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The concept of photonic frequency (ω) - momentum (q) dispersion has been extensively studied
in artificial dielectric structures such as photonic crystals and metamaterials. However, the ω − q
dispersion of electrodynamic excitations hosted in natural materials at the atomistic level is far
less explored. Here, we develop a Maxwell Hamiltonian theory of matter combined with the quan-
tum theory of atomistic polarization to obtain the electrodynamic dispersion of natural materials
interacting with the photon field. We apply this theory to silicon and discover the existence of
anomalous atomistic waves. These waves occur in the spectral region where propagating waves are
conventionally forbidden in a macroscopic theory. Our findings demonstrate that natural media
can host a variety of yet to be discovered waves with sub-nano-meter effective wavelengths in the
pico-photonics regime.
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I. INTRODUCTION

Functional dependency of the energy and momentum
(dispersion) of particles hosted in matter captures the
fundamental properties of a material [1]. The disper-
sion for several electronic, phononic, and magnonic ex-
citations in condensed matter systems [2–16] have been
widely studied within an atomistic lattice band theory.
However, the concept of frequency and momentum (ω−q)
photonic dispersion [17] and the corresponding electro-
magnetic field confinement [18] have been formulated
only in artificial materials such as photonic crystals [19–
22], metamaterials [23–25], and other dielectric struc-
tures [26, 27]. These artificial materials are composed of
two or more macroscopic constituents. On the contrary,
natural media itself can host electrodynamic excitations
which adapt the symmetry and periodicity of the mate-
rial [28, 29]. Hence, natural materials can host a variety
of yet to be discovered electrodynamic waves and topo-
logical photonic properties [29–31]. As such, these are
the properties of matter itself and are not related to a
form of macroscopic engineering. In this article, we de-
velop a Maxwell Hamiltonian theory of matter combined
with the quantum theory of atomistic polarization to un-
veil the electrodynamic dispersion of the electromagnetic
(photon) field.

Recently, it has been shown that a graphene mono-
layer in the viscous hydrodynamic state [32] supports
spin-1 skyrmions in the bulk and topologically protected
electromagnetic edge states at the boundary [31, 33, 34].
This topological electrodynamic phase of matter is char-
acterized by an optical N -invariant [29] fundamentally
distinct from the Chern number and Z2 invariant. The
optical N-invariant was defined based on a semi-classical
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hydrodynamic nonlocal (photon momentum ~q 6= 0) di-
electric response which includes Hall viscosity and the dy-
namics of electromagnetic waves. However, the Maxwell
Hamiltonian theory of matter and the quantum theory
of atomistic polarization within the framework of a lat-
tice band theory has not been considered so far. Here,
we solve this key challenge and show that the atomistic
polarization results in the emergence of unique class of
atomistic waves. In this paper, we apply the theory to
silicon but in the future it can be adopted to topological
systems with repulsive Hall viscosity.

In Fig. 1, we compare the light-matter interaction the-
ories across varying length scales. Tradition regime of
optics and flat meta-optics study the optical properties
within the classical electromagnetism, and the dielec-
tric response is considered to be a material dependent
function. Nanophotonics encompass the study of elec-
tromagnetic field interactions in artificial structures such
as metamaterials, photonic crystals, and other dielectric
structures [35]. Field solutions in these structures can
be effectively obtained through a classical wave equa-
tion, with the dielectric response dependent on the spa-
tial geometry [36] and frequency. In this article, our fo-
cus is pico-photonics, which comprises the light-matter
interaction in natural materials at sub-nano-meter (nm)
regime. We show that in the pico-photonic regime, the
electromagnetic fields satisfy a pico-photonic Bloch func-
tional form. Dynamics of the fields are defined by a pico-
photonic nonlinear eigenvalue equation, which depends
on the quantum theory of atomistic polarization as op-
posed to semi-classical Drude or hydrodynamic models.
Further, we apply this formulation for Si, and discover
the existence of anomalous atomistic waves. These waves
occur in the frequency range where propagating waves are
conventionally forbidden in a macroscopic theory. We
show that the anomalous waves observed in Si are highly
oscillatory within a unit cell, well within the dominion of
pico-photonics.

The paper is arranged as follows. In Sec. II, we de-
fine the atomistic dielectric tensor and and discuss the
importance of contributions from the local-field effects in
a material. In Sec. III, we derive the transverse atom-
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FIG. 1. Branches of optics across the length-scales are depicted in the schematic diagram. Bulk optics and flat meta-optics
are applicable for electromangetic waves passing through micro-meter scale artificial structures. Light-matter interaction in
metamaterials, photonic crystals are studied within nanophotonics. Here, we define the field of pico-photonics, where we analyze
the light-matter interaction in natural materials at sub-nm regime. Field equations in bulk optics satisfy a standard Maxwell
wave equation with a constant dielectric permittivity. In nanophotonics, the dielectric function may depend on frequency and
vary spatially over the region of interest. Field solutions in nanophotonics regime still satisfy the classical wave equation. On
contrary, in pico-photonics, the response function is dependent on frequency, momentum, and the local-field effects, and the
dynamics of electromagnetic waves are studied within the Maxwell Hamiltonian framework.

istic dielectric tensor within a linear response theory. An
atomistic nonlocal electrodynamics of matter based on
the Maxwell Hamiltonian is described in Sec. IV. In this
section, we also define the pico-photonic bloch function
and the pico-photonic eigenvalue equation for the elec-
trodynamic field. As an application of our formulation,
we obtain the nonlocal atomistic dielectric response and
the corresponding atomistic electrodynamic dispersion in
Si through an isotropic nearly-free electron model, as de-
scribed in Sec. V and Sec. VI, respectively. Concluding
remarks are presented in Sec. VII.

II. DEFINING THE ATOMISTIC DIELECTRIC
TENSOR

In solid-state materials, long-wavelength perturbations
can lead to short-wavelength responses due to short range
electronic correlations [37–39]. This phenomenon has
been termed as the local-field effect [40]. Consequently,
microscopic fields arising from the local-field effects vary
rapidly within the unit-cell. The macroscopic field is
obtained through averaging the microscopic fields over
a region large compared to the lattice constant. This
macroscopic field is not the same as the atomistic elec-

tromagnetic field in a material [41]. Inside a material,
fields will have rapidly varying terms with wavevector
q +G, where G is the reciprocal lattice vector and q is
the photon wavevector. Hence, the dielectric response of
a material depends on frequency (ω), momentum (~q)
and the local-field effects. The dielectric response of a
material is represented in momentum space as

ε(q +G, q +G′, ω) ≡ εGG′
(q, ω). (1)

When q 6= 0, we obtain the nonlocal dielectric response,
and the components with G,G′ 6= 0 are due to local-field
effects. So far, in literature, only the longitudinal dielec-
tric function (density-density response) εGG′

L (q, ω) has
been extensively studied [41, 42]. However, a crucial gap
in the linear response theory of matter is in understand-
ing the influence of local-field effects on the dielectric
response arising from a photon field.

Traditionally, electromagnetic properties of matter are
treated within a macroscopic local electrodynamic frame-
work, where it is assumed that the dielectric function
is only dependent on frequency ε(ω). This considera-
tion is valid only in the long-wavelength limit, q → 0.
Although there have been efforts to develop quantum-
electrodynamic first-principles density-functional theory
calculations [43, 44], applications of such frameworks



3

have been limited to artificial dielectric structures and
cavities. These frameworks are also developed in the
long-wavelength limit and the photon field is considered
to be in vacuum. In this article, our focus is the pico-
photonic, atomistic regime beyond the cavity quantum
electrodynamics and local dielectric response approxima-
tions.

For a system with infinitesimal translation symmetry,
a jellium model can be used, where we consider a non-
local dielectric function ε(q, ω) without any contribution
from the local-field off-diagonal components. This ap-
proximation has been successfully applied for the case
of simple metals [45]. The jellium model breaks down
in explaining the observed properties of nanoplasmonic
structures with metals in the sub-nm domain [46]. Non-
local quantum effects in nanoplasmonic structures can be
explained through hydrodynamic models [47, 48] as op-
posed to a local Drude model response theory. However,
as shown in this article, in semiconducting materials, the
local-field effects beyond the hydrodynamic model takes
the central role in determining the atomistic electrody-
namic dispersion of matter.

Early efforts within classical electrodynamics to in-
clude the local-field effects in the dielectric function
were considered through the Clausius–Mossotti relation
(Lorentz–Lorenz equation) [49–51]. In this approxima-
tion, the simple cubic lattice of polarizable atomic sites is
replaced with a homogeneous cavity. This leads to a con-
nection between the macroscopic dielectric function εM
in terms of the molecular polarizability [52]. However,
the Clausius–Mossotti relation neither has frequency or
momentum dependency of the dielectric function, and
does not build in the symmetry of the Brillouin zone
of the system. We also note that the widely used ap-
proximation of replacing atoms by polarizable harmonic
oscillators is confined to the classical regime. Adler [41]
and Wiser [42] (from now on termed as the Adler-Wiser
formulation) put forth the quantum theory of atomistic

longitudinal dielectric function εGG′

L (q, ω) based on the
perturbation theory. Following these efforts, it has been
shown that the local-field corrections to εGG′

L (q, ω) are
quintessential to determine the electron self-energy [53–
55] and impurity screening potential [56, 57]. Here, we

introduce the transverse dielectric function εGG′

T (q, ω)
going beyond the Adler-Wiser formulation.

III. BEYOND ADLER-WISER FORMULATION:
ATOMISTIC DIELECTRIC RESPONSE IN

MATTER

The Adler-Wiser formulation determines the atomistic
longitudinal dielectric response including the local-field

effects [ref]. This expression for the dielectric function
has been the gold standard in first-principles calculations
to determine the optical response of a material [58, 59].
However, response of a material to a photon field is de-
termined by the atomistic transverse dielectric tensor. In
this section, we develop a quantum theory of εGG′

T (q, ω),
including the local-field effects.

The dielectric function of a material can be expressed
in a longitudinal and transverse basis [41, 60, 61] as

εGG′
(q, ω) =

[
εGG′

L (q, ω) εGG′

LT (q, ω)

εGG′

TL (q, ω) εGG′

T (q, ω)

]
, (2)

where, εGG′

L is the longitudinal dielectric response

(density-density correlation), εGG′

T is the transverse di-
electric function (current-current correlation). The cross-

coupling terms εGG′

LT and εGG′

TL represent the longitudinal
and transverse dielectric response induced by the trans-
verse and longitudinal field, respectively. However, in a
cubic material such as Si, contributions from εGG′

TL and

εGG′

LT are negligibly small [42, 62], and are neglected from
consideration.

In Fourier space, the induced potential δVind(r, t) in a
material due to an external potential δVext (r, t) can be
expressed in terms of the longitudinal dielectric function
εGG′

L as

δVext(q +G, ω) =
∑
G′

εGG′

L (q, ω) δVind(q +G′, ω), (3)

Whereas, εGG′

T is defined as

4πc

ω2
Jind(q +G, ω)

=
∑
G′

[
εGG′

T (q, ω)− δGG′

]
·A(q +G′, ω), (4)

where, Jind is the induced current andA is the transverse
vector potential. We note that the transverse part of the
vector potential A is gauge invariant.

A. Adler-Wiser Longitudinal Dielectric Function

In literature, the longitudinal dielectric function is ex-
tensively studied including the local-field effects. We ne-
glect the exchange-correlation contribution within the re-
laxation time approximation (RPA) [38]. Our main con-
tribution in this section is the transverse atomistic di-
electric function. However, for completeness, we re-state
the longitudinal dielectric function which is given by (see
supplementary information for detailed derivation)
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εGG′

L (q, ω) =

δGG′ − 4πe2

q2
1

Ω

∑
n,n′,kσ

fnk (1− fn′k+q)

[
〈n,k| e−i(q+G)·r |n′,k + q〉 〈n′,k + q| ei(q+G′)·r′

|n,k〉
(εn,k − εn′,k+q + ~ω + i~α)

+ c.c

]
, (5)

where, Ω is the crystal volume, k and σ are the carrier
momentum and spin, fnk is the Fermi-Dirac distribution,
n, n′ are the band indices, and εnk is the eigen-energy.
Conservation of crystal momentum has been built in the
expression for the dielectric function.

This response determines the plasmon screening in a
material. Also, the screened coulomb interaction and the
self-energy operator are determined by the above nonlo-
cal longitudinal dielectric response function [53]. Hence,

in GW calculations, εGG′

L (q, ω) are determined including

the local-field effects. In Sec. IV, we employ εGG′

L (q, ω)
to determine the atomistic plasmon dispersion.

B. Beyond Longitudinal Dielectric Function:
Transverse Dielectric Response

We emphasize that the atomistic transverse dielectric
function has received far less attention in literature. The
behavior of propagating electrodynamic waves (i.e pho-
tons) is governed by the transverse response of matter.

Previous work from Adler derived the transverse dielec-
tric function by assuming both the field and induced cur-
rent density as macroscopic quantities [41, 63]. Here, we
include all atomistic local-field contributions of the vector
field and obtain the transverse dielectric function starting
from the fundamental light-matter interaction Hamilto-
nian

H =

(
p− e

c
A
)2

2m
+ U(r), (6)

where U(r) is the periodic lattice potential. Both Jind

and A are microscopic in nature with components vary-
ing rapidly within the unit cell. Hence, the vector poten-
tial is of the form

A(r′, ω) =
∑
G′,q

AG′(q, ω) tG′ ei(q+G′)·r′
, (7)

where, tG is the unit vector component perpendicular
to q + G. In the supplementary information, we have
derived εGG′

T (q, ω). Here, we state the important contri-
bution of our manuscript which is

εGG′

T (q, ω) = δGG′ +
4πe2

Ωω2

∑
n,n′,k

〈nk| e−i(G+q)·rtG · J0 |n′k + q〉 〈n′k + q| ei(G
′+q)·r′

tG′ · J0 |nk〉×

(fn′k+q − fnk)

[
P.V.

(
1

εn′k+q − εnk − ~ω

)
+ iπδ (εn′k+q − εnk − ~ω)

]
, (8)

where, J0 is the probability current operator. In Sec. IV,
we show that this atomistic transverse dielectric response
determines the pico-photonic dispersion of a material. In
Sec. V, we apply these formulae to obtain the longitudi-
nal and transverse dielectric function of Si based on an
isotropic nearly-free electron bandstructure.

IV. MAXWELL HAMILTONIAN IN MATTER

In this section, we develop the atomistic nonlocal elec-
trodynamic theory of matter. We derive the Maxwell
Hamiltonian in matter which depends on the spin-1 be-
havior of photons, analogous to the Dirac Hamiltonian

for spin-1/2 particles. This formalism will be employed
in the next section to obtain the atomistic electrodynamic
ω − q dispersion of a material. We emphasize that the
Maxwell Hamiltonian has been used to understand the
correspondence between photons and massless fermions
in the Dirac equation specifically in free space. Only re-
cently, the Maxwell Hamiltonian has regained attention
in condensed matter to predict new topological electro-
dynamic phases of matter [28]. Our goal is to develop
the Maxwell Hamiltonian formalism and apply it to a
semiconducting material: silicon for the first time.
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FIG. 2. (a) Cubic crystal structure of silicon is shown. (b) First Brillouin zone of silicon, a truncated octahedron is plotted in
k-space. (c) Spherical Brillouin zone used in this work to obtain the dielectric properties is plotted in k-space. (d) Bandstructure
of silicon obtained using the empirical pseudo-potential method is displayed. (e) Bandstructure of silicon within a nearly-free
electron model is displayed. This isotropic model can be thought of as a symmetric expansion of the bandstructure around the
high-symmetric Γ point.

A. Pico-photonic Bloch Function

Atomistic electrodynamic dispersion of matter is ob-
tained through solutions to the Maxwell Hamiltonian cor-
responding to the transverse part of the electromagnetic
fields. The equation of motion for the Maxwell Hamilto-
nian H (in Gaussian units) in vacuum (see Appendix A)
is given by

H · f =
ω

c
g;

f =

[
ET (r, ω)

HT (r, ω)

]
, g =

[
DT (r, ω)

BT (r, ω)

]
, (9)

where,

H =

[
0 H†
H 0

]
; H = q · S. (10)

Here, q = −i∇ is the momentum operator, S is the
spin-1 operator. The Maxwell Hamiltonian is expressed
in terms of spin-1 operators of photon [64] and the com-
ponents of the spin-1 operators are defined as

Sx =

 0 0 0
0 0 −1
0 1 0

 ; Sy =

 0 0 1
0 0 0
−1 0 0

 ;

Sz =

 0 −1 0
1 0 0
0 0 0

 ,
(11)

and they satisfy the angular momentum algebra
[Si,Sj ] = εijkSk. Given a translation operator T , the
field vector f(r, ω) and the displacement vector g(r, ω)
follow the relation

T · f(r, ω) = f(r +R, ω),

T · g(r, ω) = g(r +R, ω). (12)

It is easy to see that the Maxwell Hamiltonian commutes
with the translation operator, [T ,H] = 0. In vacuum,
the eigen-fields to the Maxwell Hamiltonian will be sim-
ple plane waves f ∼ eiq·r. However, inside a material,
the Maxwell Hamiltonian is modulated by a periodic di-
electric response, hence the eigen-fields will take a Bloch
form [65]

fq(r, ω) = eiq·ruq(r, ω), (13)

where, uq is the pico-photonic Bloch function, a periodic
vector function with the same periodicity as the crystal,
and q is the photon momentum. uq can be expanded as
a Fourier series of plane waves eiG·r, with G being the
reciprocal lattice vector

uq(r, ω) =
∑
G

UG(q, ω)eiG·r, (14)

where, UG =
[
EG HG

]T
.

B. Pico-photonic Eigenvalue Equation

In a material, the response to an ex-
ternal probe is captured by the displace-
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ment field gq(r, ω) =
∑

G VG(q, ω)eiG·r, with

VG =
[
DG BG

]T
. Within a linear response frame-

work, the atomistic displacement field VG can be
expressed as

VG =
∑
G′

RGG′ · UG′ ,[
DG

BG

]
=
∑
G′

[
εGG′

T (q, ω) ξGG′

T (q, ω)

τGG′

T (q, ω) µGG′

T (q, ω)

]
·
[
EG′

HG

]
,

where, RGG′ is the generalized linear response ma-
trix, which includes permittivity ε, permeability µ,
and magneto-electric coupling τ , ξ. The component
RGG′(q, ω) can be thought of as the linear response ob-
served in a given material at a field point q+G′ (in recip-
rocal lattice space) due to a perturbation at the source
point q + G. This form can now be substituted into
Eq. (9), and the Maxwell Hamiltonian equation in mat-
ter given by

H(q +G)·
[
EG

HG

]
=
ω

c

∑
G′

RGG′(q, ω) ·
[
EG′

HG′

]
. (15)

RGG′ should build in the space group symmetry of the
Brillouin zone, and G,G′ 6= 0 terms in the matrix en-
codes the inhomogeneity due to the microscopic response
of the electrons (the local fields). The above Hamiltonian
equation depends nonlinearly on the eigenvalue ω due to
the response matrix RGG′(q, ω). Such class of equations
are known as the nonlinear eigenvalue problem. Solutions
to this generalized nonlinear eigenvalue problem results
in the atomistic electrodynamic dispersion of a material
that represents transverse photon interaction in a mate-
rial system.

We note that the above Maxwell Hamiltonian equation
of motion is based on the plane wave expansion, whose
solutions result in the atomistic electrodynamic disper-
sion. Similarly, it is well known that the electronic band-
structure of a material can be determined by the plane
wave expansion of the Schrödinger Hamiltonian of the
form [66]

∑
G′

[
~2 |q +G|2

2m
δGG′ + V (G−G′)

]
U(G′)

= E U(G), (16)

and the corresponding electronic wavefunction will be of
the form ψ(r) = eik·r

∑
G U(G)eiG·r. Hence, the burden

of determining the electronic bandstructure of a material
falls upon the accurate determination of the pseudopo-
tential coefficients V (G−G′). In a similar manner, one
needs to obtain the response matrix RGG′(q, ω) to de-
duce the atomistic electrodynamic dispersion. In Si, only
the atomistic dielectric function εGG′

T has considerable
contributions, µT = 1, and ξT = τT = 0. In Sec. V,

εGG′

T (q, ω) and the atomistic electrodynamic dispersion
of Si are obtained within an isotropic nearly-free electron
model.

C. Pico-plasmonic Dispersion

Here, we go beyond the well known definition
of nanoscale plasmons and epsilon-near-zero materials
which uses the macroscopic response of matter. We show
that the atomistic electrodynamic theory reveals a dis-
persion relation that embodies the symmetries of the un-
derlying lattice. A plasmon is a self-sustained charge
oscillation induced by a longitudinal electric field with-
out the introduction of external charge densities. Since
the longitudinal field is purely determined by the scalar
potential, from Eq. (C5), we see that the condition for
sustained plasma excitation in a material is given by

det
[
εGG′

L (q, ω)
]

= 0. (17)

Using the above relation, we can obtain the eigenfrequen-
cies ω for a fixed q. Hence, solving this equation one can
obtain the atomistic plasmon dispersion of the material.
In the continuum limit, we obtain the standard relation

εM (q, ω) = 0, (18)

where the macroscopic dielectric function εM is defined
as

εM (ω) = lim
q→0

1(
εGG′
L

)−1
00

, (19)

where,
(
εGG′

L

)−1
00

is the first diagonal component of the

inverse longitudinal dielectric matrix. Inverse operation
indirectly includes the off-diagonal local-field effect con-
tributions. Alternatively, in literature, the plasmon dis-
persion is determined by identifying the peaks of the en-
ergy loss function

L(q, ω) = −Im ε−1M (q, ω) ,

=
ε2 (q, ω)

[ε1 (q, ω)]
2

+ [ε2 (q, ω)]
2 , (20)

where we have taken εM = ε1 + iε2. This is known
as the experimental definition of the plasmon dispersion
[12]. At the plasmon frequency ωp, ε1(q, ωp) ≈ 0 and the
damping factor ε2 is small, so that we observe peaks in
the energy loss spectrum [67, 68]. However, we note that
Eq. (17) provides the most general theoretical relation
to obtain the atomistic plasmon dispersion of a material
[69].

V. APPLICATION TO SILICON

Silicon has the diamond cubic crystal structure
(Fig. 2(a)) and the first Brillouin zone has the shape of
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a truncated octahedron (Fig. 2(b)). It has been shown
earlier [70, 71] that the momentum dependent dielectric
function in diamond-type materials is insensitive to the
direction of q. Hence, we can replace the truncated oc-
tahedron shape (Fig. 2(b)) of the first Brilloin zone by
a sphere (Fig. 2(d)) and obtain the dielectric properties
through an isotropic model. Moreover, dielectric screen-
ing is not sensitive to the details of the bandstructure
since it involves all the valence electrons in the mate-
rial [72]. We show that the results obtained through an
isotropic nearly-free electron bandstructure agrees well
with the exact bandstructure models for Si.

The nearly-free electron model employed here was first
introduced by Penn [72]. This model allows for the for-
mation of standing waves at the Brillouin zone bound-
aries and accounts for the Umklapp processes [73]. In
this scheme, the eigen-energy and wavefunctions of an
electron is given by

E±k =
1

2

[
E0

k + E0
k′ ±

√
(E0

k − E0
k′)

2
+ E2

g

]
,

ψ±k =

(
eik·r + α±k e

ik′·r
)

√
1 +

(
α±k
)2 , (21)

where,

α±k =
Eg

2
(
E±k − E0

k′

) ,
E0

k =
~2k2

2m
,

k′ = k −G1,

G1 = 2kf k̂, kf is the valence Fermi wavevector, and Eg
is the bandgap of the material. Superscripts + and −
represents k > kf (conduction) and k < kf (valence)
bands, respectively. Experimentally measured valence

electron density for Si is n0 = 0.19 e−/Å
3
. Now consider

a free electron solid with the same density. This will
form a Fermi sphere in momentum space. According to
Sommerfeld theory [74], the corresponding valence Fermi

wavevector in Si is kf = (3π2n0)1/3 = 1.78 Å
−1

. This will
form the fully occupied valence band. An additional con-
duction band with bandgap Eg is constructed to reflect
the semiconducting nature of Si. Wavefunction compo-
nents with wavevector k′ = k −G1 facilitates the Umk-
lapp process. For a given photon momentum q, k→ k+q
indicates the normal process and k→ k + q +G1 is the
Umklapp process.

In Fig. 2(c) & (e), we have plotted the exact bandstruc-
ture and the isotropic nearly-free electron bandstructure
of Si considered here, respectively. The nearly-free elec-
tron bandstructure can be thought of as an isotropic sym-
metric expansion of the electronic bandstructure around
the high-symmetric Γ point. This model can reproduce
the experimentally observed dielectric properties of sili-
con (see supplementary information).

We will now proceed to obtain the longitudinal and
transverse dielectric function of Si using this model.
Through inspection, we see that for either case, within
this model only the dielectric matrix elements corre-

sponding to G = 0 and G1 = 2kf k̂ are non-zero. All
higher order elements corresponding to the reciprocal lat-
tice vectors vanish.

Typically, the dielectric function of a material is con-
sidered to be only a function of ω. In Fig. 3, we ob-
serve a family of curves dependent on the wavevector
q even at a fixed ω. Moreover, the evolution of longi-
tudinal and transverse dielectric function are found to
be inequivalent at q 6= 0. We note that εijL (q 6= 0, ω)

and εijT (q 6= 0, ω) represent the atomistic nonlocal contri-
butions to the dielectric properties. ε01L and ε01T (corre-
sponding to G = 0,G′ = G1), ε11L and ε11T (correspond-
ing to G = G′ = G1) are due to the local-field effects.
ε00L (q 6= 0, ω) and ε00T (q 6= 0, ω) determine the dielectric
response of a material at a source and field point on the
sphere of radius q. Since we have considered an isotropic
electron model, this dielectric response is identical at all
points on this sphere. Whereas, ε01L,T (q 6= 0, ω) deter-
mines the material response at a field point q+G1 from
a source point q in momentum space, and ε11L,T (q 6= 0, ω)
is the dielectric response from a source and field point
both at q +G1. These scenarios are pictorially depicted
in Fig. 3.

In literature, typically only the longitudinal dielectric
function in the long-wavelength limit ε00L (q = 0, ω) is cal-
culated and used to obtain all dielectric properties of the
material. Our calculations show that at finite momentum
(q 6= 0), transverse and longitudinal dielectric function
are inequivalent, and the higher-order components have
significant contributions to the dielectric properties even
at ω = 0. In our analysis we neglect the damping fac-
tor contributions in the dielectric response. In the next
section, we show that the local-field contributions lead to
an additional anomalous band formation in the atomistic
electrodynamic dispersion of Si.

VI. ANOMALOUS BAND IN THE FORBIDDEN
GAP

In this section, we apply the Maxwell Hamiltonian
framework described in Sec. IV to obtain the atomistic
electrodynamic ω − q dispersion in Si. We show the ex-
istence of anomalous atomistic waves in the bandgap of
silicon. We also directly compare with existing theories
to recover well-known waves and also prove that these
new waves are the result of atomistic electrodynamics.

Components of the transverse dielectric function are
obtained through the isotropic nearly free-electron model
(see Fig. 3(b)). Below, we outline two theoretical ap-
proaches that we use as a comparison to our atomistic
nonlocal electrodynamic theory.

Macroscopic local theory: In a macroscopic local elec-
trodynamic theory, the dielectric function is only depen-
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FIG. 3. (a) Within the linear response theory, induced potential δVind(r, t) in a material due to an external potential δVext(r, t)

can be expressed in terms of the longitudinal dielectric function εGG′
L . (c) The transverse dielectric function εGG′

T determine the
linear response of a material to a transverse electromagnetic pulse. Contour plots of (b) longitudinal (d) transverse dielectric
function components for silicon are displayed as a function of frequency ω and wavevector q.
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FIG. 4. The transverse dielectric function εijT (q, ~ω = 2 eV) is plotted as a function of wavevector q. (a) In a macroscopic local
theory, the dielectric component ε00T is independent of q. Whereas, in case of the macroscopic nonlocal framework, only the
ε00T (q, ω) component is considered, and the local-field effects are neglected. (b) In an atomistic nonlocal theory, ε00T , ε

01
T , and

ε11T components have significant variation with q and contribute to the overall dielectric response of the material.

dent on the frequency while the local-field effects are ig-
nored. Hence, only ε00T (q = 0, ω) contributes to the di-
electric properties of the material. For a given frequency,
ε00T is considered constant across the momentum range
(Fig. 4(a)). In a macroscopic theory, transverse electro-
magnetic waves satisfy the continuum relation

q2 = ε00T (q = 0, ω)
ω2

c2
. (22)

Solution to the above equation results in the electrody-
namic dispersion shown in Fig. 5(a). We observe the light
cone behavior retained for small q values. A bandgap
is observed in the spectrum corresponds to the region
ε00T < 0. At large q values photons are localized (zero
slope of the band) consistent with the local dielectric re-
sponse considered here.

Macroscopic nonlocal theory: Dielectric function be-
havior at q 6= 0 determines the nonlocal response of the
material. Hence, in case of a macrosocpic nonlocal the-
ory, we consider the dielectric response to be ε00T (q, ω) and
the local-field effects are again neglected. In Fig. 4(a),
we compare the dielectric function behavior considered
within a macroscopic local and macroscopic nonlocal the-
ory. With increase in momentum, we observe a decay-
ing behavior in the dielectric function ε00T (q, ω) at any
given frequency. Within this framework, transverse elec-
tromagnetic waves satisfy the continuum relation

q2 = ε00T (q, ω)
ω2

c2
. (23)

In Fig. 5(b), we observe that at large q values, electrody-
namic bands have a finite slope due to nonlocal response
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FIG. 5. Atomistic electrodynamic dispersion of silicon is plotted as a function of momentum obtained through (a) a macroscopic
local electromagnetic theory, (b) a macroscopic nonlocal theory, (c) an atomistic nonlocal electrodynamic theory. In the later
case, we observe the emergence of an anomalous band in the electrodynamic dispersion.

of the material. We call the dispersion curves observed
in Fig. 5(a) and (b) through a macroscopic theory as the
regular bands.

Atomistic nonlocal electrodynamic theory: In Fig. 4,
we compare the dielectric response in a macroscopic and
an atomistic electrodynamic theory. In a macroscopic
theory, local-field effects are neglected. Hence, the di-
electric response has a single component. However, we
see that the higher-order dielectric components ε01T , ε

11
T

have small but non-negligible contributions to the over-
all dielectric response of the material. The generalized
nonlinear pico-photonic eigenvalue problem in Eq. (15)
is solved to obtain the atomistic electrodynamic disper-
sion (see supplementary information).

In Fig. 5(c), we see that along with regular bands,
an anomalous band is also observed in the dispersion.
This anomalous band is absent if we treat the problem
using macroscopic local or macroscopic nonlocal electro-
dynamic frameworks. Hence, the anomalous band is a
direct consequence of the inclusion of local-field effects
in Si. Even at q = 0, the anomalous band has a fi-
nite frequency. This is in stark contrast with the regular
band, whose frequency vanishes at q = 0. In classical
optical theories one would consider this regime to be per-
fectly metallic where the propagation of light is forbid-
den. However, from Fig. 5(c), we see that the light can
propagate through silicon in the pico-photonics regime.

In Fig. 6, we plot the normalized electromagnetic
field at q = 0.178 nm−1 in Si hosted by the regular
and anomalous band. Across the momentum, the reg-
ular band has wavelengths in nano-meters, whereas the
anomalous band has sub-nm wavelengths. The lattice
constant of a silicon unit cell is 0.543 nm, hence electro-
magnetic waves in the anomalous band are found to be
highly oscillatory within a unit cell, leading into the pico-
photonics regime.

For completeness, in Appendix B, we have calculated
the atomistic plasmon dispersion of Si obtained within
the isotropic nearly-free electron model. In Fig. 8, we ob-
serve that the atomistic nonlocal and macroscopic nonlo-
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FIG. 6. Normalized electric field is plotted at q = 0.178 nm−1

for the regular and anomalous bands. Here, the regular band
(blue curve) has the wavelength λ = 35.30 nm. Where as, the
anomalous band (red curve) has λ = 0.18 nm, in the pico-
photonics regime.

cal theory results in a nearly identical plasmon dispersion
across the momentum range.

A. Experimental probe of anomalous atomistic
waves

We propose an experiment to probe the atomistic pico-
photonic dispersion relation in silicon. Consider an elec-
tromagnetic wave incident normally on an Si block (see
Fig. 7(a)). Experimentally, one can control the energy,
whereas the momentum within the crystal is determined
by the atomistic electrodynamic dispersion. We calcu-
late the transmission coefficient at two different energy
ranges, (a) ~ω < 4.3 eV, and (b) ~ω > 4.3 eV. For ener-
gies ~ω < 4.3 eV, only the regular band is excited. Hence
the total transmission in Si block will have contributions
only from the regular band (Fig. 7(a)). From Fig. 5(c)
we see that for energies ~ω > 4.3 eV both regular and
anomalous bands are excited with two distinct momen-
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FIG. 7. (a) For energies ~ω < 4.3 eV, only the regular band contributes to the total transmission in a silicon block. (b)
For energies ~ω > 4.3 eV, both regular and anomalous bands are excited by an electromagnetic wave incident on a silicon
block. (c) The total transmission coefficient Ttotal at normal incidence is plotted as a function of energy ~ω. (d) The total
transmission coefficient at normal incidence is plotted as a function of energy in the deep ultraviolet regime, where both regular
and anomalous bands contribute to the total transmission. We observe a clear difference in the behavior of Ttotal obtained using
the atomistic nonlocal theory while compared to the macroscopic theory. This difference is attributed to the contributions from
the anomalous band.

tum. Hence, the total transmission should include ad-
ditional terms from the interference effects due to field
contributions of the anomalous band (see supplementary
information for calculation details).

In Fig. 7(c), we have plotted the total transmission co-
efficient calculated using the macroscopic local, macro-
scopic nonlocal and the atomistic nonlocal theory. We
observe that all three calculations have similar results for
low energies. However, in deep ultraviolet regime (DUV)
(~ω > 4.3 eV), as shown in Fig. 7(d), the atomistic nonlo-
cal theory displays a significantly different behavior from
that of macroscopic theories due to interference between
regular and anomalous bands. We note that in the DUV
regime, the anomalous band generates additional elec-
tromagnetic energies at a given frequency of light. This
additional energy contribution is reflected in the behav-
ior of total transmission coefficient determined through
our atomistic nonlocal theory.

Experimentally, one can measure the total transmis-
sion in the range 4.5 eV< ~ω < 6.5 eV by shining an ul-
traviolet light on a silicon block. The total transmission
can be accurately measured using high sensitivity sin-
gle photon detectors. Difference in the measured total
transmission coefficient to that of macroscopic electrody-
namic calculations should reveal the existence of anoma-

lous bands in the atomistic electrodynamic dispersion. In
our calculations we have not considered the phonon me-
diated inter-band transitions in silicon. However, such
transitions can be suppressed in low-temperature exper-
iments.

VII. CONCLUSIONS

We have developed the atomistic nonlocal electrody-
namic theory of matter through a Maxwell Hamiltonian
framework. We introduced the atomistic transverse di-
electric tensor which determines the linear response of
a material to a transverse electromagnetic probe. The
electrodynamics of matter is considered in a new light
through the Maxwell Hamiltonian, which captures the
spin-1 nature of photons. Through this formulation, we
have discovered anomalous waves in the atomistic elec-
trodynamic dispersion of silicon. Local-field effects in-
cluded in the Maxwell Hamiltonian are essential to obtain
the anomalous waves in the atomistic electrodynamic
dispersion. These waves are highly oscillatory within
a unit cell and have sub-nm wavelengths in the pico-
photonics regime. The anomalous wave generates an ad-
ditional electromagnetic energy contribution which was
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previously unaccounted for. Experimental signatures for
this additional electromagnetic energy contribution can
be deduced from the total transmission coefficient in the
deep ultraviolet regime. We note that the frequencies
corresponding to the anomalous waves are forbidden in
a macroscopic local model, and are a signature of our
quantum theory of atomic polarization developed here.

Our findings demonstrate that natural media can itself
host several interesting electrodynamic phases. As such,
the electrodynamic phases we discussed here are proper-
ties of matter itself and are not related to some form of
macroscopic engineering. In this study we considered Si
as a prototype material. Ge, AlSb, ZnSe, GaAs, GaP,
InP, ZnS, ZnTe, CdTe are all expected to display the
anomalous band, since all these material systems have
the same crystal symmetry as Si. We expect to observe
anomalous waves in many other natural materials.

Results presented here brings forth the importance of
the atomistic electrodynamic phases of matter, and the
immediate need to develop first-principles based atom-
istic nonlocal electrodynamics of matter to obtain the
atomistic electrodynamic dispersion of natural materials.
We envision the development of pico-photonic electrody-
namic density functional theory (PED-DFT) for photons
hosted by matter to reveal new effects connected to the
atomistic electrodynamic dispersion. Our analysis pro-
vides the fist step towards the discovery of topological
photonic properties in natural materials.
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Appendix A: Maxwell Hamiltonian in Free Space

In this appendix, we derive the Maxwell Hamiltonian
discussed in Sec. IV. The Maxwell’s equations (in Gaus-
sian units) are given by

∇ ·E = 4πρ, ∇ ·B = 0,

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

∂E

∂t
+

4π

c
J . (A1)

Along with the above equations, the charge density and
current density have to satisfy the continuity equation

∇ · J +
∂ρ

∂t
= 0. (A2)

Fields can be expressed in terms of the scalar and vector
potentials of the form

E = −∇V − 1

c

∂A

∂t
, B = ∇×A. (A3)

These potentials satisfy the gauge transformations

V → V − 1

c

∂Ξ

∂t
,

A→ A+∇Ξ, (A4)

where Ξ is the gauge function. It is convenient to de-
compose the electric field in terms of longitudinal and
transverse components, given by

E(r, t) = EL(r, t) +ET (r, t), (A5)

where, ∇·ET (r, t) = 0 and ∇×EL(r, t) = 0. Notice that
the magnetic field will have only transverse component
due to zero-divergence condition. With this decomposi-
tion, one can write

∇ ·EL = 4πρ, ∇ ·BT = 0,

∇×ET = −1

c

∂BT

∂t
, ∇×BT =

1

c

∂E

∂t
+

4π

c
J , (A6)

and the corresponding gauge transformations are given
by

V → V − 1

c

∂Ξ

∂t
,

AL → AL +∇Ξ,

AT → AT .

(A7)

We can choose the gauge function Ξ such that AL = 0.
Hence

EL = −∇V, ET = −1

c

∂AT

∂t
, B = ∇×AT . (A8)

Hence, the longitudinal electric field EL is purely deter-
mined by the scalar potential. The Maxwell Hamiltonian
is related to the transverse part of the electromagnetic
fields. We first consider the Ampére–Maxwell equation
given by

∇×BT =
1

c

∂E

∂t
+

4π

c
J ,

=
1

c

∂EL
∂t

+
1

c

∂ET
∂t

+
4π

c
JL +

4π

c
JT . (A9)

We can show that

∇ · ∂EL
∂t

= 4π
∂ρ

∂t
,

= −4π∇ · JL.

Hence,

∂EL
∂t

= −4πJL. (A10)

Using this relation, we can simplify Eq. (A9) as

∇×BT =
1

c

∂ET
∂t

+
4π

c
JT . (A11)
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FIG. 8. Atomistic plasmon dispersion of silicon is plot-
ted as a function of wavevector q. We have compared the
results obtained through a macroscopic local, macroscopic
nonlocal, and an atomistic nonlocal electrodynamic theory.
Macrosocpic nonlocal and atomistic nonlocal electrodynamic
theory results in nearly identical plasmon dispersion.

We are interested in the response of a bulk material.
Therefore, it is convenient to represent the induced
charges and current in terms of the polarization P and
magnetization density M ,

ρ = −∇ · PL, J =
∂P

∂t
+ c∇×M . (A12)

The equations of motion in terms of the displace fields
D = E + 4πP , and H = B − 4πM are given by

∇×ET = −1

c

∂BT

∂t
, ∇×HT =

1

c

∂DT

∂t
. (A13)

Hamiltonian form presented in Eq. (9) immedi-

ately follows if we define f =
[
ET HT

]T
, and

g =
[
DT BT

]T
.

Appendix B: Atomistic Plasmon dispersion in
Silicon

The atomistic plasmon dispersion of Si has been stud-
ied both theoretically [12] and experimentally [75] previ-
ously in literature. For completeness, in this appendix,
we present the atomistic plasmon dispersion obtained us-
ing the isotropic nearly-free electron model. In Fig. 3(b),
we have displayed ε00L (q, ω), ε01L (q, ω), and ε11L (q, ω) for Si
obtained using this model. We can substitute these func-
tions into Eq. (17) to obtain the plasmon dispersion using
the atomistic nonlocal electrodynamic theory (Fig. 8).
As earlier, we compare the dispersion obtained through
the macroscopic local and macroscopic nonlocal theory.

In case of macroscopic local theory, dielectric function
ε00L (q = 0, ω) is considered independent q. Hence, the
plasmon dispersion curve is observed to be a straight
line with zero slope and intercept given by the zero
of ε00L (q = 0, ω). In the macroscopic nonlocal theory,
plasmon frequencies are determined by the condition
ε00L (q, ω) = 0. Both macroscopic nonlocal and atomistic
nonlocal theory results in nearly identical plasmon dis-
persion, diverging slightly only at very large q. We note
that at q = 0, plasmon frequency (∼ 9.6 eV) obtained
through isotropic nearly-free electron model slightly un-
derestimates the corresponding experimentally observe
value (∼ 16 eV) [75].
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Supplementary Information:
Pico-photonics: Anomalous Atomistic Waves in Silicon

In this supplementary information, we derive the atomistic dielectric function of a material as a function of both
frequency and momentum, including the local-field effects. We show that both the longitudinal and transverse
dielectric function can be expressed in terms of energy eigenvalues and the corresponding electronic Bloch functions
of a material. Further, we employ a nearly-free electron bandstructure to obtain the atomistic dielectric function of
silicon as a function of both frequency and momentum. These dielectric functions are further employed to solve the
Maxwell Hamiltonian in silicon. Finally, through the atomistic electrodynamic dispersion, we derive the expression
for total transmission coefficient at normal incidence including both regular and anomalous band contributions.

Appendix C: Longitudinal Dielectric Function

From the linear response theory, induced scalar potential δVind(r, t) in a material due to an external potential
δVext (r, t) is given by

δVind (r, t) =

∫
dr′dt′ ε−1L (r, r′, t− t′) δVext (r′, t′) , (C1)

where εL is the longitudinal dielectric function (density-density correlation function). Equivalently one can write

δVext (r, t) =

∫
dr′dt′ εL (r, r′, t− t′) δVind (r′, t′) . (C2)

Given a photon momentum q and frequency ω, in the Fourier space we obtain

δVext (q, ω) =
∑
q′

εL (q, q′, ω) δVind (q′, ω) . (C3)

A pure material system satisfy the translation symmetry, therefore the dielectric function follows the relation

εL (r, r′, t) = εL (r +R, r′ +R, t) , (C4)

where, R is the translation vector in real space. Hence, in the reciprocal space

δVext (q +G, ω) =
∑
G′

εL (q +G, q +G′, ω) δVind (q +G′, ω) ,

=
∑
G′

εGG′

L (q, ω) δVind (q +G′, ω) , (C5)

where q is constrained within the first Brillouin zone, and G,G′ are the reciprocal lattice vectors. Again from the
linear response theory, the induced charge density δρ is expressed as

δρ (q +G, ω) =
∑
G′

χGG′
(q, ω) δVext (q +G′, ω) ,

δρ (q +G, ω) =
∑
G′

χGG′

0 (q, ω) δVind (q +G′, ω) ,

(C6)

(C7)

where χGG′
and χGG′

0 are the susceptibility tensors. We can expand δV as

δVind = δVext + δVH + δVxc,

= δVext + Vcδρ+Kxcδρ, (C8)

where Vc(q) = 4πe2/q2 is the bare coulomb potential, and Kxc is the term coming from exchange correlation. Using
Eqs. (C6), (C7), and (C8), we can obtain the relation

1

χ
=

1

χ0
− Vc −Kxc, (C9)
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and the longitudinal dielectric function is given by

εL =
χ0

χ
= 1− Vcχ0 −Kxcχ0. (C10)

We will obtain the expression for χ0 and hence εL using the Kohn-Sham orbitals. The slater determinant form of the
ground state in terms of the Kohn-Sham orbitals is given by

ψ0 ({rl}) =
1√
N !

∣∣φ1 φ2 ...φN ∣∣ , (C11)

where

φl =


φl (r1)
φl (r2)
.
.
.

φl (rN )

 .

We note that the Kohn-Sham orbitals satisfy the differential equation [1] of the form{
p2

2m
+ v(r) + vH(r) + vxc(r)

}
φi(r) = Ei φi(r), (C12)

where the Hatree-potential term vH = e2
∫
dr ρ(r′)/ |r − r′| and vxc is the exchange correlation potential. We know

that these Kohn-Sham orbitals follow the Bloch form

φi(r) = un(r)eik·r,

= 〈r|n,k〉 eik·r.
(C13)

Here, the index i embed both the band index n and the electron momentum k (i ≡ k, n). The expectation value of
density operator in ground state is given by

ρ (r) = 〈ψ0|
∑
i

δ (r − ri) |ψ0〉 ,

=

N∑
l=1

φ∗l (r)φl (r) . (C14)

The excited state wavefunction for an electron to transmit from occupied orbital φi to unoccupied orbital φj is denoted
as

ψij ({rl}) =
1√
N !

∣∣φ1 ...φi−1 φj φi+1...φN
∣∣ . (C15)

The material system is subject to an adiabatic perturbation by a potential δV , and the corresponding Hamiltonian
is given by

HI = lim
α→0

e−iωteαt
∑
i

δVind (ri) =

∫
dr δVind (r, t) ρ (r) . (C16)

Through standard perturbation theory, we obtain the ground state of this system as

|ψ′0〉 = |ψ0〉+
∑
ij

|ψij〉 〈ψij |HI |ψ0〉
(E0 − Eij + ~ω + i~α)

,

= |ψ0〉+
∑
ij

|ψij〉 〈ψij |HI |ψ0〉
(εi − εj + ~ω + i~α)

, (C17)
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where we have substituted E0 − Eij = εi − εj . The change is charge density to the first order in δV is given by

δρ (r, t) = 〈ψ′0| ρ (r) |ψ′0〉 − 〈ψ0| ρ (r) |ψ0〉 ,

=
∑
ij

〈ψ0| ρ (r) |ψij〉 〈ψij |HI |ψ0〉
(εi − εj + ~ω + i~α)

+
∑
ij

〈ψij | ρ (r) |ψ0〉 〈ψ0|HI |ψij〉
(εi − εj − ~ω − i~α)

. (C18)

Substituting for |ψ0〉 and |ψij〉, and performing an ensemble average [1] at finite temperature we have

δρ (r, t) =
∑
ij

fi (1− fj)

[
φ∗i (r)φj(r)

∫
dr′φ∗j (r

′)φi(r
′)δVind(r′, t)

(εi − εj + ~ω + i~α)
+
φi(r)φ∗j (r)

∫
dr′φj(r

′)φ∗i (r
′)δVind(r′, t)

(εi − εj − ~ω − i~α)

]
,

(C19)

where fi, fj are the Fermi-Dirac distribution functions. From the linear response theory

δρ (r, t) =

∫
dr′χ0 (r, r′, ω) δVind (r′, t) . (C20)

Hence,

χ0 (r, r′, ω) =
∑
ij

fi (1− fj)
[
φ∗i (r)φj(r)φ∗j (r

′)φi(r
′)

(εi − εj + ~ω + i~α)
+
φi(r)φ∗j (r)φj(r

′)φ∗i (r
′)

(εi − εj − ~ω − i~α)

]
, (C21)

and in the reciprocal space

χ0 (q +G, q′ +G′, ω) = χGG′

0 (q, ω) =
1

Ω

∫
dr e−iq·re−iG·r

∫
dr′χ0 (r, r′, ω) eiq

′·r′
eiG

′·r′
,

χGG′

0 (q, ω) =
1

Ω

∑
n,n′,kσ

fnk (1− fn′k+q)
[ 〈n,k| e−i(q+G)·r |n′,k + q〉 〈n′,k + q| ei(q+G′)·r′

|n,k〉
(εnk − εn′k+q + ~ω + i~α)

+
〈n′,k + q| ei(q+G)·r |n,k〉 〈n,k| e−i(q+G′)·r′

|n′,k + q〉
(εnk − εn′k+q − ~ω − i~α)

]
, (C22)

where, Ω is the crystal volume, fnk = [e(εnk−εf )/kBT + 1]−1, k and σ are the carrier momentum and spin, respectively.
Substituting the above expression in Eq. (C10), we can obtain the longitudinal dielectric function (density-density

response function) εGG′

L . This response determines the plasmon screening in a material. The off-diagonal elements
G 6= G′ 6= 0 represents the local-field effects [41] on the dielectric response of a material.

Within the relaxation time approximation (RPA), we neglect the exchange correlation term Kxc. Hence, the
longitudinal dielectric function

εGG′

L (q, ω) = 1− Vcχ0,

= δGG′ − 4πe2

|q +G|2
1

Ω

∑
n,n′,kσ

fnk (1− fn′k+q)
[ 〈n,k| e−i(q+G)·r |n′,k + q〉 〈n′,k + q| ei(q+G′)·r′

|n,k〉
(εnk − εn′k+q + ~ω + i~α)

+ c.c
]
.

(C23)

For an insulating or semiconducting system, the Fermi-Dirac distribution function can be approximated by a step
function. Hence, we can simplify the above expression as

εGG′

L (q, ω) = δGG′ − 8πe2

q2
1

Ω

∑
c,v,k

[ 〈c,k| e−i(q+G)·r |v,k + q〉 〈v,k + q| ei(q+G′)·r′
|c,k〉

(εc,k − εv,k+q + ~ω + i~α)
+ c.c

]
, (C24)

where, c and v represents the conduction and valence band index, respectively, and a factor of 2 in the numerator
here is coming from the spin index.
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Appendix D: Transverse Dielectric Function

In the previous section, we derived the expression for longitudinal dielectric function corresponding to the change in
the scalar potential. In this section, we derive the transverse dielectric function (current-current correlation function)
that will determine the dielectric response of a material to a transverse electromagnetic probe. We would like to obtain
the transverse dielectric function as a function of both ω and q, including the local field effects. The electromagnetic
displacement vector is

DT (r, t) = ET (r, t) + 4πPT (r, t), (D1)

where PT is the polarization vector. In case of linear dielectric materials, DT (r, t) =
∫
dr′ εT (r, r′, t) ·E(r′, t). In

the frequency space, within the linear response theory one can write

−iω
∫
dr′ (εT (r, r′, ω)− δ(r − r′)1) ·E(r′, ω) = 4πJind(r, ω), (D2)

where we have used the relation ∂tPT = Jind. We define the transverse susceptibility tensor

χT (r, r′, ω) = εT (r, r′, ω)− δ(r − r′)1. (D3)

Without loss of generality, one can express the electric field in terms of the vector potential as, E = iωA/c. Hence,∫
dr′χT (r, r′, ω) ·A(r′, ω) =

4πc

ω2
Jind(r, ω). (D4)

Local-field effects arise in a material due to rapidly varying microscopic electric field components within a unit cell.
Hence, the vector potential is taken to be of the form

A(r′, ω) =
∑
G′,q

AG′(q, ω) tG′ ei(q+G′)·r′
, (D5)

where the transverse unit vector tG · (q+G) = 0, and q is restricted within the first Brillouin zone. We define in the
Fourier space, the transverse susceptibility tensor

χGG′

T (q, ω) =

∫
dr

∫
dr′ e−i(G+q)·r tG · χ(r, r′, ω) · tG′ ei(q+G′)·r′

. (D6)

We would like to obtain an expression for χGG′

T (q, ω) starting from the electromagnetic Hamiltonian

H =

(
p− e

c
A
)2

2m
+ U(r), (D7)

where U(r) is the periodic lattice potential. The unperturbed crystal lattice satisfy the Hamiltonian
H0 = p2/2m+ U(r) and the corresponding wavefunction is given by ψnk = un(r)eik·r. The perturbed Hamiltonian
is given by

H1 = − e

2mc
(p ·A+A · p) +

e2

2mc2
A2. (D8)

Now consider the single particle Liouville equation

i~
∂ρ

∂t
= [H, ρ] , (D9)

where ρ = ρ0 + ρ1 is the single partial density matrix, and the unperturbed density matrix ρ0 = eδ (r − r′). The
unperturbed density matrix satisfy the eigenvalue equation of the form ρ0ψnk = fnkψnk, where fnk is the Fermi-Dirac
distribution. Consider the expectation value

i~
∂ 〈n′k′| ρ1 |nk〉

∂t
= (εn′k′ − εnk) 〈n′k′| ρ1 |nk〉+ (−fn′k′ + fnk) 〈n′k′|H1 |nk〉 , (D10)
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and make the ansatz that the time variation of 〈n′k′| ρ1 |nk〉 ∼ e−iωt. Hence we obtain

~ω 〈n′k′| ρ1 |nk〉 = (εn′k′ − εnk) 〈n′k′| ρ1 |nk〉+ (−fn′k′ + fnk) 〈n′k′|H1 |nk〉 ,

〈n′k′| ρ1 |nk〉 =
(fn′k′ − fnk)

εn′k′ − εnk − ~ω
〈n′k′|H1 |nk〉 . (D11)

Expectation value of the perturbed Hamiltonian is given by

〈n′k′|H1 |nk〉 = − e

2mc
〈n′k′|p ·A+A · p |nk〉+

e2

2mc2
〈n′k′|A2 |nk〉 . (D12)

Second term is the diamagnetic term whose contribution is negligible while compared to the first paramagnetic term.

〈n′k′|H1 |nk〉 '
ie~
2mc

∫
dr
[
ψ†n′k′(r)∇ · (Aψnk(r)) + ψ†n′k′(r)A · ∇ψnk(r)

]
,

=
ie~
2mc

∫
dr
[
−∇ψ†n′k′(r) · (Aψnk(r)) + ψ†n′k′(r)A · ∇ψnk(r)

]
,

= −e
c

∫
drA · ψ†n′k′(r)J0ψnk(r), (D13)

where, J0 is probability current operator. The transverse induced current is given by

Jind (r, ω) = −eTr (J0 ρ1) ,

= − e
Ω

∑
n,n′,kk′

〈nk|J0 |n′k′〉 〈n′k′| ρ1 |nk〉 ,

=
e2

Ωc

∑
n,n′,kk′

ψ†nk(r)J0ψn′k′(r)
(fn′k′ − fn′k)

εn′k′ − εnk − ~ω

∫
dr′A · ψ†nk(r′)J0ψn′k′(r′). (D14)

Using Eq. (D4), the susceptibility tensor in real space is given by

χT (r, r′, t) =
4πe2

Ωω2

∑
n,n′,kk′

ψ†nk(r)J0ψn′k′(r)
(fn′k′ − fnk)

εn′k′ − εnk − ~ω
ψ†n′k′(r

′)J0ψnk(r′). (D15)

Substituting the above relation in Eq. (D6), we obtain

χGG′

T (q, ω) =
4πe2

Ωω2

∑
n,n′,k

〈nk| e−i(G+q)·r tG · J0 |n′k + q〉 (fn′k+q − fnk)

εn′k+q − εnk − ~ω
〈n′k + q| ei(G

′+q)·r′
tG′ · J0 |nk〉 ,

(D16)

where we have also utilized the conservation of crystal momentum. Hence, the transverse dielectric function is given
by

εGG′

T (q, ω) = δGG′ +
4πe2

Ωω2

∑
n,n′,k

〈nk| e−i(G+q)·r tG · J0 |n′k + q〉 (fn′k+q − fnk) 〈n′k + q| ei(G
′+q)·r′

tG′ · J0 |nk〉×[
P.V.

(
1

εn′k+q − εnk − ~ω

)
+ iπδ (εn′k+q − εnk − ~ω)

]
,

The real and imaginary part of the transverse dielectric function is given by

Re
[
εGG′

T

]
= δGG′ +

8πe2~2

Ω

∑
n,n′,k

(fn′k+q − fnk)

(εn′k+q − εnk)

[ 〈n,k| e−i(q+G)·rtG · J0 |n′,k + q〉 〈n′,k + q| ei(q+G′)·r′
tG′ · J0 |n,k〉

(εnk − εn′k+q)
2 − ~2ω2

]
,

(D17)
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Im
[
εGG′

T

]
=

4π2e2

Ωω2

∑
n,n′,k

〈nk| e−i(G+q)·r tG · J0 |n′k + q〉 (fn′k+q − fnk)×

〈n′k + q| ei(G
′+q)·r′

tG′ · J0 |nk〉 δ (εn′k+q − εnk − ~ω) . (D18)

These relations are obtained using the Kramers-Kronig condition

Im
[
εGG′

T (q, ω)
]

=
2ω

π

∫ ∞
0

dω′

(
Re
[
εGG′

T (q, ω′)
]
− Re

[
εGG′

T (q, ω)
])

ω′2 − ω2
. (D19)

In case of semiconductors and insulators, we can simplify the expression for εGG′

T as

εGG′

T (q, ω) = δGG′ +
4πe2

Ωω2

∑
c,v,k

〈ck| e−i(G+q)·r tG · J0 |vk + q〉 〈vk + q| ei(G
′+q)·r′

tG′ · J0 |ck〉×[
P.V.

(
1

εvk+q − εck − ~ω

)
+ iπδ (εvk+q − εck − ~ω)

]
. (D20)

Appendix E: Atomistic Dielectric Function of Silicon: Isotropic Nearly-free Electron Model

In this section, we obtain the atomistic dielectric function of silicon based on a nearly-free electron bandstructure.
Silicon has the diamond cubic crystal structure and the first Brillouin zone has the shape of a truncated octahedron. It
has been shown earlier [70] that the wavevector dependent dielectric function in diamond-type materials is insensitive
to the direction of q. Hence, we can replace the truncated octahedron shape of the first Brilloin zone by a sphere and
obtain the dielectric properties through an isotropic model as described in the main text. We have shown that the
results obtained through an isotropic nearly-free electron bandstructure agrees well with the exact band models for
silicon based on plane-wave methods [71].

A nearly-free electron model employed here was first introduced by Penn [72]. This model allows for the formation
of standing waves at the Brillouin zone boundaries and accounts for the Umklapp processes. In this scheme, the eigen
energy and wavefunctions of an electron is given by

E±k =
1

2

[
E0

k + E0
k′ ±

√
(E0

k − E0
k′)

2
+ E2

g

]
,

ψ±k =

(
eik·r + α±k e

ik′·r
)

√
1 +

(
α±k
)2 , (E1)

where,

α±k =
Eg

2
(
E±k − E0

k′

) ,
E0

k =
~2k2

2m
,

k′ = k −G1,

G1 = 2kf k̂, kf is the valence Fermi wavevector, and Eg is the bandgap of the material. Superscripts + and −
represents the k > kf (conduction) and k < kf (valence) bands, respectively.

For calculation convenience we perform the change of variables, y = 1− k/kf , η = q/kf , ∆ = Eg/4EF , and z =
cos θ. With this transformation, we obtain

E±k = EF

[
(1− y)

2
+ 2y ± 2

√
y2 + ∆2

]
,

E±k+q = EF

[
(1− y)

2
+ η2 + 2y (1− ηz)± 2

√
(ηz − y)

2
+ ∆2

]
,

α±k =
∆

−y ±
√
y2 + ∆2

, α±k+q =
∆

ηz − y ±
(√

(ηz − y)2 + ∆2
) . (E2)
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We will now proceed to obtain the longitudinal and transverse dielectric function of silicon using this model.
Through inspection, we see that for either case, within this model only the dielectric matrix elements corresponding

to G = 0 and G1 = 2kf k̂ are non-zero. All higher order elements corresponding to the reciprocal lattice vectors
vanish.

For the nearly-free electron bandstructure, the longitudinal dielectric function can be simplified as

εmnL (q, ω) = 1− 8πe2

q2
1

Ω

1

3

Ω

(2π)3

∫
d3k

[
〈k| e−i(q+Gm)·r |k + q〉 〈k + q| ei(q+Gn)·r′ |k〉(

E+
k − E

−
k+q + ~ω + i~α

) + c.c

]
, (E3)

and the transverse dielectric function is given by

εmnT (q, ω) = δmn +
4πe2

Ωω2

1

3

Ω

(2π)3

∫
d3k 〈k| e−i(Gm+q)·r tGm

· J0 |k + q〉 〈k + q| ei(Gn+q)·r′
tGn
· J0 |k〉×[

P.V.

(
1

E−k+q − E
+
k − ~ω

)
+ iπδ

(
E−k+q − E

+
k − ~ω

)]
, (E4)

where we have replaced
∑

k → Ω/(2π)3
∫
d3k, 1/3 factor is introduced due to isotropic model, and indices m,n = 0, 1.

Hence, within this model, we obtain both longitudinal and transverse dielectric function in a 2×2 matrix form. Band
parameters employed in our calculation are tabulated in Table I. Integrating over the Brillouin zone are performed
numerically after substituting for the energy and wavefunction in Eq. (E2).

Our calculations for ε00L matches well with the earlier calculations by Srinivasan [76], and by Walter and Cohen [71]
(Fig. 9(b)). Across the frequency range, calculations through this isotropic nearly-free electron model has excellent
match with the experimentally measured dielectric function as well (Fig. 9(a)). This calculation can be extended to

calculate the dielectric functions for all frequencies and wavevectors as shown in the main text. Here, εijL,T (q 6= 0, ω)

represents the non-local contributions to the dielectric properties. ε01L,T , ε
11
L,T are due to the local-field effects. In

literature, typically only ε00L is calculated and used to obtain all dielectric properties of the materials. Our calculations
show that the higher-order dielectric components have significant contributions even at zero frequency.

Si Eg EF kf ∆

3.84 eV 12.0 eV 1.78 Å
−1

0.07036

TABLE I. Band parameters employed in our calculations to obtain the dielectric properties of Silicon [78] are tabulated.

Appendix F: Maxwell Hamiltonian in Silicon: Isotropic Nearly-Free Electron Model

For an isotropic electron bandstructure, εGG′

T reduces to a 2 × 2 matrix as shown in Sec. V. Within this scheme,
the Maxwell hamiltonian equation of motion reduces to a simpler form

|q +Gi|2Ei =
ω2

c2

∑
j=0,1

εijT (q, ω)Ej , (F1)

where, G0 = 0, G1 = 2kf k̂. Solutions to the above equation results in the anomalous atomistic electrodynamic
dispersion discussed in the main text. The corresponding electric field solutions will have the Bloch expansion form

E(r, ω) = eiq·r
[
E0 + E1 e

i2kf k̂·r
]
q̂⊥,

= eiq·rEN

[
1 + ei2kf k̂·r β(q, ω)

]
q̂⊥, (F2)

where, EN is the amplitude, and β(q, ω) is the atomic modulation function given by

β(q, ω) =

[
q2

c2

ω2(q)
− εT00(q, ω)

]
εT01(q, ω)

. (F3)
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FIG. 9. (a) Dielectric function obtained through the isotropic model is compared with the experimental data [77] at zero
momentum. (b) Dielectric function as a function of momentum is plotted at zero frequency and compared with the work by
Srinivasan [76], and Walter et al., [70]. Isotropic model used in our calculations has an excellent match with the experimental
data and the full bandstructure analysis.

Atomistic modulation function is nearly zero for the regular band, whereas vary significantly in the anomalous band.
Hence, the anomalous band has significant contributions from the higher order reciprocal lattice components.

Appendix G: Transmission Coefficient

In this section, we derive the expression for total transmission coefficient including both regular and anomalous
band contributions. We consider an electromangetic wave from vacuum injected at a normal angle on a silicon block
of very large thickness. Inside the material, for energies ~ω < 4.3 eV, transmitted wave has contribution only from
the regular band. However, for energies ~ω > 4.3 eV, the total transmitted wave has contributions from both regular
and anomalous band.

Let the region y > 0 to be vacuum and y < 0 is occupied by silicon. First, let us consider the case ~ω < 4.3 eV.
The incident and reflected plane waves are given by

E1(y, t) = EI e
−iq0ye−iωt ẑ,

E2(y, t) = E2 e
iq0ye−iωt ẑ, (G1)

where, q0 is the free field wavevector that satisfy the relation, q20 = ε0 ω
2/c2. Atomistic modulation function is nearly

zero in regular band and hence the transmitted field is given by

E3,R(y, t) = E3,R e
−iqRye−iωt ẑ, (G2)
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where, qR is the wavevector of the regular band at a given frequency ω derived from the Maxwell Hamiltonian. The
tangential component of E and H are continuous across the interface y = 0. Hence

E1 + E2 = E3,R,

q0 (E1 − E2) = qRE3,R. (G3)

Therefore the amplitude of transmitted wave is given by

E3,R = E1
2(

1 +
qR
q0

) . (G4)

The total transmission coefficient is defined as

Ttotal =
〈S3,R · ẑ〉

∣∣∣
y=0

〈S1 · ẑ〉
∣∣∣
y=0

, (G5)

where, the pointing vector S3,R = (1/2) Re
[
E3,R ×H†3,R

]
and S1 = (1/2) Re

[
E1 ×H†1

]
. Substituting Eq. (G4) we

obtain

Ttotal =
q

q0

∣∣∣∣E3,R

E1

∣∣∣∣2 =
q

q0

4(
1 +

q

q0

)2 . (G6)

In the macroscopic limit, q ≈
√
ε00T (ω)ω/c. In this limit, Ttotal reduces to the standard form

Ttotal ≈

[
4
√
ε00T (ω)

(
√
ε00T (ω) + 1)2

]
. (G7)

Next, we consider the case of ~ω > 4.3 eV. Above this energy, both regular and anomalous band contributes to the
total transmission spectrum. Hence, the total transmitted field has the form

E3 = E3,Re
−iqRye−iωt ẑ + E3,A e

−iqAy
(
1 + β(qA, ω)e−i2kfy

)
e−iωt ẑ,

(G8)

where, qA is the wavevector at a given frequency ω corresponding to the anomalous band derived from the Maxwell
Hamiltonian, E3,A is the amplitude of the anomalous band. The continuity conditions at the interface y = 0 including
the anomalous contributions are given by

E1 + E2 = E3,A(1 + β(qA, ω)),

q0 (E1 − E2) = qRE3,R + E3,A(qA + (qA + 2kf )β(qA, ω)).

(G9)

(G10)

Along the above two relations, energy conservation requires that the incident electromagnetic intensity I1 is equal to
the sum of reflected (I2) and transmitted (I3) intensity at the interface y = 0.

I1(y = 0) = I2(y = 0) + I3(y = 0), (G11)

where,

I1 = 〈S1 · ẑ〉 =
q0
2
E2

1 ,

I2 = 〈S2 · ẑ〉 =
q0
2
E2

2 ,

(G12)
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and

I3 = 〈S3 · ẑ〉

=
1

2

[
qRE

2
3,R + qAE

2
3,A + (qA + 2kf )β2(qA, ω)E2

3,A + 2 cos [2kfy] (qA + kf )β(qA, ω)E2
3,A

+ cos [(qR − qA)y] (qR + qA)E3,RE3,A

+ cos [(qR − qA − 2kf )y] (qR + qA + 2kf )β(qA, ω)E3,RE3,A

]
. (G13)

Solving for Eqs. (G9), (G10), and (G11) we obtain the total transmission coefficient

Ttotal =
〈ST · ẑ〉

∣∣∣
y=0

〈S1 · ẑ〉
∣∣∣
y=0

. (G14)

This total transmission coefficient is derived from the atomistic nonlocal electrodynamic theory and shows a clear
difference while compared to the macroscopic theory in deep ultraviolet regime, as discussed in the main text.
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