs.
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pj that are non-negative and add up to one. As a generalization of classical probabilities,
the density matrix corresponding to a probability distribution can be obtained where pj
corresponds to the probability that the random variable is j and the state |ψj〉 is given as
a column vector with 1 at jth element and zero otherwise5. Analogies between the classical
theory of Bayesian inference and the conditional states formalism for quantum theory are
listed in Table 1.

Table 1: Analogies between classical and quantum formalism

Classical Probability Quantum Theory

probability distribution p(X) density operator (matrix) ρX
joint distribution p(X,Y ) joint density ρXY
marginal distribution p(X) =

∑
Y p(X,Y ) partial trace ρX = TrY (ρXY )

conditional probability conditional density matrix

p(Y |X) = p(X,Y )/p(X) ρY |X = (ρ
−1/2
X ⊗ IY )ρXY (ρ

−1/2
X ⊗ IY )

Quantum conditional densities are a generalization of classical conditional probability
distributions. However, to generalize conditional probabilities to the quantum case, sev-
eral approaches have been proposed in the literature. The three following generalizations
are the best known in the literature of quantum information: (1) quantum conditional ex-
pectation (Umegaki, 1962), (2) quantum conditional amplitude operator (Cerf and Adami,
1997, 1999), and (3) quantum conditional states (Leifer, 2007; Leifer and Spekkens, 2013).
Arguably, quantum conditional states are the most useful generalization of conditional prob-
ability from the point of view of practical applications. For example, quantum conditional
states have been used in (Leifer and Spekkens, 2013) to build a quantum theory of Bayesian
inference. Since quantum conditional states provides a closer analogy between quantum
theory and classical probability theory, we choose this formalism to define quantum condi-
tional density matrices. We will see that this formalism plays a significant role in the design
and success of our entropic quantum causal inference algorithm.

Following (Leifer, 2007; Leifer and Spekkens, 2013), the conditional density matrix of
X given Y is defined as follows:

ρX|Y = (ρ
−1/2
Y ⊗ IX)ρXY (ρ

−1/2
Y ⊗ IX).

Also, note that this relates the conditional density matrix and the joint density matrix,
and thus the joint density matrix can also be written as

ρXY = (ρ
1/2
Y ⊗ IX)ρX|Y (ρ

1/2
Y ⊗ IX) = (ρ

1/2
X ⊗ IY )ρY |X(ρ

1/2
X ⊗ IY ).

3.2 QLatentSearch: An Algorithm for Computing Exact Quantum Common
Entropy

In this section, we propose an iterative algorithm (Algorithm 3) that discovers the trade-off
between the entropy of the unmeasured confounder and the quantum conditional mutual

5. Note that this is not a unique method of relating the classical probabilities to quantum density matrix
(Bradley and Vlassopoulos, 2020).
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information of two observed quantum systems given the unmeasured confounder. This
is fundamental for designing an algorithm for the identification of latent confounders in
quantum systems, as we show in the next subsection. This trade-off is formally defined as
follows:

L = IQ(X;Y |Z) + βS(Z) (2)

Note that IQ(X;Y |Z) = 0 implies that the quantum conditional independence of X and
Y given Z (Allen et al., 2017, Theorem 3). Having low von Neumann entropy of hidden
common cause Z, i.e., S(Z) under the quantum version of Assumption 1 enable us to identify
latent graphs from direct/mediator graphs in practice, as we show in section 4. For this
purpose, rather than searching over ρXY Z and enforcing the constraint ρXY = TrZ(ρXY Z),
we can search over ρ(Z|X,Y ) and set

ρXY Z = (ρ
1/2
XY ⊗ IZ)ρ(Z|X,Y )(ρ

1/2
XY ⊗ IZ)

because:

L = IQ(X;Y |Z) + βS(Z)

= S(XZ) + S(Y Z)− S(Z)− S(XY Z) + βS(Z)

= S(XZ) + S(Y Z)− S(XY Z) + (β − 1)S(Z)

= S(X) + S(Z|X) + S(Y ) + S(Z|Y )− S(XY )

− S(Z|X,Y ) + (β − 1)S(Z)

= S(Z|X) + S(Z|Y )− S(Z|X,Y )

+ (β − 1)S(Z) + IQ(X;Y )

Note that ρ(Z|Y ) = TrX((ρ1/2(X|Y ) ⊗ IZ)ρ(Z|X,Y )(ρ1/2(X|Y ) ⊗ IZ)), ρ(Z|X) =

TrY ((ρ1/2(Y |X)⊗IZ)ρ(Z|X,Y )(ρ1/2(Y |X)⊗IZ)), and ρZ = TrX,Y ((ρ
1/2
XY⊗IZ)ρ(Z|X,Y )(ρ

1/2
XY⊗

IZ)). So, we have L = L(ρ(Z|X,Y )), which is the counterpart of the classical loss function
in Equation 1 with the following differences: (i) rather than using (conditional) probabil-
ity distributions, we use (conditional) density matrices, and (ii) rather than using Rényi
entropy, we use the von Neumann entropy.

We aim to optimize the objective L over ρ(Z|X,Y ). Although first order methods (e.g.,
gradient descent) or genetic algorithm (GA)6 can be used to find a stationary point of
the optimization problem in (2), as we empirically observed the convergence is unattain-
able/slow and the performance is very sensitive to the tuning parameters such as step size
and the mutation probability. This optimization problem is difficult to perform numerically
because the boundary of the space of positive semidefinite matrices is hard to compute. In
order to provide a scalable algorithm for this optimization, we extend the iterative algorithm
that was proposed for classical version of the problem in (Kocaoglu et al., 2020).

The proposed iterative algorithm for the optimization of L is described in Algorithm 3,
and is called QLatentSearch. This algorithm starts from a random initialization ρ1(Z|X,Y ),
and then at each iteration i does the following two phases to update ρi+1(Z|X,Y ) from
ρi(Z|X,Y ) to finally minimize the loss function L in (2):

6. Genetic algorithm (GA) is a metaheuristic method inspired by the process of natural selection.
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• Calculate Phase: In this phase we use partial trace to get ρi(Z|X) (line 3-5), ρi(Z|Y )
(line 6-8), and ρiZ (line 9) from ρiXY Z .

• Update Phase: In this phase we update ρi+1(Z|X,Y ) to get ρi+1
XY Z (line 10) for the

next iteration.

Algorithm 3: QLatentSearch, An Iterative Algorithm for Computing Exact
Quantum Common Entropy
Input: Joint density matrix ρXY ; Number of iterations N ; β parameter in the loss function

L = IQ(X;Y |Z) + βS(Z), Initialization of ρ1(Z|X,Y ).
Output: Joint density matrix ρXY Z .

1 for i = 1 : N do
/* Form the joint density matrix: */

2 ρiXY Z = (ρ
1/2
XY ⊗ IZ)ρi(Z|X,Y )(ρ

1/2
XY ⊗ IZ);

/* Calculate Phase: */

/* (i) Calculate ρi(Z|X): */

3 ρiXZ = TrY (ρiXY Z) // Then, compute ρiXIY Z by reordering the entries of ρiXZ
4 ρiX = TrZ(ρiXZ);

5 ρi(Z|X)← ((ρiX)−1/2 ⊗ IY Z)ρiXIY Z((ρiX)−1/2 ⊗ IY Z);
/* (ii) Calculate ρi(Z|Y ): */

6 ρiY Z = TrX(ρiXY Z) // Then, compute ρiIXY Z = IX ⊗ ρiY Z
7 ρiY = TrZ(ρiY Z);

8 ρi(Z|Y )← (IX ⊗ (ρiY )−1/2 ⊗ IZ)ρiIXY Z(IX ⊗ (ρiY )−1/2 ⊗ IZ);

/* (iii) Calculate ρiZ: */

9 ρiZ = TrXY (ρiXY Z);
/* Update Phase: */

10 ρi+1(Z|X,Y )← exp(log(ρi(Z|X)) + log(ρi(Z|Y )) + (β − 1) log(ρiZ));

11 end

12 return ρXY Z := (ρ
1/2
XY ⊗ IZ)ρN+1(Z|X,Y )(ρ

1/2
XY ⊗ IZ).

Formally, to prove the correctness of QLatentSearch, the following theorem shows that
QLatentSearch converges to a stationary point of the loss function L in Equation 2. The
proof is available at Appendix A.

Theorem 1 (Correctness of QLatentSearch) The stationary points of the algorithm QLatentSearch are
also stationary points of the loss function L in Equation 2 for 0 < β < 1.

3.3 QInferGraph: An Algorithm for the Identification of Latent Confounders

In this section, we propose a quantum entropic approach to causal inference that can dis-
cern the difference between causation and correlation. Specifically, under Assumption 1,
extended to quantum, Algorithm 3 can be used to distinguish causation from spurious corre-
lation between two observed quantum systems. This enables us to distinguish latent graph
in Figure 1(a) from the triangle or direct graphs in Figure 1(b)-(c). Our main assumption
is that the latent confounders, if they exist, have small von Neumann entropy. Formally,
we have:

9
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Assumption 2 Consider any causal model with observed quantum subsystems X and Y .
Let Z represents the quantum system that captures all latent confounders between X and
Y . Then S(Z) < θ, where S(Z) = −tr(ρ log ρ).

In other words, in Figure 1(a), S(Z) ≤ θ for some θ. Similar to the classical version
of this problem, we conjecture that θ = αmin{S(X), S(Y )} for some α < 1. Considering
Assumption 2 along with QLatentSearch (Algorithm 3), we propose an algorithm, called
QInferGraph (Algorithm 4), to identify latent graphs.

Algorithm 4: QInferGraph: Identifying the Latent Graph

Input: Joint density matrix ρXY ; Number of iterations N ; IQ(X;Y |Z) threshold T ; S(Z)
threshold that is determined by θ = αmin(S(X), S(Y )); {βi}Ni=1; The number of rows (or
equivalently, columns) of X,Y , and Z, i.e., r,m, and n, respectively.

Output: ”Latent Graph” if Z is an unmeasured confounder for X and Y , otherwise, returns
”Triangle or Direct Graph”.

1 for i = 1 : N do
2 ρiXY Z ← QLatentSearch(ρXY , α, βi, r,m, n);

3 Calculate IiQ(X;Y |Z) and Si(Z) from ρiXY Z ;

4 end

5 S = {i : IiQ(X;Y |Z) ≤ T};
6 if min(Si(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

In short, QInferGraph calls QLatentSearch N times to figure out if there exist a W , for
which IQ(X;Y |W ) < T , i.e., W makes X and Y conditionally independent. Also, the von
Neumann entropy of W is enough small such that S(W ) < αmin{S(X), S(Y )} for some
α in practice. If there exist such a W , the algorithm declares W is a latent confounder.
In other words, latent graph represents correlation without causation relationship between
observed quantum systems X and Y . Otherwise, very likely such a W that minimizes the
loss function L does not exist, and QInferGraph declares that a triangle graph or a direct
graph represents the connection between X and Y better than a latent graph in this case.
In the next section we conduct experiments to verify this procedure in practice.

4. Evaluation on Causal Synthetic and Real Data

To verify the validity of our proposed algorithm, we put forward an experimental scheme
that can be used to confront our theoretical framework. To show the effectiveness of the
proposed approach in section 3, we first use noisy links (section 4.1), where it is validated
that the input before noise, as a latent confounder (hidden source), is the cause of the
noisy outputs. We will observe that the proposed approach helps achieve better tradeoff
between IQ(X;Y |Z) and S(Z), thus helping reduce thresholds as compared to the classical
approach. Using the parameter choices based on this study, we evaluate the performance of
QInferGraph on the real dataset (section 4.2) with cause-effect pairs (Mooij et al., 2016),
and show that QInferGraph outperforms in distinguishing latent graphs from direct or
triangle graphs (see Figure 1) as compared to the classical approach.
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4.1 Identification of Latent Graphs in Noisy Channels

We first apply the proposed approach to a classical setup, where two bits are transmitted
over a binary symmetric channel (to illustrate the case of no confounder), or two bits are
transmitted over two separate channels (to illustrate the case of latent confounder). We
show that the proposed approach outperforms the classical causal inference in (Kocaoglu
et al., 2020) due to the use of quantum density matrix. Finding the optima over a quantum
density matrix rather than over a probability distribution provides larger degrees of freedom
thus resulting in improved results. Our results indicate that the proposed approach helps
achieve better tradeoff between IQ(X;Y |Z) and S(Z) as compared to the classical approach.

Model 1 (Classical Symmetric Channel: Latent and Direct Graph) Part I: La-
tent Graph. Assume a 2-bit input Z ∈ {00, 01, 10, 11}. Let each bit of Z be in the state
1 with probability q and 1− q otherwise, and independent of each other. So, p(Z = 00) =
(1 − q)2, p(Z = 01) = p(Z = 10) = q(1 − q), and p(Z = 11) = q2. Z is transmitted over
a binary symmetric channel with independent bit error probability of p1, and is denoted
X. A cloned version of Z is transmitted over a binary symmetric channel with indepen-
dent bit error probability of p2, and is denoted Y . The joint probability distribution of
X,Y , and Z, where Z is the cause of X and Y , i.e., X ← Z → Y can be computed as
p(X,Y, Z) = p(Z)p(X|Z)p(y|Z). For example, p(01, 10, 00) = (1 − q)q ∗ p1p2 ∗ (1 − p1)p2.
Then we marginalize out Z to obtain the joint probability distribution for the latent graph
X ↔ Y . Note that the corresponding joint density matrix ρXY is a diagonal matrix that
its diagonal entries come from the joint probability distribution p(X,Y ). The key reason of
constructing ρXY as the diagonal matrix from p(X,Y ) is to have the mixed states, so that
the von-Neuman entropy of ρXY is the same as the Shannon entropy of p(X,Y ).

00 00

01

10

11

01

10

11

Figure 2: 2-bit non-Binary symmetric channel.

Now, we apply QInferGraph (Algorithm 4) on ρXY to verify that X and Y are con-
founded by Z. For this purpose, we use QLatentSearch (Algorithm 3) on 1000 different
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values of β, uniformly spaced in the interval (0, 1). We run QLatentSearch for 500 it-
erations each time. We use the conditional mutual information threshold of T = 0.05,
0.01, and 0.005. In other words, of the algorithm outputs for the 1000 β values used,
we pick the smallest entropy W discovered by the algorithm among those that ensure
I(X;Y |W ) ≤ T . Figure 3 summarizes the results for different S(W ) threshold that is de-
termined by θ = αmin{S(X), S(Y )} for T = 0.05. The results for T = 0.01 and T = 0.05
are summarized in Figure 4. For different values of α = 0.2, 0.3, · · · , 1, the results are given
in Figures 3 and 4. We let q = 0.4. In each table, T means that QInferGraph (Algorithm
4) identifies the latent graph correctly. But, F means that the algorithm fails to identify
the latent graph. For very small or very large pi’s, identification of latent graphs is difficult,
while the proposed algorithm works well in most other cases.

(a) α = 0.2, 0.3, 0.4
p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(b) α = 0.5

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(c) α = 0.7, 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(d) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F T T T T T T T T T F
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 F T T T T T T T T T F

(e) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 3: Validation of Latent Graph in Model 1 (Part I) for T = 0.05, and β ∈ (0, 1) via
QInferGraph.

Now, if we apply InferGraph (Algorithm 2) on p(X,Y ) with α = 0.8, as suggested
in (Kocaoglu et al., 2020), and three more α parameters α = 0.7, 0.9, 1 and β ∈ (0, 1), we
obtain the results summarized in Figure 5.
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(a) α = 0.2, 0.3, 0.4
p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(b) α = 0.5

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(c) α = 0.7, 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(d) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(e) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 4: Validation of Latent Graph in Model 1 (Part I) for T = 0.01, 0.005, and β ∈ (0, 1)
via QInferGraph.
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(a) α = 0.7

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F F T T T F F F F
0.1 F F F F T T T F F F F
0.2 F F F T T T T T F F F
0.3 F F T T T T T T T F F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F F T T T T T T T F F
0.8 F F F T T T T T F F F
0.9 F F F F T T T F F F F
0.99 F F F F T T T F F F F

(b) α = 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(d) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 5: Validation of Latent Graph in Model 1 (Part I) via classical causal inference
(Algorithm 2), T = 0.001, and β ∈ (0, 1).

Some highlights for results in Part I: (1) Note that when the probability of errors i.e.,
p1 and p2 are very small, the latent confounder Z is hardly distinguishable from X (or Y )
and QInferGraph fails to discover the latent graph. (2) Note that QLatentSearch tries to
find the stationary point(s) of the loss function L in Equation (2), and there is no guarantee
to find the global optimum. However, the performance of QInferGraph in the worst case
(α = 0.2, 0.3, 0.4) is acceptable: true positive rate (recall) = 0.74, false positive rate (fall-out)
= 0, false negative rate (miss rate) = 0.36, accuracy = 0.74. (3) The hyperparameter α does
not affect significantly on the quality of results in our experimental settings that indicates
QInferGraph is not very sensitive to hyperparameters. (4) It seems that the classical causal
inference algorithm, i.e., InferGraph (Algorithm 2) is much more sensitive to the choice
of hyperparameter α, while QInferGraph is more robust to the choice of this parameter.
(5) The performance of InferGraph (Algorithm 2) for identifying latent graphs in Model
1 (Part I) with α = 0.8 (the best α parameter, as suggested in (Kocaoglu et al., 2020)),
is the same as the performance of QInferGraph with α = 0.2, 0.3, 0.4. The reason is that
QInferGraph constantly returns a local optima with lower entropy in comparison with the
classical InferGraph algorithm, because finding the optima over a quantum density matrix
rather than over the probability distribution function provides larger degrees of freedom thus
resulting in improved results. For example, consider the case that p1 = 0.1 and p2 = 0.2.
Figure 6 shows for different points where IQ(X;Y |Z) < T , the values of entropy of Z in
a sorted order. We see that the algorithms choose lowest entropy among these points,
where QInferGraph returns 2.9 times lower local optima than InferGraph with entropy of
0.471543756. Figure 7 shows the trade-off curve between IQ(X;Y |Z) and S(Z) (respectively,
between I(X;Y |Z) and H(Z)) returned by QLatentSearch and the classical LatentSearch
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for this case that supports over observation in Figure 6 that the proposed approach helps
achieve significantly better tradeoff. In this example, H(X) = S(X) = 1.979175042 and
H(Y ) = S(Y ) = 1.96290779.

1.368167269

0.471543756
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2

En
tr

o
p

y 
o

f 
Z

Quantum Classical

Figure 6: Entropy of possible latent confounder Z: QInferGraph vs the classical Infer-
Graph algorithm for Model 1 (Part I) with p1 = 0.1, p2 = 0.2, and mutual conditional
independence threshold T = 0.05.

Part II: Direct Graph. Assume that there is a 2-bit symmetric noisy channel, where there
is no latent common cause, i.e., there is an input X and an output Y , as shown in Figure 2
with error probability p on each bit, and the same properties explained in Part I. Now, we
apply QInferGraph (Algorithm 4) on ρXY and InferGraph on p(X,Y ) to verify that the
graph that explains the correlation between X and Y is a direct graph (i.e., X → Y ) rather
than a latent graph (i.e., there exist a latent confounder Z such that X ← Z → Y ). The
results of applying QInferGraph and InferGraph on ρXY and p(X,Y ) are summarized
in Figures 8 and 9, respectively. T means that QInferGraph (Algorithm 4) identifies the
direct graph correctly. But, F means that the algorithm fails to identify the direct graph.
Some highlights for results in Part II: (1) The performance of InferGraph (Algorithm
2) for identifying latent graphs in Model 1 (Part I) with α = 0.8 (the best α parameter, as
suggested in (Kocaoglu et al., 2020)), is the same as the performance of QInferGraph with
α = 0.2, 0.3, 0.4. This confirms our observation in Part I of this model. For example,
consider the case that p = 0.2. Figure 10 shows that for this case QInferGraph returns a
better local optima than InferGraph with entropy of 0.864236474. Figure 11 shows the
trade-off curve returned by the classical LatentSearch and QLatentSearch for this case
that supports over observation in Figure 6. In this example, H(X) = S(X) = 1.979175042
and H(Y ) = S(Y ) = 1.941901189. (2) Although the performance of the classical algorithm
(Algorithm 2), where α = 0.5, 0.7, is better than QInferGraph for Model 1 (Part II), its
performance for Model 1 (Part I), where there is a latent confounder, is not satisfactory.

In conclusion, results from Part I and II, indicate that QInferGraph is a more consistent
and less sensitive to the change of parameters than its counterpart in the classical causal
inference, even for the classical data. The proposed approach helps achieve better tradeoff
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Figure 7: Trade-off curve discovered by the classical LatentSearch and QLatentSearch for
the pair in Model 1 (Part I) with p1 = 0.1 and p2 = 0.2. Each point is the output of
algorithms for a different value of β ∈ (0, 1).

(a) T = 0.05

p

0.01 0.1 0.2 0.3 0.4 0.5
0.2 T T T F F T
0.3 T T T F F T
0.4 T T T F F T
0.5 T T F F F T
0.7 T T F F F T

α 0.8 T T F F F T
0.9 T F F F F T
1 F F F F F T

(b) T = 0.01, 0.005

p

0.01 0.1 0.2 0.3 0.4 0.5
0.2 T T T F F T
0.3 T T T F F T
0.4 T T T F F T
0.5 T T F-T F F T
0.7 T T F F F T

α 0.8 T T F F F T
0.9 T T F F F T
1 F F F F F T

Figure 8: Validation of Direct Graph in Model 1 (Part II) via QInferGraph, and β ∈ (0, 1).

curves between the two metrics. In addition, for the classical InferGraph algorithm, as
suggested in (Kocaoglu et al., 2020), the best hyperparameters are α = 0.8 and T = 0.001;
while for QInferGraph the best hyperparameters in this setting are α = 0.2 and T = 0.005.
As we mentioned earlier in this model, since QInferGraph consistently returns a local optima
with lower entropy than InferGraph, we need to use a smaller α parameter (α = 0.2) in
QInferGraph. Thus, in the remainder of the paper, we will use these parameter values.
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p

0.01 0.1 0.2 0.3 0.4 0.5
0.7 T T T T F T

α 0.8 T T T F F T
0.9 T T T F F T
1 F F F F F T

Figure 9: Validation of Latent Graph in Model 1 (Part II) via classical causal inference
(Algorithm 2), and β ∈ (0, 1).
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Figure 10: Entropy of possible latent confounder Z: QInferGraph vs the classical Infer-
Graph algorithm for Model 1 (Part II) with p = 0.2, and mutual conditional independence
threshold T = 0.05.

4.2 Distinguishing Cause from Effect Using Observational Data: Tuebingen
dataset

Inferring causal relationships from observational data alone is a challenging task even in
the most elementary form of such a causal discovery problem, i.e., determining whether
X causes Y or, alternatively, Y causes X, given only joint measurements of both vari-
ables. Tuebingen dataset is a benchmark database that includes more than 100 different
cause-effect pairs selected from various domains (e.g., meteorology, biology, medicine, en-
gineering, economy, etc.) (Mooij et al., 2016). Here, we only consider the first 41 pairs of
cause-effect datasets, available at : https://webdav.tuebingen.mpg.de/cause-effect/,
to evaluate the performance of QInferGraph on real data. According to the website of
Tubingen database, each datafile contains two variables, where one of them is the cause and
the other one is the effect with the possibility of the existence of a latent confounder. So,
all cause-effect pairs have a form of a direct/triangle graph, as shown in Figure 12.

For example, the first cause-effect pair from Tubingen database consists of of two vari-
ables: altitude and temperature, where the ground truth says altitude causes temperature.
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Figure 11: Trade-off curve discovered by the classical LatentSearch and
QLatentSearch for the pair in Model 1 (Part II) with p = 0.2. Each point is the
output of algorithms for a different value of β ∈ (0, 1).

Y

Z

X

(a)

Y

Z

X

(b)

Figure 12: Tubingen: Database with cause-effect pairs of the form (a) or (b).

Figure 13 shows a scatter plot for this case. Note that data was taken at 349 different
stations.

Here, the goal is to decide whether the correlation between altitude and temperature
is only due to a common cause (latent graph) or one of them causes the other one (di-
rect/triangle graph). Assume that X is altitude and Y is temperature. QInferGraph with
mutual conditional independence threshold T = 0.05 and β ∈ (0, 1) returns a Z with en-
tropy 0.644801839 which is greater than 0.2 min{H(X), H(Y )} = 0.1582, where H(X) =
0.791249247 and H(Y ) = 0.989477143. This confirms that this is not a case of correlation
without causation, and very likely X and Y are causally related. Since there is a big gap
between the threshold of 0.1582 and the returned entropy of 0.644801839, the decision is
easier. Note that to deal with continuous variables, we discretized continuous variables
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Figure 13: First cause-effect pair of data from Tubingen database: altitude causes temper-
ature.

with 5 levels for both X and Y . Also, Figure 14 confirms our observation in section 4.1
regarding finding the optima over a quantum density matrix rather than over a probability
distribution where we note that the classical approach does not give any feasible point and
thus does not generate any points in the figure. In fact, searching for (local) optima over
a quantum density matrix provides larger degrees of freedom thus resulting in improved
results. Now, we confirm this observation for the first 41 pairs of Tubingen data.
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Figure 14: Entropy of possible latent confounder Z: QInferGraph vs the classical Infer-
Graph algorithm for the first cause-effect pair of Tubingen database with mutual condi-
tional independence threshold T = 0.005 for QInferGraph. Note that for the classical In-
ferGraph algorithm the minimum obtained mutual conditional independence I(X;Y |Z)
is 0.174265303 and there exist no Z such that I(X;Y |Z) < 0.001. Also, note that
H(X) = 0.791249247 and H(Y ) = 0.989477143, where X is altitude and Y is tempera-
ture.

Results over the first 41 pairs of Tubingen database. As we discussed in section
4.1, for the classical InferGraph algorithm, as suggested in (Kocaoglu et al., 2020), the
best hyperparameters are α = 0.8 and T = 0.001; while for QInferGraph the best hyperpa-
rameters are α = 0.2 and T = 0.005. Table 2 summarizes the results for QInferGraph and

19



Javidian and Aggarwal and Jacob

the classical InferGraph algorithm with the above mentioned parameters on Tubingen
database. Thus, we see that the proposed approach helps achieve significantly better accu-
racy (0.83) as compared to lower than 50% in the baseline approach. In addition, the false
negative rate of 0.17 in the proposed approach is significantly lower than the baselines which
have this rate above 0.5. Thus, we see that the proposed approach outperforms classical
approach on Tubingen database.

Table 2: Performance of QInferGraph vs classical InferGraph on Tubingen database.

Algorithm True Positive False Positive False Negative Accuracy

QInferGraph (α = 0.2, T = 0.005) 0.83 0 0.17 0.83

Classical InferGraph (α = 0.8, T = 0.001) 0.32 0 0.68 0.32

Classical InferGraph (α = 0.7, T = 0.001) 0.49 0 0.51 0.49

5. Evaluation on Quantum Causal Synthetic Data

Since there is no quantum cause-effect repository to verify the validity of our proposed algo-
rithm, we put forward an experimental scheme that can be used to confront our theoretical
framework. To show the effectiveness of the proposed approach in section 3, we use quan-
tum noisy links, where it is validated that the input before noise, as a latent confounder
(hidden source), is the cause of the noisy outputs.

We first apply our proposed approach on a quantum (non-classical) model, where mixed
entangled quantum subsystems are used for which subsystems are communicated over noisy
channels (e.g., optical fiber) to create a coexisting set of quantum systems.

Model 2 (Depolarizing Quantum Channel: Latent Graph and Direct Graph)
Part I: Latent Graph. Assume that there are real numbers γ1, γ2, λ1, and λ2 such that
γ21 + λ21 = 1 and γ22 + λ22 = 1. We consider a joint entangled system (of three qubits) as the
mixture of the following pure density matrices:{

[(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)][(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)]† q
[(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)][(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)]† 1− q

In other words, the system considered has density matrix q[(γ1|0〉 + λ1|1〉)(γ1|0〉 +
λ1|1〉)(γ1|0〉+λ1|1〉)][(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)]†+(1−q)[(γ2|0〉+λ2|1〉)(γ2|0〉+
λ2|1〉)(γ2|0〉+λ2|1〉)][(γ2|0〉+λ2|1〉)(γ2|0〉+λ2|1〉)(γ2|0〉+λ2|1〉)]†. The system is a mixture
of two pure density matrices. This quantum system has entanglement among the three
quantum bits. Let the second quantum bit is transmitted over a quantum depolarizing
channel with error probability p1, and the third quantum bit is transmitted over a quantum
depolarizing channel with error probability p2. Note that the depolarizing channel with
error probability p has no error with probability 1−p, and each of the phase-flip, bit-flip, or
the combination of phase-flip and bit-flip errors with probability p/3 (Nielsen and Chuang,

2002). With this setup, the joint density matrix is given as ρZXY = qργ1,λ1ZXY + (1− q)ργ2,λ2ZXY ,

where ργ,λZXY is given as the mixture of the following pure density matrices:
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p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 15: Validation of Latent Graph in Model 2 (Part I) for α = 0.2, and β ∈ (0, 1)

via QInferGraph, and with the density matrix obtained from 0.6ρ
1/
√
2,1/
√
2

ZXY + 0.4ρ0.6,0.8ZXY via
tracing out Z.



[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)]† (1− p1)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)

We note that X and Y coexist, thus we can find joint density matrix of X and Y by
tracing out Z in ρZXY . Then, we apply QInferGraph (Algorithm 4) on ρXY to verify that X
and Y are confounded by a latent confounder. For this purpose, we use the same parameters
specification as explained in Model 1 with α = 0.2, β ∈ (0, 1), T = 0.005, and q = 0.4.
Figure 15 summarizes the results , where α = 0.2. T means that QInferGraph (Algorithm
4) identifies the latent graph correctly. But, F means that the algorithm fails to identify
the latent graph. The results confirm our observations that we made in Model 1 (Part
I). However, in this case QInferGraph has a higher performance quality. For example, for
α = 0.2 we have: true positive rate (recall) = 1, false positive rate (fall-out) = 0, false
negative rate (miss rate) = 0, accuracy = 1.

Part II: Direct Graph. Assume that there are real numbers γ1, γ2, λ1, and λ2 such
that γ21 + λ21 = 1 and γ22 + λ22 = 1. We consider a joint entangled system (of two qubits) as
the mixture of the following pure density matrices:
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p

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
α 0.2 T T T T T T T T T T T

Figure 16: Validation of Direct Graph in Model 2 (Part II) with joint density matrix
ρXY = 0.4 ∗ ρ0.6,0.8XY + 0.6 ∗ ρ1,0XY .

{
(γ21 |00〉+ γ1λ1|01〉+ γ1λ1|10〉+ λ21|11〉)(γ21 |00〉+ γ1λ1|01〉+ γ1λ1|10〉+ λ21|11〉)† q
(γ22 |00〉+ γ2λ2|01〉+ γ2λ2|10〉+ λ22|11〉)(γ22 |00〉+ γ2λ2|01〉+ γ2λ2|10〉+ λ22|11〉)† 1− q

The system is a mixture of two pure density matrices. This quantum system has entan-
glement among the two quantum bits. Let the second quantum bit is transmitted over a
quantum depolarizing channel with error probability p. With this setup, the joint density
matrix is given as ρXY = qργ1,λ1XY + (1− q)ργ2,λ2XY , where ργ,λXY is given as the mixture of the
following pure density matrices:

(γ2|00〉+ γλ|01〉+ γλ|10〉+ λ2|11〉)(γ2|00〉+ γλ|01〉+ γλ|10〉+ λ2|11〉)† 1− p
(γ2|00〉 − γλ|01〉+ γλ|10〉 − λ2|11〉)(γ2|00〉 − γλ|01〉+ γλ|10〉 − λ2|11〉)† p/3
(γλ|00〉+ γ2|01〉+ λ2|10〉+ γλ|11〉)(γλ|00〉+ γ2|01〉+ λ2|10〉+ γλ|11〉)† p/3
(−γλ|00〉+ γ2|01〉 − λ2|10〉+ γλ|11〉)(−γλ|00〉+ γ2|01〉 − λ2|10〉+ γλ|11〉)† p/3

We note that X and Y coexist in the quantum system, and thus the joint density
matrix has been obtained. We already know that X is the cause of Y in this scenario, i.e.,
X → Y is the corresponding directed graph. To verify this, we use Algorithm 3 and 4 as
we explained earlier in this model. The results are summarized in Figure 16. T means that
QInferGraph (Algorithm 4) identifies the direct graph correctly. But, F means that the
algorithm fails to identify the direct graph. In all cases the probability of X be in state X1

is q = 0.4.

From a combination of Part I and Part II, we note that for this setup, there are no false
positive or false negatives. This shows that the choice of hyperparameters is well suited for
the problem, and that the proposed framework is efficient in determining if there is a latent
confounder.

6. Why Should We Not Map Quantum to Classical Directly?

Here, we show why classical common entropy approach do not directly apply to the quantum
case. We emphasize that although a joint density operator (matrix) can be converted
to a joint probability distribution (as explained in Example 1), we lose some quantum
information due to the loss of entanglement. We give an example that shows converting
a joint density matrix ρXY directly to a joint probability distribution p(X,Y ), and then
applying classical common entropy approach on p(X,Y ) will not lead to the correct results.

Example 1 (Counter Example) Assume the depolarizing channel as described in Model
2, Part II. We already know that X causes Y in this model. To convert the joint density
matrix ρXY , we use a rotational procedure explained as follows: Assume that ρXY is rotated
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Algorithm 5: Rotational procedure for computing the joint probability distribu-
tion of a joint density matrix
Input: Joint density matrix of quantum systems X and Y i.e., ρXY .
Output: Joint probability distribution p(X,Y ) corresponding to the joint density matrix ρXY .
/* Compute eigenvalues and eigenvectors of ρX . */

1 [V1, D1] = eig(ρX);
/* Compute eigenvalues and eigenvectors of ρY . */

2 [V2, D2] = eig(ρY );
/* Rotational procedure */

3 U = V1 ⊗ V2;

4 ρ′XY = U†ρXY U ;
5 return p(X,Y ) as the entries on the main diagonal of ρ′XY .

p

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.7 F F F F F F F F F F F
0.8 F F F F F F F F F F F

α 0.9 F F F F F F F F F F F
1 F F F F F F F F F F F

Figure 17: Classical Approach to Identify Direct Graph for Model 2 does not work.

using a unitary matrix U . Let us say ρXY = Uρ′XY U
†. So, the joint density matrix ρ′XY is

computed as ρ′XY = U †ρXY U . To compute the unitary matrix U for a given ρXY we use the
eigenspaces of ρX and ρY , where ρX = TrY (ρXY ) and ρY = TrX(ρXY ) are computed by
tracing out Y and X, respectively. This simple observation enables us to design a procedure
that converts a joint density matrix ρXY to a joint probability distribution p(X,Y ) in a way
that it takes into account the rotation. This procedure is formally described in Algorithm
5. By converting the joint density matrix ρXY directly to a joint probability distribution
p(X,Y ), using Algorithm 5, and then applying classical entropic causal inference, i.e., Al-
gorithm 2 on p(X,Y ) we obtain the results represented in Figure 17 which are opposite to
the expected results in all cases. This confirms that classical statistics are not adequate for
identification of cause–effect relations in quantum systems due to accessibility of a richer
spectrum of causal relations in quantum scenarios.

7. Conclusion

This paper provides a new approach for quantum entropic causal inference in the presence
of hidden common causes. As a part of the approach, an iterative algorithmic solution is
provided for the optimization problem that deals with the trade-off between the entropy
of the latent quantum system and the quantum conditional mutual information of the ob-
served quantum systems. We show that the use of quantum density matrix helps achieve
significantly better tradeoff even for the classical data. The approach is validated on quan-
tum noisy links, where the approach detects the expected causal relation or correlation
without causation. Our experiments on the synthetic and real classical data confirms that
our quantum entropic approach takes advantage of quantum dependency between random
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variables through density matrices, and as a result it outperforms its classical counterpart
approach.
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Appendix A. Proof of Theorem 1

To prove the theorem, we first write the objective function (L = IQ(X;Y |Z) + βS(Z)) in
Equation (2) more explicitly in terms of the optimization variables ρZ|X,Y as follows:

L = IQ(X;Y |Z) + βS(Z)

= S(XZ) + S(Y Z)− S(Z)− S(XY Z) + βS(Z)

= S(XZ) + S(Y Z)− S(XY Z) + (β − 1)S(Z)

= S(X) + S(Z|X) + S(Y ) + S(Z|Y )− S(XY )− S(Z|X,Y ) + (β − 1)S(Z)

= S(Z|X) + S(Z|Y )− S(Z|X,Y ) + (β − 1)S(Z) + IQ(X;Y )

(3)
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To find the stationary points of the loss function L, we take its first matrix derivative
w.r.t. ρZ|X,Y and set it to zero. Let’s start with the first term of the new loss function L in
Equation 3, i.e., S(Z|X) = S(ρZ|X). We have:

∂S(ρZ|X)

∂ρZ|X,Y
=
∂S(ρZ|X)

∂ρZ|X

∂ρZ|X

∂ρZ|X,Y

= (I + log(ρZ|X))
∂(TrY ((ρ

1/2
Y |X ⊗ IZ)ρZ|X,Y (ρ

1/2
Y |X ⊗ IZ)))

∂ρZ|X,Y

= (I + log(ρZ|X))(I)

= I + log(ρZ|X)

(4)

Note that in Equation 4, we used matrix calculus as follows: ∂tr(AXB)
∂X = BA, where

A and B are not a function of X. Also, for a joint probability distribution p(X,Y ) we
have:

∑
y∈Y p(y|x) = 1. Similarly, we have the following identity for matrix version of this

equation, i.e., TrY (ρY |X) = I. Following similar matrix calculations for other terms in
Equation 3, we obtain:

∂L

∂ρZ|X,Y
= [I + log(ρZ|X)] + [I + log(ρZ|Y )]− [I + log(ρZ|X,Y )] + (β − 1)[I + log(ρZ)] (5)

By solving ∂L
∂ρZ|X,Y

= 0 from Equation 5, assuming that all density matrices are positive

definite7, we obtain:

ρZ|X,Y = exp(log(ρZ|X) + log(ρZ|Y ) + (β − 1) log(ρZ))

This means a point is a stationary point of the loss function L if and only if it is a stationary
point of QLatentSearch (Algorithm 3).

7. Even though the assumption of positive definiteness may not always be valid, we can replace ρ with
(1 − ε)ρ + εI for very small ε to alleviate the issue in the approach and the algorithm. This will allow
for the existence of the logarithm of the matrices.
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