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Abstract: Spectro-polarimetric imaging in the long-wave infrared (LWIR) region is a powerful
tool for capturing temperature, material composition, and surface morphology information.
However, current spectro-polarimetric LWIR imagers are often bulky and severely limited
in spectral resolution and field of view (FOV). In this work, we present a new paradigm for
spectro-polarimetric demultiplexing by combining large-area meta-optical devices and advanced
computational imaging algorithms. We use the intrinsic dispersion and polarization modulation
of anisotropic spinning metasurfaces to achieve simultaneous spectral and polarimetric resolution
without the need for bulky filter wheels or interferometers. Our spinning-metasurface-based
spectro-polarimetric module is robust, compact (< 10 x 10 x 10 cm) and has a wide field of
view (25°). Our approach represents a significant advancement in the field of thermal imaging,
allowing for high-quality, information-rich thermal image data for a wide range of applications
such as astronomical exploration, medical diagnosis, and agricultural monitoring.

© 2023

1. Introduction

Advances in machine vision technology have spurred a need for high-resolution, informative
images across a range of applications scenarios [1-4]. Infrared thermography is a powerful tool
for capturing temperature, material composition, and surface morphology information about
objects, even in situations with limited external lighting [5]. The long-wave infrared (LWIR)
spectral region is particularly useful for infrared thermography as most room-temperature objects
emit thermal radiation at these wavelengths, according to Planck’s law. Additionally, the LWIR
atmospheric transmission window reduces the effect of environmental turbulence on the thermal
radiation signal in this region (Fig. 1a). As a result, LWIR thermal imaging has become a crucial
technology frontier in various applications such as astronomical exploration [6, 7], medical
diagnosis [8], and agricultural monitoring [9].

Furthermore, demultiplexing the LWIR thermal radiation into its spectral and polarimetric
components has been heralded as the next-generation solution for applications such as methane
sensing [10] and thermal facial recognition [11]. However, the commonly used mosaic filter
approach for spectral demultiplexing [12—16] is not practical for LWIR thermal imaging, due to
the limited number of pixels in LWIR focal plane arrays (Fig. 1b). State-of-the-art LWIR spectral
imagers instead rely on infrared bandpass filters (Fig. 1¢) or interferometry (Fig. 1d), but these
methods have limitations such as bulky filter wheels with limited spectral resolution, or unrobust
interferometers with a limited field of view (FOV). Recently, metasurface-based spectral and
polarimetric imaging has demonstrated huge potential in the visible region of spectrum [17-19],
but using infrared metasurfaces in LWIR thermal imaging is still an open technological frontier.
We emphasize that directly integrating metasurfaces on a thermal sensor significantly changes
the heat transport properties of the sensor and make this approach incompatible with the widely
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Fig. 1. Long-wave infrared (LWIR) spectro-polarimetric thermal imaging. (a) The
room-temperature blackbody radiation (shown in red) and the atmospheric transmission
spectrum (shown as a shaded area). The LWIR spectral region is crucial for thermal
imaging due to its peaked room-temperature thermal radiation spectrum and the
atmospheric transparency window. (b-d) Conventional methods for spectral imaging,
such as using a mosaic sensor (b), a filter wheel (c), or interferometry (d), either pose
limitations or are infeasible for LWIR thermal imaging. (e) In this study, we propose
a new approach for spectro-polarimetric thermal imaging, achieved by combining
large-area spinning metasurfaces and compressive sensing reconstruction algorithms

adopted microbolometer technology in LWIR thermal imaging.

To address these limitations, in this work, we put forth a new paradigm for spectro-polarimetric
thermal imaging using large-area meta-optics. The spectral demultiplexing is achieved through
the intrinsic dispersion and polarization modulation in anisotropic metasurfaces, and spectral
reconstruction is realized using compressive sensing and dictionary learning algorithms. Our
designs employ simple 2D structures with large feature sizes (> 1um), which can be easily
made by standard photo-lithography techniques, enabling large-area fabrication and scalable
manufacturing. Our demonstration provides a new technical route to solve the long-standing issue
of robust and portable thermal imaging with simultaneous spectral and polarimetric resolution.
By utilizing meta-optical designs and advanced computational imaging methods, our approach



offers a promising platform for next-generation high-contrast LWIR thermal imaging.

The architecture of our spinning-metasurface based spectro-polarimetric imaging system
is depicted in Fig. le. It comprises of a broadband linear polarizer, three anisotropic and
dispersive metasurfaces, and an LWIR imaging sensor. The polarizer is utilized to polarize the
incoming thermal radiation signals, and the metasurfaces are utilized to realize spectral filtering.
We design the metasurfaces with high anisotropy to produce distinct spectral responses for
orthogonal polarizations. Additionally, the metasurfaces’ dispersion rotates different wavelengths
of light to varying polarization orientations. By using the metasurfaces in tandem and axially
spinning the polarizer and metasurfaces to different angles, we obtain tunable transmission
spectra that sample the incident thermal radiation in its spectral and polarimetric channels. We
then reconstruct unknown spectra of imaging targets using compressive sensing and dictionary
learning algorithms. Dictionary learning generates a set of basis functions that represent the
unknown spectra in a sparse format [20]. Compressed sensing enables accurate reconstruction of
the sparse spectra from limited number of measurements [21]. Combining these two techniques
enables accurate and stable spectral reconstruction in the presence of noise and measurement
errors [22]. The four-dimensional spectro-polarimetric data generated by our system offers a
wealth of physical information about an imaging target, making it a valuable tool for physics-
driven machine vision [4,23], facilitating various tasks such as object detection and semantic
segmentation [24,25].

2. Design of Spinning Metasurfaces

To quantitatively describe the mechanism of the spinning-angle-controlled transmission spectra,
we represent the spectro-polarimetric response of the metasurfaces using Jones matrices.
Assuming that the transmission axis (x-axis) of the input linear polarizer is at 0 degrees,
the Jones matrix J; of a metasurface i with the x-axis at a spinning angle 6; can be expressed as:

Ji(0i, ) = R(=6;) - Jm, (1) - R(6;)
cos(0;) —sin(6;) tip(d) 0 cos(0;)  sin(0;) (1)
sin(0;)  cos(6;) 0 tis () —sin(0;) cos(0;)

where R is the rotation matrix, Jjs; contains the anisotropic transmission of the metasurface #;,
and t;; along the two principle axes p and s. Then, the Jones matrix of the three-metasurface
assembly is given by:

J(01,02,03,2) =J1(01,4) - J2(62,4) - J3(63,4) - )

Thus, the total transmission spectrum of the three spinning metasurfaces strongly depends
on the spinning-angle combinations ® = (61, 6>, 63) when the constituted metasurfaces are
strongly anisotropic and dispersive, i.e. #;,(1) # t;5(1) (see Supplementary Materials for the
detailed analysis). We note that large differences between the spectral responses of the three
metasurfaces (M1, M2, M3) are also introduced to minimize the correlations between the
generated spectra, which can significantly improve the spectral reconstruction performance [26].
We emphasize that our design generates a large set of distinct transmission spectra with only
three metasurfaces, while the total number of spectra in traditional mosaic array is limited to the
number of metasurfaces/filters used [12—-18].

Accordingly, we design the metasurfaces and experimentally achieve three key characteristics
for optimized spectro-polarimetric imaging performance: 1) Strong anisotropy and dispersion for
efficient wavelength demultiplexing; 2) High transmission and low self-emission for high signal
to noise ratio (SNR); 3) Small angular dependence for a large FOV. The unit cell of the three
designed metasurfaces are shown in Fig. 2 a-c. Strong dispersive anisotropy of the transmission
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Fig. 2. Design and characterization of the spinning metasurfaces. (a-c) Schematics of
the three different metasurface devices. (d) A scanning electron microscope (SEM)
image of a fabricated metasurface. Inset: an optical image of a 1-inch-diameter device
used for the imaging experiments, highlighting the large-area uniformity. (e) The
measured polarized transmission spectra (#;, and ;) of the three metasurfaces (M1
- M3) are depicted, displaying strong anisotropy and distinctive dispersion. (f) The
tunable transmission spectra controlled by the spinning angle combinations of the three
metasurfaces. Inset: an optical image of the motorized rotatory mount. The overall size
of the spinning metasurface module is smaller than 10 cm x 10 cm x 10 cm, making it
a promising platform for next-generation high-contrast LWIR thermal imaging. (g) The
normalized spatial transmittance of the module at two representative spinning angle
combinations ® = (0°,0°,0°) (top) and ® = (90°,90°,90°) (bottom). The red circles
correspond to a transmittance of 0.5 and the field of view of the imaging system is
estimated to be 25°.

spectra can be observed in Fig. 2e. Additionally, we emphasize that large-area devices are
generally required for imaging applications to ensure sufficient numerical aperture. All the
metasurfaces designed here have feature sizes larger than 1 um. Large-area devices (25.4mm
in diameter) with high structural quality and uniformity (Fig. 2d) can be rapidly fabricated by
standard photo-lithography techniques, enabling scalable manufacturing for practical applications.
This is in strong contrast to recent works on miniaturized spectrometers [27-35], where the
device footprint is on the micrometer scale and thus not suitable for imaging applications.

The tunable transmission spectra produced by our spinning metasurfaces are shown in Fig. 2f.
The distinct spectra are a result of the tuned spinning-angle combination ®. We integrate
the three fabricated metasurfaces tandemly via compact rotatory mounts to independently
control the rotation of each metasurface (Inset of Fig. 2g). We also optimize the spinning-
angle combinations of the three spinning metasurfaces using genetic algorithms to generate
largely uncorrelated transmission spectra for optimal spectral reconstruction performance (see
Supplementary Materials for details). Additionally, we note that increasing the number of
metasurfaces can further improve the spectral resolution, but simultaneously reduces the SNR as
the peak transmissions of the LWIR devices are limited to around 0.6. However, our method has
the potential to scale up into the hyperspectral regime by adding more high-transmission LWIR
metasurfaces.



We also evaluate the FOV of our imaging module by integrating it with an LWIR thermal
camera and capturing images of a large area uniform blackbody. To determine the spatial
transmission efficiency, we normalize the signal counts of each pixel by the counts at the center
of the images. We also define the angular range with transmittance above 0.5 as the effective
FOV of a system. As seen in Figure 2g, our spinning metasurface module has an FOV of around
25 degrees, which is significantly larger than what can be achieved with interferometer-based
spectral imagers.

3. Spectral Reconstruction
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Fig. 3. Schematic of the spectral reconstruction process. The measured raw signal
(a) can be expressed by the pre-calibrated spectral response function (b) of the
imaging system multiplied by the spectrum of an imaging target (c). For the spectral
reconstrcution, the unknown spectrum P, is projected onto a sparse representation
basis Dy, using dictionary learning (c and d). This sparse representation ¢y, is
then used for compressive sensing based reconstruction (e). The use of compressive
sensing and dictionary learning in the reconstruction process significantly improves the
reconstruction accuracy, making the spinning-metasurface-based spectro-polarimetric
imaging more robust against noise and measurement errors.

To extract the unknown spectro-polarimetric properties of various imaging targets, we use a
combination of dictionary learning and compressive sensing algorithms in the reconstruction
process. The tunable transmission spectra produced by our spinning metasurfaces (shown in Fig.
2g) are not narrowband, which means that the collected raw signals at different spinning-angle
combinations ® do not directly reflect the spectral radiance at different wavelengths. Instead,
the collected signal I(®) at each pixel can be described as an integral of the spectral response
function R(®, 1) multiplied by the ground truth spectrum P(1) that we wish to obtain, i.e.

1(®) = f/l "™ R(©,)P(1)dA. To solve for this equation, we discretize the spectral range of
interest and express it in a tensor form as shown in Eq. 3:

Ie = Ro, P, 3)



We emphasize that directly solving Eq. 3 does not produce accurate spectral reconstructions.
In theory, we can use measured signals /g and the pre-calibrated response function Ry, to
determine unknown spectra P, at each pixel of a scene. However, in practice, two limitations
impede the performance of spectral reconstruction: the problem becomes underdetermined when
there are many discretized wavelength bands, and measurement noise affects both Ig and Reg,,
making the direct reconstruction method unstable and the results inaccurate.

To improve the accuracy and stability of spectral reconstruction, we use compressed sensing
and dictionary learning algorithms to solve Eq. 3. Specifically, we first use dictionary learning to
create a dictionary of basis functions D. These functions can represent any thermal radiation
spectrum in the space of spectra we are studying. We then project the unknown spectrum P, as a
linear combination of the basis functions in the dictionary (Fig. 3 b and c¢). We have,

Py =Ddx 4)

where ¢ is known as a sparse coding of the spectrum P,. With this sparse representation, the
spectral reconstruction problem can be solved by first obtaining ¢recon:

Precon = arg min [|¢ll1
Pk (%)
s.t. |[le — ReaPall, = ||Ip - A®k¢k”2 <€

where Agx = ReaD .k, and € is the residual error. Finally, the spectra P, at each pixel of a scene
is reconstructed by

Precon = D,lk Precon (6)

Our reconstruction method significantly improves the reconstruction accuracy, making the
spinning-metasurface-based spectro-polarimetric imaging more robust against noise and measure-
ment errors.

4. Spectro-Polarimetric Imaging

To evaluate the performance of our prototype imaging system, we conduct experiments using
a custom-designed "'PURDUE’ target made of letters constructed from titanium and a glass
substrate (Fig. 4a). Each letter has unique micro-grating structures (Inset of Fig. 4a) that generate
distinctive polarimetric signatures in the thermal radiation signal. The glass substrate also
features a characteristic emission peak around 11 um. Note that we heat the image target
to 150°C to generate high signal intensity. The reconstructed spectra of four representative
pixels are shown in Fig. 4 b-e. We compare them with the ground truth spectra measured by
a Fourier-transform infrared spectrometer, validating the effectiveness of our reconstruction
approach. The reconstructed spectral frames (Fig. 2 f) also exhibit high contrasts between
different wavelengths, demonstrating that the system can effectively reveal the LWIR spectral
properties of different targets. We note that the relatively low reconstruction accuracy at shorter
wavelengths (8 - 10 um) results from the low transmission (low SNR) and the high correlation
(similarity) between the tuned spectra (Fig. 2f).

We also obtain the polarimetric information including degree the linear polarization (DOLP)
and the angle of linear polarization (AoLP) using the designed system. For polarimetric imaging,
we collectively rotate the spinning metasurfaces and the input polarizer, selecting four different
polarizations (0°, 90°, 45° and —45°) while maintaining the same spectral transmission. We
use the first three Stokes parameters to quantify the polarimetric information associated with
each piXCl, i.e. S() = I() + 190, S] = I() - 190, and S2 = 145 - [,45, where I(), [90, 145 and
I_45 are the light intensity at polarization angles of 0°, 90°, 45° and —45°, respectively. The

DoLP and AoLP are then calculated at each wavelength through DoLP = /S% + S% /So and
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Fig. 4. Spectro-polarimetric thermal imaging results. (a) An optical image of the
"PURDUE’ imaging target that is constructed from titanium letters on a glass substrate.
Inset: a zoomed-in optical image of the micro-structures in the letters, which generate
distinctive spectral and polarimetric signatures. (b-e) Reconstructed spectra of four
representative pixels (corresponding to the letter 'R’, "U’, ’E’ and the glass substrate,
respectively) compared with the ground truth spectra measured by a Fourier-transform
infrared spectrometer. (f) Reconstructed spectral frames at 6 representative wavelengths.
The contrast between different frames demonstrates that the system can effectively
reveal the LWIR spectral properties of various materials and structures. (g-h) Degree-
of-linear-polarization and angle-of-linear-polarization frames. Distinctive polarimetric
signatures can be observed for each letter in the images.

AoLP = arctan(S2/S1). As shown in Fig. 4 h and i, we can clearly distinguish between different
letters based on their polarimetric signatures in the thermal radiation signal. The four-dimensional
spatial-spectro-polarimetric data-tesseract provides significantly more insight associated with an
object, making it a powerful tool for a wide range of imaging applications.

5. Conclusion

Our results provide an innovative approach for spectro-polarimetric thermal imaging by combining
meta-optics and computational imaging. The low-SWaP (size, weight, and power) system opens
the door for physics-driven machine vision. The high-dimensional thermal image data can
significantly improve the performance of tasks such as depth estimation, object detection, and
semantic segmentation when only radiative heat signal is available. Furthermore, we foresee
that spectro-polarimetric thermal imaging can also be a powerful tool for scientific research,
allowing for non-destructive characterization in the infrared region to investigate a wide range of
novel physical phenomena, such as anisotropic thermal conduction [36] and directional radiative
heat transfer [37]. Overall, our work provides a key development in the rapidly growing field of
thermal imaging.
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