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1.1 Leading quantum platforms. A single two-level system, or qubit, repre-
sents the building block of more complex quantum systems. Scaling up 
these platforms to many qubits provides a formidable challenge because it 
requires the precise control of exponentially growing degrees of freedom. . 1 

1.2 k-space topology. The isofrequency contour for (a) an isotropic dielectric 
is a sphere, while for (b) extraordinary waves in a uniaxial medium with 
extreme anisotropy (�x = �y > 0 and �z < 0) is a hyperboloid (type I). (c) 
A type II hyperboloid arises when two components of the dielectric tensor 
are negative (�x = �y < 0 and �z > 0). Note that hyperbolic media (b) 
and (c) can support propagating waves with unbounded wavevectors (red 
arrow) as opposed to isotropic media. . . . . . . . . . . . . . . . . . . . . 4 

3.1 Overview of Super-Coulombic interaction. The proposed long-range 
Super-Coulombic dipole-dipole interaction may be observed (a) between 
single-photon defect centers in natural hyperbolic media (e.g. h-BN, Bi2Se3, 
Bi2Te3) or (b) between ultra-cold atoms trapped above a hyperbolic meta-
surface. (c)-(d) The Super-Coulombic interaction occurs over a broad 
range of frequencies along the resonance angle of a hyperbolic medium 
and causes the effective interaction distance to approach zero irrespective 
of the physical distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

3.2 Manifestation of Super-Coulombic interaction in hyperbolic me-
dia. Angular dependence of (a) cooperative Lamb shift (CLS) Jdd and 
(b) cooperative decay rate (CDR) γdd for two z-oriented dipoles in a lossy 
hyperbolic medium, lossy dielectric, and vacuum. The CLS and CDR have 
large peaks near the resonance angle of the hyperbolic medium indicative 
of the super-Coulombic interaction, even for distances of a wavelength. 
Comparison of (c) CLS and (d) CDR at the resonance angle versus inter-
atomic separation distance. The CLS and CDR both obey a 1/r3 power 
law dependence in the near-field due to the inclusion of absorption in the 
hyperbolic medium. Note that the giant interactions start occuring at 
distances on the order of a wavelength (arrows) even in the presence of 
material absorption which is in stark contrast to vacuum. The insets show 
the contrasting spatially-resolved (c) CLS and (d) CDR for vacuum and 
for a hyperbolic medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
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3.3 Unique orientational dependence of RDDI in hyperbolic media. 
The plot shows CLS versus orientation angle φ for two dipoles positioned 
along the resonance angle. The cooperative Lamb shift is minimized when 
the dipoles are collinear with the the resonance angle, and it is maximized 
when the dipoles are perpendicular to the resonance angle. The inset 
shows the asymmetric nature of the spatially-resolved Jdd/γo when the 
dipoles are orthogonal to the resonance angle. . . . . . . . . . . . . . . . . 30 

3.4 Ground-state and excited-state Casimir-Polder interaction en-
ergy in hyperbolic media. Casimir-Polder interaction energy between 
two ground-state atoms (Ugg) and between an excited-state atom and 
ground-state atom (Ueg) show fundamental differences when interacting 
in hyperbolic medium. Ueg >> Ugg since resonant interactions lie com-
pletely within the bandwidth of hyperbolic dispersion and are strongly 
enhanced. The results are normalized to Ugg in vacuum, evaluated at the 
near-field interatomic distance of ro = λ/100. The inset shows the giant 
enhancement of the FRET rate, Γ

ET , as compared to vacuum. The FRET 
rate is normalized to the vacuum energy transfer rate evaluated at ro. . . 32 

3.5 Giant long-range Cooperative Lamb shift in practical structures. 
(a)-(b) Plasmonic super-lattice in visible range, and (c)-(d) natural hy-
perbolic medium in infrared range. (a) The effective hyperbolic model is 
compared with (b) a 40-layer multilayer system taking into account dissi-
pation, dispersion and finite unit cell size. Atom A is 4 nm away from top 
interface, while atom B is adsorbed to bottom interface with a horizontal 
displacement of xB = 5 nm. The inset shows the cooperative Lamb shift 
dependence on atom B’s horizontal displacement when λ = 550 nm. Good 
agreement is seen between the EMT model and practical multilayer design 
paving the way for an experimental demonstration of the Super-Coulombic 
effect with cold atoms. Cooperative Lamb shift for (c) two atoms above h-
BN and (d) two atoms across an h-BN structure; dashed lines denote bulk 
vacuum results. Note that a smaller spontaneous emission rate (γo ∼ ω3) 
in the infrared range will contribute to a larger normalized cooperative de-
cay rate Jdd/γo. The orange and blue curves denote the two orientations 
of the transition dipole moment of the atoms. The total slab thickness for 
both structures is 100 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
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3.6 Super-Coulombic cooperative Lamb shift above hyperbolic meta-
surface. Cooperative Lamb shift, Jdd, above hyperbolic metasurface with 
optic axis in the x̂ direction, calculated via dyadic Green function ap-
proach. Atom A and atom B are 2 nm above the interface. (a) Two 
dimensional resonance cone on hyperbolic metasurfaces which causes gi-
ant in-plane long-range dipole-dipole interactions (b) Cooperative Lamb 
shift dependence on angle θxy of atom B for a fixed separation distance of 
r = λ/2 = 250 nm. Note the clear enhancement of the resonant dipole-
dipole interaction near the resonance angle θR. (c) Separation distance 
dependence of cooperative Lamb shift along the resonance angle θxy = θR. 
Inset shows giant FRET enhancement (> 2000) for separation distances 
of 100 nm in the metasurface plane. . . . . . . . . . . . . . . . . . . . . . 36 

4.1 Comparison of energy transfer power law behavior for dielectric, metal, 
and ideal hyperbolic medium. We provide results for infinitely thin sheet 
of acceptors labelled as the 2D case, as well as finite-sized 20 nm slab 
of acceptors. We clearly see distinct power laws for short donor-acceptor 
separation distances corresponding to d−3 and d−4 scaling dependence for 
the 3D and 2D cases respectively. We emphasize that these power laws 
arise from the Coulombic r−6 point-to-point interaction. . . . . . . . . . . . 43 

4.2 Long distance sheet-sheet non-radiative dipole-dipole interactions in a hy-
perbolic medium: (left) The scaling law of energy transfer between a 2D 
sheet of donors and a 2D sheet of acceptors is shown versus the sheet-to-
sheet separation. We observe the persistence of the near-field Coulombic 
scaling law (∼d−3) up to 5-10 µm, 500× the conventional near-field of 5-
10 nm. The near-field scaling is eventually curtailed by dissipative losses 
at large distance. The result is shown for various donor-acceptor dipole 
moment orientations. (right) This extension of the Coulombic near-field 
originates from the high spatial frequency bulk hyperbolic polaritons that 
propagate in the metamaterial. These high-spatial frequency modes retain 
a longitudinal character even at large propagation distances, a fundamen-
tal requirement for near-field Coulombic interactions. . . . . . . . . . . . 45 
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4.3 a The sample-types used to isolate RDDI in various material systems is 
shown. Donors (Alq3, shown green) (b, c, d) The transmitted PL spectra 
for the donor and acceptor separated by dielectric, metal and metamaterial 
shown. We note that energy transfer is clearly visible in all three mate-
rial systems; that is, the donor excited state is causing the acceptor to be 
excited and subsequently relax and emit a photon. This is concluded by 
noting an increased intensity of acceptor emission and a quenched donor 
emission when the emitters are placed in the hybrid geometry (black curve) 
relative to the donor-only (blue curve) and acceptor-only (red curve) con-
trol systems. (e, f, g) The time resolved donor fluorescence for donor-only 
(blue) and hybrid (black) samples are shown for the three material sys-
tems. For the donors:acceptors separated by 100 nm of SiO2 or Ag (g, h), 
the hybrid decay traces reveal no additional lifetime reduction compared 
to the donor-only case, indicating no long-range RDDI. When the donor 
and acceptors are separated by a 100 nm Ag/SiO2 multilayer metamate-
rial (g), we observe a marked excited state lifetime reduction when the 
acceptor molecules are present, providing evidence of long-range super-
Coulombic RDDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

4.4 Flow chart for going from point-to-point super-Coulombic dipole-dipole 
interactions, to many body ensemble dipole-dipole interactions observed 
in experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

4.5 Spatial scaling of Super-Coulombic interactions. (a) Experimental con-
firmation of enhanced energy transfer rates due to the Super-Coulombic 
effect in a hyperbolic metamaterial (green) compared to silver film (blue) 
and SiO2 film (red). The noise floors are denoted by dashed curves and the 
numerically calculated many-body dipole-dipole interaction curves are de-
noted by the colored bands. The theoretical predictions include 10% error 
bands accounting for uncertainty in the independently extracted physical 
parameters. (b) Numerically simulated spatial dependence of sheet-to-
slab (2D sheet of donors and thin slab of acceptors) many-body dipole-
dipole interactions demonstrating an enhanced FRET rate of the effective 
medium model (yellow) with d−3 power law dependence. Super-lattice 
structures with unit-cell sizes of 40 nm, 20 nm, and 4 nm respectively are 
also shown exhibiting an extended spatial range with enhanced Coulombic 
interactions beyond the scale of a wavelength. The green stars correspond 
to the experimentally measured data. The solid grey line shows the ideal 
EMT limit of adsorbed quantum emitters on a hyperbolic medium whereas 
the dashed black line presents the analytical scaling law taking into ac-
count the finite distance between the emitter and metamaterial. . . . . . . 52 
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4.6 The transmittance for extraordinary polarized light is shown for various 
metal and metamaterial samples. The donor and acceptor emission peaks 
are denoted by the green and yellow vertical dashed lines respectively. . . . 57 

5.1 (a) Energy-level diagram depicting spontaneous emission. γrad denotes the 
rate of radiative energy transfer to any location in the environment. The 
acceptor is not considered as part of the environment. (b) Energy-level 
diagram depicting FRET. FRET occurs when two neighboring atoms or 
molecules, denoted as donor and acceptor, have overlapping emission and 
absorption spectra and couple due to a Coulombic dipole-dipole interac-
tion. The FRET rate ΓDA denotes the energy transfer to the acceptor 
location only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

5.2 Environment modified dipole-dipole interactions and FRET. QED 
theory of dipole-dipole interactions in the near-field is completely captured 
by an effective dipole model. FRET is governed by induced image dipoles 
in the metallic environment explaining a multitude of puzzling experimen-
tal observations. (a) Image dipole method for half-space structure. The 

�2−�1magnitude of the image dipole moment is given by pimage = pD. (b)�2+�1 

Visualization of normalized electric field plots for vertical donor dipole 
(above) and vertical image dipole (below) with |�2| > |�1|. Note that a 
non-trivial superposition of fields due to the vectorial nature of the elec-
tric field results in regimes of suppression, enhancement, and null effect on 
FRET. These regimes cannot be explained by the LDOS or Purcell factor 
alone. (c) FRET rate figure of merit for two dipoles 7 nm apart, and 7 
nm above silver. Enhancement is seen when |�2| < |�1|, suppression is seen 
when |�2| > |�1|, while no effect is seen when |�2| ≈ |�1|. These regimes 
are determined by the orientation of the image dipole. Note also that the 
FRET rate enhancement has a non-trivial dependence on the wavelength 
(see also table I). Exact QED results are denoted by the solid lines which 
are in complete agreement with our analytical expressions (circles). . . . . 64 

5.3 Effect of losses. (a) Purcell factor Fp. (b) FRET figure of merit FET . 
Bottom half-space is modelled as Drude metal with ωp = 6.3 × 1015s−1 

and the Drude relaxation time of τ = 5fs (black) and τ = 2.5fs (red). 
Dashed lines correspond to the two terms, dispersive dipole-dipole inter-
action and dissipative dipole-dipole interaction, in Eqn. (??). Note the 
FRET enhancement factor is in general much smaller than the Purcell 
factor in agreement with widely reported observations. . . . . . . . . . . . 69 
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5.4 FRET near nanosphere. (a) FRET rate enhancement factor for spher-
ical nanoparticle systems widely used in experiment. The donor and ac-
ceptor are both 8 nm away from an Ag nanosphere of 10 nm radius. Inset: 
Calculated Purcell factor for same system. The peaks are related to dipo-
lar surface plasmon resonance and higher order multipolar non-radiative 
modes. We emphasize that Fp � FET for plasmonic systems near the 
LSP resonance implying the energy transfer to the sphere (environment) 
is larger than the energy transfer to the acceptor. (b) Distance dependence 
of FET and Fp at the 650 nm wavelength region (away from resonance). 
Note that a tangential dipole exhibits a suppression in the Purcell factor 
due to near-field interference effects. This effect can be used to boost the 
FRET efficiency (Feff ∝ FET /Fp). The enhancement, suppression and 
null effect features in the three curves of different colors corresponding to 
the orientations of the dipole moments of the acceptor and donor are in 
agreement with table I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

5.5 FRET efficiency.(a) FRET efficiency enhancement occurs when FET /Fp > 
1. We show that this ratio can be optimized for particular distances away 
from the nanoparticle. Results are shown for same set-up as Fig. ??-b 
but with a R = 40 nm nanoparticle. (b) Counter-intuitive to prevalent 
designs, here we provide an all-dielectric design to engineer FRET effi-
ciency using a transparent nanosphere (�2 = 6.25 > 0) and 40 nm radius. 
The efficiency enhancement in FRET implies a larger fraction of the donor 
energy is transferred to the acceptor in presence of the nanosphere. This 
effect arises from suppression of the Purcell factor which is necessary to 
avoid energy transfer to the environment. . . . . . . . . . . . . . . . . . . 75 
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5.6 Comparison to experiments. (a) Theoretical comparison to experi-
ment in ref. [115]. The system configuration is shown in the inset. The 
FRET figure of merit is theoretically calculated to be FET ≈ 1 for a 
wide range of separation distances d from the mirror, in agreement with 
the experiment (plotted at the donor’s peak emission wavelength of 525 
nm). Theoretical Purcell factor Fp shows excellent agreement with exper-
imental results (lower inset). However, using our theoretical model, we 
predict a drastic change in the FRET FOM near the Ag SPP resonance 
in the limit d → 0 (top inset). This shows that FRET rate can be mod-
ified for the same experiment if the regime is modified. (b) Theoretical 
comparison to experiment in ref. [116]. The donor-acceptor pair is embed-
ded inside a nanocrystal (4 nm diameter) with assumed refractive index 
n = 1.7 (LaP O4). By varying the refractive index of the surrounding 
medium, we find that FET ≈ 1 in agreement with our analysis. Note that 
we also predict the linear dependence of the Purcell factor as measured 
in the experiment (inset). (c) However, we predict that a silver-coated 
nanocrystal would produce a drastic change in the FRET FOM as well as 
the Purcell factor. This result would require the donor-acceptor overlap 
spectrum to lie around the 400 nm wavelength range. Note that the above 
results clearly show that FRET can be engineered by the environment even 
though it is extremely difficult in comparison to modifying spontaneous 
emission. The dyadic Green function formalism and results from QED 
theory were used to calculate all results and parameters were obtained 
from the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

6.1 (a) A donor initially in its excited-state will either transfer energy to an 
acceptor, or spontaneously emit light with rate γd. Once the energy is 
transferred to the acceptor, the energy can either return to the donor or 
escape into vacuum with rate γa. The energy transfer efficiency is defined 
as the total probability of an acceptor emitting the initial excitation as 
opposed to the donor. (b) Using this metric, we find the energy transfer ef-
ficiency will have a fundamental bound as the separation distance between 
two atoms decreases (orange curve), in stark contrast to the conventional 
definition for the FRET efficiency (black curve). (c) The result can also be 
understood in terms of the renormalized transfer rate Γ̃ 

da (orange curve) 
having a fundamental bound as compared to the energy transfer rate Γda. 
We take γa = 2γd giving an ultimate efficiency of ηmax = 2/3. . . . . . . . . 87 
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6.2 Energy transfer efficiency as function of (a) dephasing rate γφ and (b) 
atom-atom detuning Δ = ω̃d − ω̃a. Note the energy transfer efficiency al-
ways remains below the fundamental bound regardless of coupling strengths, 
spontaneous emission, dephasing or detuning. This bound may be reached 
asymptotically for the case of two atoms with zero detuning in the limit 
of small dephasing (green curve left). Black arrow denotes (a) increased 
detuning and (b) increased dephasing. . . . . . . . . . . . . . . . . . . . . 89 

6.3 Population dynamics of donor (blue) and acceptor (orange) as well as con-
currence (bottom) used as a measure of quantum coherence. (a) Quantum 
coherent energy transfer between two atoms (r = 45 nm) operating at the 
ultimate efficiency ηmax = 2/3. (b) Irreversible energy transfer between 
two atoms (r = 4.5 nm) operating within 1 percent of the ultimate effi-
ciency exhibiting negligible quantum coherence. . . . . . . . . . . . . . . . 92 

6.4 Nanophotonic control of energy transfer between two atoms above a silver 
mirror. Here, we provide an example of how the environment can posi-
tively or negatively influence the energy transfer efficiency based primarily 
on the transition dipole moment orientation. We consider two atoms with 
spontaneous emission rates γa = 2γd corresponding to a vacuum bound 
of ηmax = 2/3. To overcome the vacuum bound, we propose using the 
orientation dipole moments of each atom relative to the mirror to con-
trol spontaneous emission rates. The ideal configuration corresponds to 
a donor parallel to a mirror and an acceptor perpendicular to a mirror, 
as it achieves the condition γa � γd around 10 nm from the mirror. In 
this scenario, the environment modifies the fundamental bound of the 
energy transfer efficiency resulting in an overall enhancement. The oppo-
site configuration (blue) will decrease the fundamental bound suppressing 
the overall energy transfer efficiency. Results are calculated with the full 
dyadic Green function for two atoms r = 10 nm apart. . . . . . . . . . . . 93 
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ABSTRACT 

Cortes, Cristian L. PhD, Purdue University, May 2018. Quantum Correlations 
in Nanophotonics: From Long-Range Dipole-Dipole Interactions to Fundamental 
Efficiency Limits in Coherent Energy Transfer. Major Professor: Zubin Jacob. 

Quantum properties like coherence and entanglement can lead to enhanced perfor-

mance characteristics in a wide range of applications including quantum computation, 

quantum memory storage, optical sensing, and energy harvesting. Entanglement is 

very sensitive to static and dynamical disorder. Similarly, the generation of highly-

entangled states requires strong coupling or strong driving fields. Satisfying all of 

these requirements is generally quite difficult. In the first part of this thesis, we 

present an approach to overcome these limitations through the use of exotic light-

matter states in hyperbolic media which provide a new approach to control quantum 

correlations and interatomic interactions. We reveal a class of excited-state, long-

range interactions, referred to as Super-Coulombic interactions that are singular along 

a material-dependent resonance angle. In practical systems, the Super-Coulombic in-

teraction achieves dipole-dipole coupling that is orders of magnitude larger than con-

ventional approaches, while also occurring across a large frequency bandwidth making 

it robust to static energy-level disorder. This unique hyperbolic response is not only 

naturally occurring, found in materials like h-BN, BiTe2, BiSe2, and mono-layered 

black phosphorus, but can also be designed with artificial nanostructured materi-

als (metamaterials) to create the desired hyperbolic dispersion across different parts 

of the electromagnetic spectrum. Our theoretical prediction motivated an intense 

search for the effect and was confirmed by an experimental demonstration at room 

temperature. To obtain agreement with experimental results, we present a rigorous 

theoretical framework that takes into account ensemble effects, finite-sized effects, 
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and dimensional effects that arise from confined geometries ultimately modifying the 

Super-Coulombic spatial scaling law. 

In the second part of this thesis, we solve an outstanding theoretical problem 

dealing with the control of resonance energy transfer in nanophotonic environments 

in both the incoherent and coherent coupling limits. Resonance energy transfer is a 

fundamental process that is the subject of intense research across all sciences. For 

example, in chemistry for drug delivery and chemical monitoring, in engineering for 

photovoltatic and up-conversion devices, and in biology for exciton transport within 

photosynthetic complexes. First, we consider the disordered and weak coupling limit 

of resonance energy transfer often encountered in chemistry. We propose new design 

principles for enhancing and suppressing the energy transfer rate and efficiency quan-

titatively captured by a simple image dipole model. Our theory explains a wide range 

of experimental results which have been the subject of an ongoing debate for the past 

15 years. Second, we present our recent result aimed at understanding the funda-

mental role of entanglement and quantum coherence in resonance energy transfer. To 

uncover the role of these effects, we develop a unified theory of energy transfer valid 

from the incoherent to quantum coherent coupling regimes. Ultimately, our theory 

reveals a fundamental bound ηmax = γa for energy transfer efficiency arising from
γd+γa 

the spontaneous emission rates γd and γa of the donor and acceptor. This bound 

provides an upper limit to the efficiency of energy transfer regardless of quantum 

coherence or entanglement, suggesting new design principles for achieving near-unity 

energy transfer efficiency in coherent systems. The result has important implica-

tions for the two-chromophore model found in photosynthetic complexes and paves 

the way for nanophotonic analogues of efficiency-enhancing environments mimicking 

biological photosynthetic systems. 
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1. INTRODUCTION 

Quantum properties like coherence and entanglement can lead to enhanced perfor-

mance metrics in a wide variety of applications. In quantum computation, Shor’s 

algorithm uses quantum coherence to solve prime factoring problems significantly 

faster than classical algorithms [1–5]. In quantum metrology, quantum squeezed light 

is used to go beyond classical noise measurement limits [6–8]. In quantum thermody-

namics, the use of quantum coherence and quantum correlations has been proposed 

to go beyond the Carnot efficiency limit of classical heat engines [9–11]. And in quan-

tum biology, landmark experiments have shown long-lived coherence ranging on the 

order of hundreds of femtoseconds up to several picoseconds suggesting its role in the 

near-unity energy transfer efficiency of photosynthetic systems [12–14]. The idea of 

quantum coherence playing a role in photosynthesis is intriguing because it indicates 

many-body quantum correlations may exist in ambient conditions with the potential 

for a wide range of technological applications [15–17]. 

Fig. 1.1. Leading quantum platforms. A single two-level system, or 
qubit, represents the building block of more complex quantum sys-
tems. Scaling up these platforms to many qubits provides a formidable 
challenge because it requires the precise control of exponentially grow-
ing degrees of freedom. 
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As shown in Fig. 1.1, the leading quantum system platforms include trapped ultra-

cold atoms, trapped ions, superconducting qubits, and dopants/defects in solid-state 

systems (e.g. color centers in diamond). These platforms emerged as a result of their 

long coherence times and controllable quantum states, typically achieved through 

optical pumping, or external AC/DC electric or magnetic fields. As quantum sys-

tems are scaled up to include multiple qubits or atoms, the task of controlling them 

will become exponentially more difficult. Generating entanglement requires strong 

light-matter or inter-qubit coupling, while maintaining entanglement requires precise 

decoupling from the environment. The former is difficult due to the properties of the 

Rabi frequency in vacuum, which is intrinsically small. The latter is difficult because 

entanglement is innately sensitive to both static disorder (static shifts in the energy 

level) as well as dynamical disorder (fluctuations in the energy level). Overcoming all 

of these requirements is paramount for future quantum technologies, however, as it 

stands today it is an open question as to how we can generate, control, and maintain 

entanglement within a large many-body system. 

1.1 From quasi-particles to quantum materials 

The central theme of this thesis is to tackle the control of quantum correlations 

from a nanophotonics and materials engineering approach. This approach is moti-

vated by potential long-term applications as well as pure theoretical pursuit. One the 

one hand, we expect the future commercialization of quantum devices will require a 

solid-state platform. That is, if we ever expect integration within a robust hand-held 

device, it is worthwhile to consider how that will be achieved. One possible way is 

through the control of dopants or defects in solid-state systems. Consider the inter-

action between two qubits inside a material like hexagonal Boron nitride (h-BN), as 

shown on the right of Fig 1.1. If such a dopant or defect state were to exist, then 

it would interact with other dopants through the light-matter states, also known as 

quasi-particles, of the material. This brings an additional degree of freedom from the 



3 

material itself that could potentially increase the inter-qubit interaction while also 

making it robust to static or dynamical disorder. In the future, the emergent field of 

quantum materials (2D materials, topological insulators, etc.) may play an impor-

tant role where one expects quantum device engineers to take advantage of the wide 

range exotic material properties. From a theorist perspective, it is then important to 

consider what theoretical framework will take into account all of these considerations 

in the simplest way possible. The ideal framework should take into account the ma-

terial properties, the qubit properties, effects arising from external fields, as well as 

full quantization of system variables to utilize quantum information protocols. 

This thesis utilizes a so-called macroscopic quantum electrodynamics (QED) frame-

work to provide a unified view of these aspects. Material properties are taken into 

account through linear response functions like polarization P(r, t) and magnetization 

M(r, t), which may be determined experimentally or through ab-initio numerical ap-

proaches. The material response functions are incorporated into Maxwell’s equations 

forming the well-known macroscopic Maxwell’s equations. Upon quantization, we 

obtain a suitable framework that can describe the interaction between atoms and po-

laritons (describing light-matter states). Unlike much of the work in cavity QED that 

has dealt with the interaction of a single atom and a single cavity mode, this thesis 

uses a theoretical treatment that is applicable to general nanophotonic environments. 
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Our focus will be to study how atom-atom interactions are modified within the class 

of media exhibiting hyperbolic dispersion. 

1.2 Hyperbolic media 

The progress of nanofabrication and material research has led to establishing the 

concept of artificial materials: metamaterials. The metamaterial approach requires 

the control of the material response through structural resonances and near-field cou-

pling between sub-wavelength meta-atoms. Metamaterial research has led to exotic 

effects such as negative refraction, sub-wavelength imaging, invisibility cloaking, ex-

otic chiral media, meta-surfaces, and perfect absorption [18–24]. One of the most 

important classes of artificial media that emerged in the optical frequency regime 

are now referred to as hyperbolic or indefinite media. It is a uniaxial (birefringent) 

Fig. 1.2. k-space topology. The isofrequency contour for (a) an 
isotropic dielectric is a sphere, while for (b) extraordinary waves in a 
uniaxial medium with extreme anisotropy (�x = �y > 0 and �z < 0) 
is a hyperboloid (type I). (c) A type II hyperboloid arises when two 
components of the dielectric tensor are negative (�x = �y < 0 and 
�z > 0). Note that hyperbolic media (b) and (c) can support propa-
gating waves with unbounded wavevectors (red arrow) as opposed to 
isotropic media. 
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medium described by the permittivity tensor, ⎞⎛ 
�xx 0 0 

� = 
⎜⎜⎜⎝ 0 �xx 0 

⎟⎟⎟⎠ , (1.1) 

0 0 �zz 

where z-direction corresponds to the optic axis expressed in Cartesian coordinates. 

By solving the vector wave equation, one finds two polarization wave solutions: (1) 

ordinary waves satisfying the dispersion relation, k2 + k2 + k2 = �xx ω
2/c2 , and (2)x y z 

extraordinary waves satisfying the dispersion relation 

k2 + k2 k2 ω2 
x y z+ = . (1.2)
�zz �xx c2 

Conventional uniaxial crystals have permittivity components that are positive (�xx�zz > 

0) representing glass-like behavior. For such a crystal, the dispersion relation at a 

single-frequency, also known as the iso-frequency surface, describes the surface of an 

ellipsoid (see Fig. 1.2-a). If one of the components is negative (�xx�zz < 0) represent-

ing metal-like behavior, the iso-frequency surface changes to that of a hyperboloid 

(see Fig. 1.2-b and Fig. 1.2-c). The term hyperbolic medium arises from the shape 

of the iso-frequency surface. It is important to note that the hyperbolic response is a 

non-resonant effect occurring for a broad range of frequencies. 

While the work of hyperbolic metamaterials was initiated by their ability to ex-

hibit negative refraction, research of this medium diversified into a wide-range of 

applications ranging from sub-wavelength imaging, nanoscale waveguiding, as well as 

broadband thermal emission and absorption [25–27] . As an example, the work by 

Jacob et al. [28] proposed hyperbolic media for the use of quantum-based applications 

such as room-temperature single-photon sources. Since the photonic density of states 

is a measure of the infinitesimal volume of the constant energy surface (Fig. 1.2), a 

hyperbolic medium accordingly has a divergent photonic density of states occurring 

for a broad range of wavelengths. This property allows for enhanced emission rates 

of broadband quantum emitters operating at room temperature. 
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1.3 Overview of the thesis 

In Chapter 2, we introduce the macroscopic quantum electrodynamic framework 

that will be used throughout this thesis. Note that previous work in hyperbolic media 

primarily focused on the semi-classical limit that often requires many ad-hoc assump-

tions. The quantum electrodynamic framework we present in this thesis provides a 

self-consistent and unified treatment of both single-atom and multi-atom processes 

like the cooperative Lamb shift, cooperative decay rate, Casimir-Polder interaction, 

as well Förster resonance energy transfer. In Chapter 3, we explore the modification 

of dipole-dipole interactions inside a hyperbolic medium which ultimately gives rise 

to Super-Coulombic interactions. This is the first major result of this thesis. Chapter 

4 extends the framework to take into account incoherent many-body effects between 

multiple emitters, as well as dimensional effects arising from confined geometries. 

We also discuss an experiment that was performed to verify the Super-Coulombic 

long-range dipole-dipole interaction. 

The second part of this thesis will aim to resolve an outstanding theoretical prob-

lem regarding resonance energy transfer in nanophotonics ranging from classically 

incoherent to quantum coherent regimes. Chapter 5 will deal with the disordered 

and incoherent regime. We will show that a simple image dipole model can be used 

to explain how Förster resonance energy transfer (FRET) is modified within vari-

ous nanophotonic environments. The model provides a simple way of understanding 

multiple experiments which have used incorrect interpretations of certain observed 

phenomena. In chapter 6, we consider the question of whether quantum entangle-

ment and coherence may be used to enhance the efficiency of energy transfer between 

two atoms. We develop a unified quantum model that connects the incoherent and 

coherent regimes, exactly solving the model to provide a simple solution for the en-

ergy transfer efficiency in both regimes. Our result uncovers a fundamental efficiency 

bound that limits the energy transfer efficiency even in the presence of maximal en-
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tanglement or quantum coherence. This forms the second major result of this thesis. 

The final chapter provides a brief conclusion and future outlook of the current work. 

Other major contributions 

We have excluded the following first-author papers from this thesis: 

[1] Cortes, C.L., Newman, W., Molesky, S., Jacob, Z. Quantum nanophotonics using 

hyperbolic metamaterials. J. Opt. 14 063001, (2012). 

[2] Cortes, C.L., Jacob, Z. Photonic analog of a van Hove singularity in metamateri-

als. Phys. Rev. B, 88 045407, (2013). 

The published results represent some of the previous work accomplished by the present 

author while attending the University of Alberta. This work focused on single-atom 

interactions in hyperbolic media. For the sake of brevity, we chose to only include 

work related to multi-atom interactions within this thesis. 
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2. QED IN NANOPHOTONIC ENVIRONMENTS 

Historically, the success of quantum electrodynamics stems from its accurate calcula-

tion of the Lamb shift and the electron’s anomalous magnetic dipole moment [29,30]. 

Precision tests of the fine structure constant α have also led to spectacular agreement 

between theory and experiment down to the eighth decimal place, making QED one of 

the most succesful theories in physics [31,32]. The quantization of the electrodynamic 

field ultimately leads to a non-classical interpretation of electromagnetic radiation. 

The photon emerges as the quantized excitation of the field characterized through 

statistical properties, such as Poisson probability distribution of photon detection of 

laser light as well as sub-Poissonian distributions arising from single photon sources. 

2.1 Quantum noise and correlations 

In this thesis, we are interested in understanding how nanophotonic environments 

and quasi-particle excitations within different material systems modify fundamental 

physical processes. Quantum noise is the fundamental origin of many observable 

properties, arising as a result of the Heisenberg uncertainty principle. Quantum noise 

ˆis defined as a signal Ei(r, t) having zero mean, h{0}|Ê 
i(r, t)|{0}i = 0, and finite 

variance, Z ∞ ~ω2 
−iω(t−t0)h{0}|[ΔÊ 

i(r, t)]
2|{0}i = dω ImGii(r, r, ω)e 6= 0, (2.1) 

0 π�oc2 

characterizing local field fluctuations. The expectation value is taken with respect 

ˆto the zero-particle vacuum state |{0}i. We have also defined ΔÊ(r, t) = E(r, t) − 

hÊ(r, t)i. Quantum noise affects local atomic properties like the spontaneous emission 
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rate or Lamb shift. Non-local interatomic processes are governed by non-local field 

fluctuations, Z ∞ ~ω2 
0 −iω(t−t0)h{0}|ΔÊ 

i(r, t)ΔÊ 
j (r , t0)|{0}i = dω ImGij (r, r 0, ω)e 6= 0, (2.2) 

0 π�oc2 

This quantity defines the correlation between two space-time points (r, t) and (r0, t0). 

The dyadic Green function G(r, r0, ω) may be viewed as the photon propagator con-

necting two spatial locations. Generally, it will composed of both free-space and scat-

tering field contributions. The dyadic Green function is a classical quantity which may 

be calculated analytically for certain geometries, or numerically for general nanopho-

tonic structures. Ultimately, the control of local and non-local fundamental processes 

arises directly from controlling local and non-local zero-point fluctuations. Histor-

ically, understanding how the presence of a dielectric or conducting surface affects 

fundamental processes dates back to the early work of Purcell, Mandel, Agarwal and 

Sipe [33–36]. 

In this Chapter, we will first discuss the difficulty of quantizing the electrodynamic 

field in dispersive and absorbing media, followed by a straightforward quantization 

procedure based on using the fluctuation-dissipation theorem. This sort of quanti-

zation procedure has a long history with contributions from many authors [35–39]. 

In this thesis, we use the modern approach introduced in [40, 41]. Next, we will in-

troduce the minimal coupling and multipolar Hamiltonians that are used to describe 

the interaction charged particles and the electrodynamic field. Finally, we present 

a general algorithm for calculating mult-atom processes in hyperbolic media. This 

formalism is used in Chapter 3 where we study the Super-Coulombic interaction. We 

emphasize that the proposed algorithm of this chapter allows for a unified framework 

for calculating a wide-range of 2-body processes including: the resonant dipole-dipole 

interaction (RDDI) consisting of the cooperative Lamb shift and cooperative decay 

rate, irreversible energy transfer between molecules (Forster resonance energy trans-

fer) as well as the Casimir-Polder potential between two ground-state or excited-state 

atoms. Our work is among the first fully-quantized approaches to treat atom-atom 
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interactions in hyperbolic media in a unified way, where we explicitly avoid ad-hoc 

assumptions that are typically made within semi-classical theories. 

2.2 Second quantization in lossy media 

Outline of the problem. The conventional approach, also known as the canonical 

approach, of quantizing the electrodynamic field in free-space consists of converting 

the radiation field Hamiltonian Z � � 

Hrad = 
1

2 
d3 r �oE

2(r, t) + 
µ 
1 

o 
B2(r, t) (2.3) 

into a set of uncoupled harmonic oscillators of the form ZX 
Hrad =

1 
d3k[pk 

2 
σ + ω2 qk 

2 
σ] (2.4)

2 
σ 

where the summation runs over the two transverse polarizations allowed in vacuum. 

The quantities pkσ and qkσ are analogous to the momentum and position of a classical 

particle which satisfy the Poisson bracket relation {qkσ, pk0σ0 } = δ(k − k0)δσσ0 . The 

canonical quantization scheme amounts to promoting the Poisson bracket relation to 

the commutation relation [q̂kσ, p̂k0σ0 ] = i~δ(k−k0)δσσ0 . Here, the classical position and 

momentum functions have been promoted to operators that exist within the Hilbert p 
ω space H. Defining the annihilation operator âkσ = 
2~ (q̂kσ +iω

−1p̂kσ), the quantized 

Hamiltonian for the electrodynamic field takes the form Z � � 
ˆ 

X d3k † 1 
Hrad = ~ωkσ âkσâkσ + . (2.5)

(2π)3 2 
σ 

One may then derive the fundamental equal-time commutation relation for the electric 

and magnetic fields, h i 
Ê(r), B̂ (r 0) = − 

i~ r× δ(r − r 0), (2.6)
�o 

ensuring that we recover the quantized form of Maxwell’s equations under the Heisen-

berg picture. The problem with using this quantization scheme for the case of elec-
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trodynamics in an absorbing medium is clear if we write out the energy of the elec-

trodynamic field based on the macroscopic Maxwell’s equations, Z � � 
1 

H 0 = 
2 

d3 r 
1 

�oE(r, t) · � · E(r, t) + B2(r, t) 
µo 

(2.7) 

Here, we consider the uniaxial permittivity tensor � and permeability (µ = 1) which 

are directly related to the response functions of the medium. In frequency space, 

these functions are generally complex-valued (e.g. � = �0 + i�00) where the imaginary 

component describes absorption within the medium. The Hamiltonian H 0 cannot de-

scribe the energy of the system because it is non-hermitian. As a result, the canonical 

quantization approach outlined above cannot be used. 

The quantization of the electrodynamic field inside an absorbing medium is equiv-

alent to the quantization of lossy harmonic oscillators [see Eqn. 2.4]. The question 

then becomes: how do we quantize a lossy harmonic oscillator? It turns out that this 

question has been addressed by a wide variety of authors over the years. The modern 

approach amounts to including an external bath, where the bath provides an addi-

tional source of fluctuations ensuring the system satisfies the fluctuation-dissipation 

theorem assuring the equal-time commutation relations are satisfied. In the next few 

sections, we outline the steps needed for the quantization of the electrodynamic field 

in an absorbing and dispersive uniaxial medium. 

2.2.1 The fluctuation-dissipation theorem 

The fluctuation-dissipation theorem states that the linear response of a system to 

an applied perturbation is directly related to the system’s fluctuation properties in 

thermodynamic equilibrium. In other words, one may directly relate the relaxation 

of a system to its fluctuations. This important theorem suggests that if we wish 

to quantize the electrodynamic field in a dissipative environment, we must add a 
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fluctuating quantity to ensure the fluctuation-dissipation theorem is satisfied. Using 

the macroscopic form of Maxwell’s equations in frequency-space as a starting point, 

r · [�o�E] = ρN , (2.8) 

r · B = 0, (2.9) 

r× E = iωB, (2.10) 

r× B = −iωµo�o�E + µo jN , (2.11) 

where we introduce ρN and jN represent the fluctuating (noise) charges and currents. 

Taking the divergence of the last equation recovers the continuity equation for the 

noise charge and current: −iωρN + r · jN = 0. Similarly, taking the curl of the third 

equation, we find the electric field satisfies the vector wave equation, 

ω2 

r×r× E − 
2 
� · E = iµoω jN . (2.12) 

c 

Introducing the classical dyadic Green function, G(r, r0; ω), defined by the vector 

wave equation, 

ω2 

r×r× G(r, r 0; ω) − � · G(r, r 0; ω) = δ(r − r 0), (2.13)
2c 

as well as the radiation condition G(r, r0; ω) → 0 as |r − r0| → 0, one may formally 

define a unique solution to the electric field as Z 
d3 0E(r, ω) = iµoω r 0 G(r, r ; ω) · jN(r 0, ω). (2.14) 

2.2.2 Second quantization 

To quantize this theory, the classical noise currents jN (r, ω) are promoted to quan-

tum operators. For self-consistency, this requires the equal-time commutation relation h 
Ê(r), B̂ (r 0) 

i 
= − 

i~ r× δ(r − r 0). (2.15)
�o 

to hold even in the presence of dispersive and absorbing environment. Writing the 

→ ̂ ˆnoise current as jN jN (r, ω) = Cnf(r, ω) where Cn is a yet undetermined normal-
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ization coefficient and f̂(r, ω) represents an operator with yet undetermined commu-

tations relations, the quantized electric and magnetic fields are given by Z 
ˆ d3 0 G(r, r 0 ˆE(r, ω) = iµoω r ; ω) · jN(r 0, ω). (2.16) 

and Z 
ˆ d3 0 G(r, r 0 ˆB(r, ω) = µor× r ; ω) · jN(r 0, ω). (2.17) 

where we used (2.10) to determine the magnetic field. Substituting these equations 

into the equal-time commutation relation (2.15), we find the noise current operator 

must satisfy the commutation relation1 h i ω2~�o
ĵ(r, ω), ĵ†(r 0, ω0) = Im[�]δ(r − r 0)δ(ω − ω0) (2.18)

π 

in agreement with the fluctuation-dissipation commutation relation that is well-known 

within linear response theory. We have determined the normalization coefficient must q 
be the tensor, Cn = ~ω2 

Im[�], while the commutation relation must take the form, 
µoπc2 

[f̂(r, ω), ̂f(r 0, ω0)] = [f̂ †(r, ω), ̂f †(r 0, ω0)] = 0 (2.19) 

[f̂(r, ω), ̂f †(r 0, ω0)] = δ(r − r 0)δ(ω − ω0). (2.20) 

In macroscopic quantum electrodynamics, these operators represent excitations of 

collective polaritons of the combined matter and electrodynamic field. The ground 

state of the polariton operators are defined by 

f̂(r, ω) |{0}i = 0 (2.21) 

while the single-excitation Fock state of the polariton is simply 

ˆ|1(r, ω)i = f †(r, ω) |{0}i . (2.22) 

1Here, we used the identity Z 
ω2 

d3 s
c2 

G ∗ (r, s) · Im[�] · G(s, r 0) = Im[G(r, r 0)] 

Note that we must also use Z ∞ Z ∞ 

E(r) = dω E(r, ω) = dω E(r, ω) + h.c. 
−∞ 0 

where h.c. stands for the hermitian conjugate. 
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Thus, we interpret f̂ †(r, ω) and f̂(r, ω) as the creation and annihilation operators of 

the polaritonic field. Using these definitions, it is straightforward to verify that the 

quantum average of the noise current vanishes (ĥjN i = 0) as expected. Furthermore, 

we can explicitly write the noise current operator in cartesian coordinates demonstrat-

ing how it depends on different components of the uniaxial permittivity. Recalling 

the permittivity tensor is defined as � = diag[�xx, �xx, �zz], we find r 

ĵx(r, ω) = 
~�oω2 p

Im[�xx]f̂  
x(r, ω)

πr 

ĵy(r, ω) = 
~�oω2 p

Im[�xx]f̂  
y(r, ω)

πr 
ω2 p~�o

ĵz(r, ω) = Im[�zz]f̂  
z(r, ω). (2.23)

π 

2.3 From the minimal coupling to the multipolar Hamiltonian 

It is possible to extend the theory to include the presence of additional charged 

particles. For a single-charged particle in free-space, the total Hamiltonian is given 

by the minimal coupling Hamiltonian along with the radiation Hamiltonian defined 

earlier 
(p − eA)2 

H = + eφ + Hrad. (2.24)
2m 

It is straightforward to verify, using Hamilton’s equations of motion, that this Hamil-

tonian returns Maxwell’s equations along with the Lorentz force law for a charged 

particle in the presence of an electric and magnetic field. Upon quantization, the 

total Hamiltonian may be written as 

Ĥ = Ĥ 
o + Ĥ 

rad + Ĥ 
int (2.25) 

where 
2p

Ĥo = 
2mZ Z 

(2.26) 

Ĥrad = d3 r ˆdω ̂f †(r, ω) · f(r, ω) (2.27) 

2e eˆ ˆ ˆ Â 2Hint = eφ − p̂ · A + . (2.28) 
m 2m 



15 

This result resembles the free-space Hamiltonian. Note, however, that the free-space 

electromagnetic field has been replaced by the polaritonic field with f̂ †(r, ω) and 

f̂(r, ω) as the creation and annihilation operators. The minimal coupling Hamiltonian 

for a single particle is easily extended to the general case of N charged particles, where 

the collection of particles represent a bound atom or molecule. The definition of the 

scalar and vector potentials follow from the well-known definitions 

∂A 
E = −rφ − (2.29)

∂t 

B = r× A (2.30) 

which apply to both classical and quantum fields. In the Coulomb gauge r·A = 0, we 

would have EL = −rφ and ET = −∂A/∂t where the subscripts denote the longitudi-

nal and transverse components of the electric field. In Fourier-space, these equations 

reduce to simple algebraic relations. While the minimal-coupling Hamiltonian is often 

used in solid-state physics, it is sometimes more insightful to split the Hamiltonian 

in terms of multipolar components. Here, we provide the final result which can be 

obtained through the Power-Zienau-Woolley transformation [41] � Z � 

f̂ 0 = U ˆ with U = exp 
i

d3 P · Â (2.31)fU † r ˆ 
~ 

where P̂ is the polarization vector defined as Z 1X 
P̂(r) = erα dsδ(r − ra − srα). (2.32) 

0α 

The summation runs over a collection of charges and ra represents the centre-of-

mass position of all charges. Extensive algebraic manipulation yields the multipolar 

Hamiltonian, 

ˆ Ĥ 0 + Ĥ 0 H 0Hmult = rad + ˆ (2.33)o int 
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where 

2 Z 
p 1 

Ĥ 0 d3 P̂2 
o = + r (2.34)

2m 2�oZ Z 
Ĥ 0 d3 ˆ 

rad = r dω ̂f †(r, ω) · f(r, ω) (2.35) 

Ĥ 0 = −d̂ · ˆ ) − m̂ · B̂ (ra) + 
e2 

[r × ˆ )] + 
3
[d̂ × B̂ (ra)]

2 
int E(ra B(ra

8m 8m 
1 ˆ ˆ− d × p · B(ra) (2.36) 
m 

is written in the long-wavelength limit. Here d̂ and m̂ correspond to the electric 

dipole and magnetic dipole moments for an atom with position ra. For the rest of 

this thesis, we will only consider electric dipole interactions. For the case of two 

atoms, the interaction Hamiltonian takes the simplified form 

H 0 = −ˆ · ˆ ) − ˆ · ˆ 
int da E(ra db E(rb) (2.37) 

corresponding to atom A and atom B in position ra and rb respectively. 

2.4 Perturbative theory of dipole-dipole processes 

In this thesis, we are interested in understanding the wide range of multi-atom pro-

cesses that arise for both ground-state and excited-state atoms. A unified approach 

for calculating all of these processes is based on using the well-established perturba-

tion theory of standard quantum mechanical textbooks. The transition amplitude, 

Mfi, between two different states |ii and |fi is given by, 

X Xhf |Ĥ 
int|Ii hI|Ĥ 

int|ii hf |Ĥ 
int|IIi hII|Ĥ 

int|Ii hI|Ĥ 
int|ii 

Mfi = hf |Ĥ 
int|ii + + 

EI − Ei (EI − Ei)(EII − Ei)
I I,II X hf |Ĥ 

int|IIIi hIII|Ĥ 
int|IIi hII|Ĥ 

int|Ii hI|Ĥ 
int|ii 

+ + ... (2.38)
(EI − Ei)(EII − Ei)(EIII − Ei)

I,II,III 

written here up to fourth order of the perturbation expansion. The summation in the 

2nd and higher order terms runs over all possible intermediate states; the summation 
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can be replaced by an appropriate integral for the case of continuum states. The 

energy level shift of state |ii is given by 

ΔEi = Mii (2.39) 

where it is understood that the principal value is taken during the integration of 

continuum intermediate states. The transition rate from initial state |ii to final state 

|fi is given by Fermi’s Golden rule X2π 
Γi→f = |Mfi|2δ(Ef − Ei) (2.40)

~ 
i,f 

where the summation runs over all possible initial and final states. 

2.4.1 Identical atoms: resonant dipole-dipole interaction 

We now consider the interaction between two identical atoms, labeled atom A and 

atom B respectively. The probability transition rate from state |ii and |fi is found 

through (2.40) and leads to the following cooperative decay rate 

2ωa
2 

γdd = 
2 
db · Im[G(rb, ra; ωa)] · da. (2.41)

~�oc 

Assuming the dipole moments of both atoms are oriented along the same direction, 

the total decay rate of two identical atoms will be γtot = γo ± γdd, where γo is 

the bare spontaneous emission rate of atom A (or atom B). The initial state is |ii = 

√1 (|eai |gbi±|gai |ebi)⊗|{0}i and final state |fi = |gai |gbi⊗|{1}i. Note that |{1}i = 
2 

|{1(r, ω)}i represents the single-photon Fock state with position r and frequency ω. 

The first order dipole-dipole frequency shift of initial state |ii is then found through 

evaluation of (2.39) which results in a resonant and off-resonant contribution Jdd = 

Jr 
dd, specified by dd + Jor 

ω2 

Jr a = − 
2 
db · Re[G(rb, ra; ωa)] · da (2.42)dd ~�oc 

and Z ∞ 

Jor µo ωge 
dd = dη η2 

ω2 + η2 
db · G(rb, ra; iη) · da. (2.43)

~π 0 ge 
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where ωge = ωg − ωe. These results are in agreement with [42]. We will examine these 

results thoroughly in the following chapter. 

2.4.2 Resonance energy transfer rate 

Considering now the interaction between two non-identical atoms or molecules, 

we now calculate the irreversible and perturbative energy transfer rate from atom A 

to atom B using (2.40), 

2π ωa
4 

Γ
ET = |db · G(ra, rb; ωa) · da|2δ(ωa − ωb) (2.44)

~2 �2 4co 

where we performed the calculation for the initial state |ii = |eai |gbi ⊗ |{0}i, with 

atom A in the excited-state and atom B in the ground-state, and final state |fi = 

|gai |ebi ⊗ |{0}i where both atoms are in the ground-state. In both cases, the elec-

trodynamic field is assumed to be in the vacuum state. 

2.4.3 Excited-state Casimir-Polder Potential 

The associated energy-level shift between two non-identical atoms, given that one 

is prepared in the excited-state and the other remains in its ground state, is given by 

the Casimir-Polder potential: [43] 

Ueg(r) = Ueg 
r (r) + Ueg 

or(r) (2.45) 

where the resonant component is 

ω4|da|2 

U r a αg 
eg(r) = − 

3�2c4 b(ωa)Re{Tr[G(ωa)G(ωa)]} (2.46) 
o 

and off-resonant component is given by 
2 Z ∞−~µ

U or o 
eg (r) = dη η4αa 

e(iη)αg 
b(iη)Tr[G(iη)G(iη)]. (2.47)

2π 0 

αa 
k(ω) is the isotropic electric polarizability of atom A in the kth energy eigenstate, 

defined as X2 ωmk| hk|d̂ 
a|mi |2 

αk(ω) = . (2.48)a ω23~ mk − ω2 − iω0+ 
m 

For this calculation, we had to use the fourth-order transition matrix element (2.38). 
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2.4.4 Ground-state Casimir-Polder potential 

The Casimir Polder potential (sometimes referred to as the Van der Waals inter-

action) between two ground-state atoms is [44] 

Ugg(r) = − 
~µ2 

o 

Z ∞ 

dη η4αa 
g(iη)αb 

g (iη)Tr[G(iη)G(iη)] (2.49)
2π 0 

This result is applicable in both the retarded and non-retarded regimes. We have 

dropped the spatial coordinate dependence for the Green function in (2.46), (2.47) and 

(2.49). Again, we used the fourth-order transition matrix element (2.38). Note that 

this result is similar to the off-resonant potential (2.47). Strictly speaking, the Van 

der Waals potential refers to the r−6 spatial scaling between two ground-state atoms, 

which occurs in the non-retarded, near-field limit r � λ. Quantum electrodynamic 

calculations by Casimir and Polder showed that the spatial scaling in the retarded 

limit (r � λ) changes to r−7 . 

Applicability of perturbation theory. The perturbation theory formalism 

used in this chapter is strictly applicable for the case of finite absorption with a 

sufficiently large interatomic separation distance. This is in agreement with our sim-

ulations for practical experimental systems such as plasmonic super-lattices and hy-

perbolic meta-surfaces as we shall show in the following chapter. For the case of 

low-losses and short separation distances, a non-perturbative approach will be re-

quired to treat the dipole-dipole interaction in a self-consistent manner. We present 

one such non-perturbative approach in the second half of this thesis. 

In the following chapter, we will take the transition frequency of atom A to be 

ωa/2π = 500 THz, while the transition frequency of atom B will be ωb/2π = 460 THz 

for all simulations. 
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Chapter addendum: Constitutive Relations 

The response of a collection of charged particles must be linear and causal in the 

linear response limit hence the constitutive relation required for quantization of a 

dispersive and absorbing medium must generally given by Z ∞ Z 
d3 0 χ(r, r 0P(r, t) = �o dτ r 0, τ) · E(r , t − τ ) + PN (r, t) (2.50) 

−∞ 

where χ corresponds to the electric susceptibility and PN is a noise polarization term. 

In this description the susceptibilities are required to provide the total polarization 

of a medium at point r and time t due to an applied electric field E applied at 

the advanced time τ . The integration over all positions and time provides the most 

complete description demonstrating how the interaction over all space and time results 

in the final polarization at point r and time t. Note that causality restricts the space-

time points that can affect the final polarization by 

χ(r, r 0, τ) = 0 for |r − r 0| > cτ (2.51) 

Thus effectively restricting the interactions to time-like or light-like separations be-

tween charged particles. This condition ensures χ is a retarded response function. In 

this thesis, we focus on local media with the property χ(r, r0, τ) = χ(r, t − t0)δ(r − r0) 

so that Z ∞ 

P(r, t) = �o dτ χ(r, τ) · E(r, t − τ) + PN (r, t) (2.52) 
−∞ 

The causality requirement thus simplifies to χ(r, t) = 0 for τ < 0. In other words, 

χ(r, t) ≡ Θ(τ)χ(r, τ), where Θ(τ) represents the Heaviside function, effectively chang-

ing the integration limits from 0 to infinity. This implies the polarization depends 

only on the past history of the electromagnetic field as represented by the convolu-

tion integral. It is possible to simplify the constitutive relations by working in Fourier 

space 

P(r, ω) = �oχ(r, ω) · E(r, ω) + PN (r, ω) (2.53) 
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The displacement field is then written as 

D(r, ω) = �oE(r, ω) + P(r, ω) = �o� · E(r, ω) + PN (r, ω) (2.54) 

where we have defined the permittivity tensor as � = 1 + χ. The causality relation 

implies in the Kramers-Kronig relations for the susceptibility, Z ∞ Z ∞1 Imχ(ω0) 1 Reχ(ω0)
Re[χ] = P.V. dω0 , and Im[χ] = − P.V. dω0 (2.55)

π ω0 − ω π ω0 − ω−∞ −∞ 

where P.V. denotes the principal value of the integral. One may use this condition to 

ensure experimental response functions are physical. Similarly, one may determine the 

real components of the response function based on measurements of the absorption 

(imaginary) components. 



22 

3. SUPER-COULOMBIC DIPOLE-DIPOLE 

INTERACTIONS IN HYPERBOLIC MEDIA 

In the following, we provide the first main result of this thesis using the formalism of 

the previous chapter. The results of this Chapter have been published in the open-

access journal, Nature Communications [45], re-published with suitable editing with 

permission from the Nature Publishing Group. 

3.1 Motivation for studying dipole-dipole interactions 

Dipole-dipole interactions (DDI) are instrumental in mediating entanglement, su-

perradiance, as well as coherent coupling between single molecules or atoms [46–52]. 

There are two fundamental ways of controlling the strength and length scales of dipole-

dipole interactions. The first method involves tuning intrinsic atomic properties such 

as transition dipole moments and transition frequencies (cf. highly-excited Rydberg 

atoms and superconducting qubits [52–54]). The second method tunes the properties 

of the quantum electrodynamic vacuum, typically achieved through cavities, waveg-

uides or photonic crystals [55–58]. Conventional electrodynamic approaches typically 

rely on resonant effects that require huge quality factors along with extensive nanofab-

rication steps. It is an open question, however, whether there exists alternative non-

resonant techniques for controlling dipole-dipole interactions that would be robust 

to broad spectral lineshapes of atoms or molecules with possible room temperature 

applications. The main purpose of this chapter is to present work related to this new 

avenue of research. 

In this chapter, we reveal a class of singular excited-state atom-atom interactions 

that can occur in natural and artificial media with hyperbolic dispersion. Unlike the 

above mentioned approaches which engineer radiative coupling, we show that the ho-
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Fig. 3.1. Overview of Super-Coulombic interaction. The pro-
posed long-range Super-Coulombic dipole-dipole interaction may be 
observed (a) between single-photon defect centers in natural hyper-
bolic media (e.g. h-BN, Bi2Se3, Bi2Te3) or (b) between ultra-cold 
atoms trapped above a hyperbolic meta-surface. (c)-(d) The Super-
Coulombic interaction occurs over a broad range of frequencies along 
the resonance angle of a hyperbolic medium and causes the effective 
interaction distance to approach zero irrespective of the physical dis-
tance. 

mogeneous hyperbolic medium itself fundamentally alters the Coulombic near-field. 

The resultant divergant long-range interaction, referred to as a Super-Coulombic in-

teraction, is described by an effective interaction distance that goes to zero (re → 0) 

along a material-dependent resonance angle. We show that this interaction affects 

the entire landscape of real photon and virtual photon phenomena such as the coop-

erative Lamb shift, the cooperative decay rate, resonance energy transfer rates and 

frequency shifts as well as resonant interatomic forces. While we find that the sin-
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gularity is curtailed by material absorption, it still allows for interactions with much 

larger magnitudes and longer ranges than those found in any conventional media. 

We also show that atoms in a hyperbolic medium will exhibit a strong orientational 

dependence that can effectively switch the dipolar interaction off or on, providing 

an additional degree of freedom to control dipole-dipole interactions. Our investiga-

tion reveals a marked contrast between ground-state and excited-state interactions 

which can be used to distinguish the Super-Coulombic effect in experiment. Finally, 

we provide a unified perspective for controlling dipole-dipole interactions on multiple 

experimental platforms for hyperbolic media including plasmonic super-lattices, hy-

perbolic metasurfaces, and natural hyperbolic media such as hexagonal boron nitride 

(h-BN). 

We emphasize that the materials platform we introduce in this chapter to enhance 

dipole-dipole interactions is fundamentally different from the cavity QED [59, 60] or 

waveguide QED regimes [50, 61–63]. We do not rely on atom confinement [47, 50– 

52, 60], cavity resonances or modal effects such as the quasi-TEM mode in circuit 

QED [62], the band-edge slow light as in PhC waveguides [50, 51, 64], the low mode 

volume of plasmonic waveguides [63, 65], or the infinite phase velocity at the cut-

off frequency of ENZ waveguides [55, 66]. We also stress that the Super-Coulombic 

effect engineers the conventional non-radiative (longitudinal) near-fields as opposed 

to radiative (transverse) modes and will occur over a broad range of frequencies due to 

the broadband nature of the hyperbolic dispersion relation [67–70]. Fig. 3.1 depicts a 

schematic of the proposed Super-Coulombic dipole-dipole interaction using hexagonal 

Boron Nitride (h-BN) [71–74] and two dopant atoms. In the infrared spectral range, 

h-BN behaves like a hyperbolic uniaxial medium that supports extraordinary waves 

satisfying the hyperbolic dispersion relation kx 
2/�z +kz 

2/�x = ω2/c2 whenever �x�z < 0. 
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3.2 Dipole-dipole interactions in hyperbolic media 

By using the QED theory of hyperbolic media developed in the previous chapter, 

we now calculate the dipole-dipole interactions between two neutral, non-magnetic 

atoms in a hyperbolic medium. We focus on dipolar interactions where the electrody-

namic field is initially prepared in the vacuum state |{0}i. The results of this chapter 

use the multipolar Hamiltonian for two neutral atoms [positions rj , transition frequen-

cies ωj and transition electric dipole moments d̂ 
j (j = a, b)]. We emphasize that the 

QED theory captures both ground-state, ground-state interactions and excited-state, 

ground-state interactions which a semi-classical approach cannot. In the following, 

we distinguish between identical and non-identical dipole-dipole processes. This dis-

tinction is useful because they have fundamentally different spatial scaling laws. 

3.2.1 Interaction between 2 identical atoms 

We now present the dominant dipole-dipole process for two identical atoms having 

equal dipole moment magnitudes and transition frequencies. Due to the excited-state 

degeneracy, we take the initial state of the atomic system to be prepared in the 

symmetric or anti-symmetric state, |ii = √1 (|eai |gbi ± |gai |ebi).2 

Resonant dipole-dipole interaction Based on the perturbative theory intro-

duced in the previous chapter, we introduce the (non-hermitian) resonant dipole-

dipole interaction (RDDI), � � ω2γdd
Vdd = ~ Jdd − i = − a db · G(rb, ra; ωa) · da, (3.1)

2 �oc2 

where dj = hgj |d̂ 
j |ej i is the transition dipole moment of atom j, assumed to be 

real. Jdd is the cooperative Lamb shift (also known as the virtual photon exchange 

interaction) and γdd is the cooperative decay rate commonly associated with super-



26 

radiant or subradiant effects. Our result for the resonant dipole-dipole interaction in 

a hyperbolic medium (� = diag[�x, �x, �z]) is 

ikoree � � 
2 V eoVdd = √ db · (1 − ikore)κnf − k2 r κff · da + ˜ (3.2)

3 o e dd4π�o �xre 

valid when ra 6= rb. The first term arises exclusively from extraordinary waves follow-

Ṽ eoing a hyperbolic dispersion while the second term dd arises from a combination of 

ordinary and extraordinary waves. Here, we have defined the near-field and far-field 

dipole orientation matrix factors κnf = �x�z(�−1 − 3(�−1 · r)(�−1 · r)/(r · �−1 · r)) and 

κff = �x�z(�−1 − (�−1 · r)(�−1 · r)/(r · �−1 · r)) respectively. Equation (3.2) reduces 

to the vacuum RDDI expression when �x = �z = 1, which is applicable both in the 

retarded (r � λ) and non-retarded (r � λ) regimes. The most unique aspect of 

dipole-dipole interactions inside a uniaxial media is the divergence that is predicted 

from the first term only when the hyperbolic condition (�x�z < 0) is satisfied. In the 

ideal lossless limit, we find that the effective interaction distance between two atoms, p p 
re = �x�z(r · �−1 · r) = r �z sin

2 θ + �x cos2 θ, tends towards the limit p 
re → 0 as θ → θR = tan−1 −�x/�z. (3.3) 

This Super-Coulombic effect results in the divergence of the dipole-dipole interaction 

strength |Vdd|/~ along the resonance angle θR, defined with respect to the optic axis. 

Atoms in a hyperbolic medium will then have an associated cooperative Lamb 

shift (CLS) and cooperative decay rate (CDR) 
√ 
�x�z (�−1 · r)(�−1 · r)

Jdd ≈ db ·[�−1 − 3 ]· da (3.4)
3 r · �−1 · r4π~�ore√ 

ω3 
a �x�z

γdd ≈ db ·�−1 ·da (3.5)
3π~�oc3 

in the limit θ → θR. Equations (3.4) and (3.5) are the dominant factors of the 

extraordinary wave contribution only. 

We now contrast the scaling of cooperative Lamb shift (CLS) with distance when 

mediated by hyperbolic media as opposed to vacuum modes. In vacuum, for sep-

aration distances much larger than the transition wavelength, the CLS scales as 
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Jdd ∼ γo cos(kor)/(kor) and becomes much smaller than the free-space spontaneous 

emission rate (γo). On the other hand, for distances much smaller than the wave-

length, the CLS scales as Jdd ∼ γo/(kor)3 , which implies that it can become much 

larger than the spontaneous emission rate. In contrast, the cooperative Lamb shift in 

a hyperbolic medium is dependent on re 
−3 , Jdd ∼ γo/(kore)3 , for all interatomic dis-

tances. The material-dependent factor 1/re 
3 diverges in the lossless case and therefore 

results in giant cooperative Lamb shifts for short and large interatomic distances. 

This marked contrast is also revealed in the cooperative decay rate (CDR). At large 

distances, the CDR in vacuum scales as γdd ∼ γo sin(kor)/(kor), therefore becoming 

weak for distances much larger than the wavelength. For distances much smaller than 

the wavelength, the CDR becomes independent of position, γdd ∼ γo, and remains on 

the order of the free space spontaneous emission rate. In contrast, the cooperative 

decay rate in a hyperbolic medium along the resonance angle is not dependent on the 

effective interaction distance re, and instead it depends crucially on the orientation 

angle φ of the dipoles, γdd ∼ γo(�z/ 
√ 
� x sin

2 φ + 
√ 
� x cos

2 φ). When both dipoles are 

z 

z 

xx 

x 

z 

oriented perpendicular to the optic axis (φ = π/2), there exists a unique wavelength 

when the medium can achieve an anisotropic epsilon-near-zero (ENZ) medium (�x → 0 

and �z =6 0) resulting in a divergent cooperative decay rate. Surprisingly, the effect 

is independent of interatomic distance. When both dipoles are parallel to the optic 

axis (φ = 0), the same anisotropic ENZ condition gives a null CDR between the two 

atoms, independent of interatomic distance. 

Role of material absorption 

We will now consider the role of material absorption (�x = �0 +i�00 and �z = �0 +i�00)x x z z 

on atom-atom interactions in a hyperbolic medium. We find that the effective interac-h 
�00|�0 |+�00|�0 | 

i1/2 
as θ →|�0 |+|�0tion distance is not zero and tends to the finite value |re| → |r| | 

θR. This curtails the singularity of the hyperbolic dipolar interaction but nevertheless 

allows for very large interaction strengths compared to conventional media whenever 
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|re|/|r| < 1 is satisfied. Material absorption will also modify the spatial scaling laws 

of the RDDI in eqn. (5.6) so that both the cooperative decay rate and Lamb shift will 

scale as re 
−3 . Another consequence of material absorption on resonant dipole-dipole 

interactions is in the transition from non-retarded (r−3) to retarded (r−1) interac-

tions. In vacuum, the transition occurs when the interatomic separation distance is 

on the order of wavelength, (ω/c)r ∼ 1. In an ideal lossless hyperbolic medium, this 

transition from near-field to far-field does not occur since the effective separation dis-

tance approaches zero, re → 0 specifically along the resonance angle of a hyperbolic 

medium. Therefore we find that RDDI should scale with the characteristic power 

law of near-field (longitudinal) non-radiative interactions (r−3) for all interatomic 

distances. Once material absorption is included, the transition is expected to occur 

approximately when (ω/c)|re| ∼ 1. The dipolar interactions will transition from the 

power law (re 
−3 ) to the exponential scaling law (e−(ω/c)Im[re]) which is valid at large 

interatomic distances. 

Fig. 3.2 shows the result of the cooperative Lamb shift and decay rate for two 

z-oriented dipoles in a hyperbolic medium that includes material absorption. We 

compare the resonant dipole-dipole interactions with the conventional results of a 

lossy dielectric and vacuum. Note that the RDDI peaks near the resonance angle θR 

as predicted theoretically. The spatial field plots in the insets clearly demonstrate the 

distinguishing features of the RDDI in a hyperbolic medium compared to vacuum. 

Fig. 3.2-c and Fig. 3.2-d demonstrate the re 
−3 Super-Coulombic spatial dependence 

along the resonance angle. Note that the sign of the interaction is dependent on the 

orientation of the dipoles as well as the relative position of the dipoles within the 

hyperbolic medium. 

Orientational dependence 

We now turn to the unique orientational dependence of the RDDI between two 

atoms positioned along the resonance angle θR. In Fig. 3.3, we plot the normalized 
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Fig. 3.2. Manifestation of Super-Coulombic interaction in 
hyperbolic media. Angular dependence of (a) cooperative Lamb 
shift (CLS) Jdd and (b) cooperative decay rate (CDR) γdd for two 
z-oriented dipoles in a lossy hyperbolic medium, lossy dielectric, and 
vacuum. The CLS and CDR have large peaks near the resonance 
angle of the hyperbolic medium indicative of the super-Coulombic in-
teraction, even for distances of a wavelength. Comparison of (c) CLS 
and (d) CDR at the resonance angle versus interatomic separation 
distance. The CLS and CDR both obey a 1/r3 power law dependence 
in the near-field due to the inclusion of absorption in the hyperbolic 
medium. Note that the giant interactions start occuring at distances 
on the order of a wavelength (arrows) even in the presence of material 
absorption which is in stark contrast to vacuum. The insets show the 
contrasting spatially-resolved (c) CLS and (d) CDR for vacuum and 
for a hyperbolic medium. 

cooperative Lamb shift of two atoms a full wavelength apart (r = λ) as a function of 

dipole orientation angle φ. The cooperative Lamb shift has a minimum when φ = θR 
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Fig. 3.3. Unique orientational dependence of RDDI in hyper-
bolic media. The plot shows CLS versus orientation angle φ for two 
dipoles positioned along the resonance angle. The cooperative Lamb 
shift is minimized when the dipoles are collinear with the the reso-
nance angle, and it is maximized when the dipoles are perpendicular 
to the resonance angle. The inset shows the asymmetric nature of 
the spatially-resolved Jdd/γo when the dipoles are orthogonal to the 
resonance angle. 

and a maximum when φ = θR + π/2. Assuming that |�0| = |�0 | ≈ |�0 |, �00 = �00 ≈ �00 ,x z x z 

and �00 � |�0|, we find that the ratio between the maximum and minimum is � �2
Jdd(φ = θR + π/2) 3 �0 ≈ − (3.6)

�00Jdd(φ = θR) 2 

showing that it is proportional to the square of the figure of merit of the hyperbolic 

medium. In Fig. 3.3, we use the full Green’s function to calculate the orientational 

dependence of the dipolar interaction in a hyperbolic medium with material absorp-

tion, and find excellent agreement with the analytical expression. 
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3.2.2 Interaction between 2 non-identical atoms 

We now consider 2nd order super-coulombic QED interactions arising from initial 

state preparation consisting of atom A in its excited state and atom B in its ground 

state, |ii = |eai |gbi. 

Förster resonance energy transfer 

In the weak-coupling regime, an incoherent and irreversible resonance energy 

transfer takes place transferring a photon from atom A to atom B. This process 

is known as Förster resonance energy transfer (FRET) and, as mentioned in the main 

abstract of the thesis, this process has many applications across all sciences. The 

transfer rate is calculated using Fermi’s golden rule is Γ = 2π~−1|Vdd|2δ(~ωa −~ωb).ET 

Along the resonance angle, FRET is mediated by hyperbolic modes and the rate is 

given by 
2π |db · κnf · da|2 

Γ
ET ≈ δ(~ωa − ~ωb) (3.7)

~ (4π�o)2|�x||re|6 

which shows a re 
−6 scaling dependence and giant enhancement – the key signature of 

second order Super-Coulombic interactions in hyperbolic media. 

Casimir-Polder potential 

In addition to the FRET rate, there is also a predicted frequency shift that comes 

from the initial state preparation |ii = |eai |gbi. This is the excited-state Casimir-

Polder potential, Ueg(r) = Ueg 
r (r) + Ueg 

or(r), composed of a resonant and off-resonant 

contribution. The resonant excited-state Casimir-Polder potential is of the form 

− |da|2ω4 
aU r (r) = 4 αb(ωa)Re{Tr[G(rb, ra; ωa)G(ra, rb; ωa)]} [43]. We therefore predicteg 3�2co 

that the excited-state energy potential will also diverge with a re 
−6 scaling dependence 

similar to the FRET rate. 

Fig. 3.4 shows the full numerical results for the 2nd order dipole-dipole inter-

actions in a lossy hyperbolic medium, a lossy dielectric, and vacuum. In the non-



32 

Separation Distance
0.01λ 0.1λ 10λ

Ca
si

m
ir-

Po
ld

er
 P

ot
en

tia
l 

10 -20

10 -10

10 0

10 10

0.01λ 0.1λ 10λ

en
er

gy
 tr

an
sf

er
 ra

te
en

ha
nc

em
en

t

10 -20

10 -10

10 0

10 10

λ

λ

Hyperbolic Medium
Isotropic Medium
Vacuum

-Ugg

Ueg

Fig. 3.4. Ground-state and excited-state Casimir-Polder in-
teraction energy in hyperbolic media. Casimir-Polder interac-
tion energy between two ground-state atoms (Ugg) and between an 
excited-state atom and ground-state atom (Ueg) show fundamental 
differences when interacting in hyperbolic medium. Ueg >> Ugg since 
resonant interactions lie completely within the bandwidth of hyper-
bolic dispersion and are strongly enhanced. The results are normal-
ized to Ugg in vacuum, evaluated at the near-field interatomic distance 
of ro = λ/100. The inset shows the giant enhancement of the FRET 
rate, Γ

ET , as compared to vacuum. The FRET rate is normalized to 
the vacuum energy transfer rate evaluated at ro. 

retarded regime (r � λ), we clearly see the effect of the Super-Coulombic interaction 

which results in a large enhancement of the dipolar interactions Ueg and Γ
ET (shown 

in inset). The super-Coulombic enhancement occurs only along the asymptotes of 

the hyperboloid and is unrelated to the suppression of FRET rate of an ensemble of 

emitters near a conventional metallic surface or hyperbolic medium [75–77]. 

It is interesting that the dispersive Van der Waals interaction between two ground 

state atoms does not diverge in a hyperbolic medium. Using fourth order pertur-

bation theory [44], the interaction energy between two ground-state atoms is given 
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R ∞ o(ra, rb) = −~µ
2 

dηη4αa(iη)αb(iη)Tr[G(rb, ra; iη)G(ra, rb; iη)], where αA,B (ω)by Ugg 2π 0 

is the isotropic electric polarizability of atom A or B. In the non-retarded limit, the 

dominant contribution is given by Z ∞~ Tr[κ2 (iη)]
Ugg ≈ − dη nf αa(iη)αb(iη) (3.8) 

32π3�o 
2

0 �x(iη)re 
6(iη) 

which reduces to the well known free-space non-retarded Van der Waals interaction 

energy when �x = �z = 1. It is important to note that the integral is performed over 

the entire range of positive imaginary frequencies (η = iω). Generally, the hyperbolic 

condition �x�z < 0 is only satisfied within a finite bandwidth of the electromagnetic 

spectrum. We therefore expect that it would not alter the broadband cumulative effect 

of the entire electromagnetic spectrum, and as a result we predict that the ground-

state ground-state interaction energy will not diverge in a hyperbolic medium. From 

Fig. 3.4, it is also clear that the ground-state ground-state Casimir Polder potential 

Ugg does not show any type of enhancement for the hyperbolic medium, in agreement 

with our discussion. Note that the distance scaling dependence in the non-retarded 

regions is in agreement with equations (3.7)-(3.8), as expected. In the retarded regime 

(r � λ), the excited-state interactions Ueg and Γ
ET display an exponential damping 

behaviour due to material absorption, while the ground-state interaction Ugg displays 

the typical Casimir-Polder power law dependence, r−7 (Fig. 3.4). 
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3.3 Practical Implementations of Hyperbolic Media 

In the following, we discuss multiple experimental platforms for hyperbolic me-

dia paving the way for the experimental demonstration of the long-range Super-

Coulombic interactions and unique many-body physics in hyperbolic media. 

3.3.1 Plasmonic super-lattice 

Fig. 3.5-a and Fig. 3.5-b propose a practical plasmonic super-lattice system to 

enhance atom-atom interactions taking into account the role of dissipation, dispersion 

and finite unit cell size. We show the large enhancement of cooperative Lamb shift 

(Jdd) for an effective medium model and compare it to a 40-layer structure consisting 

of Ag and T iO2 with a total slab thickness of 100 nm. For such a system, effective 

medium theory predicts a type I response (�x > 0, �z < 0) for wavelengths smaller 

than 492 nm, and a type II response (�x < 0, �z > 0) for wavelengths larger than 492 

nm. Atom A is 4 nm away from the top interface (see Fig. 3.5 inset), while atom B 

is assumed to be adsorbed to the bottom interface. Atom B has a fixed horizontal 

displacement of xB = 5 nm, and therefore there is a fixed separation angle θo between 

atom A and atom B with respect to the normal to the interface. The two large peaks 

seen in Fig. 3.5 occur when the dispersive resonance angle θR(λ) is equal to the 

fixed separation angle, i.e. θR(λ) = θo in agreement with theory. For the material 

system shown here, this occurs both in the type I and type II hyperbolic regions. 

The inset shows the directional sensitivity of the interaction as a function of atom 

B’s horizontal displacement. Note that accurate agreement between the effective 

medium model and the super-lattice structure is achieved when the unit-cell size is 

smaller than the separation distance between atom A and the top interface. 
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Fig. 3.5. Giant long-range Cooperative Lamb shift in practical 
structures. (a)-(b) Plasmonic super-lattice in visible range, and (c)-
(d) natural hyperbolic medium in infrared range. (a) The effective 
hyperbolic model is compared with (b) a 40-layer multilayer system 
taking into account dissipation, dispersion and finite unit cell size. 
Atom A is 4 nm away from top interface, while atom B is adsorbed 
to bottom interface with a horizontal displacement of xB = 5 nm. 
The inset shows the cooperative Lamb shift dependence on atom B’s 
horizontal displacement when λ = 550 nm. Good agreement is seen 
between the EMT model and practical multilayer design paving the 
way for an experimental demonstration of the Super-Coulombic effect 
with cold atoms. Cooperative Lamb shift for (c) two atoms above h-
BN and (d) two atoms across an h-BN structure; dashed lines denote 
bulk vacuum results. Note that a smaller spontaneous emission rate 
(γo ∼ ω3) in the infrared range will contribute to a larger normalized 
cooperative decay rate Jdd/γo. The orange and blue curves denote the 
two orientations of the transition dipole moment of the atoms. The 
total slab thickness for both structures is 100 nm. 

3.3.2 Natural hyperbolic medium: hexagonal Boron Nitride 

Fig. 3.5-c and Fig. 3.5-d propose a 2D Van der Waals bonded natural material, 

hexagonal Boron Nitride (hBN), as a candidate material to control optically-active 
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Fig. 3.6. Super-Coulombic cooperative Lamb shift above hy-
perbolic meta-surface. Cooperative Lamb shift, Jdd, above hy-
perbolic metasurface with optic axis in the x̂ direction, calculated 
via dyadic Green function approach. Atom A and atom B are 2 
nm above the interface. (a) Two dimensional resonance cone on hy-
perbolic metasurfaces which causes giant in-plane long-range dipole-
dipole interactions (b) Cooperative Lamb shift dependence on angle 
θxy of atom B for a fixed separation distance of r = λ/2 = 250 nm. 
Note the clear enhancement of the resonant dipole-dipole interaction 
near the resonance angle θR. (c) Separation distance dependence of 
cooperative Lamb shift along the resonance angle θxy = θR. Inset 
shows giant FRET enhancement (> 2000) for separation distances of 
100 nm in the metasurface plane. 

vibrational transitions between molecules, or electronic intersubband transitions be-

tween quantum wells. hBN is a natural hyperbolic medium in the mid-infrared spec-

tral range. We show giant cooperative Lamb shifts Jdd for the case of two atoms 

10 nm away from the top interface of an h-BN structure, as well as for two atoms 

across an h-BN film. In the first case, the atom-atom interaction is due to a Super-

Coulombic ray-like interaction that reflects from the bottom interface (see insets). 

In the second case, the interatomic interaction is primarily due to a direct Super-

Coulombic interaction from atom A to atom B. Atom A is 10 nm above the top 

interface, while atom B is assumed to be adsorbed to the bottom interface. Note that 

these long-range dipole-dipole interactions are seen equally in the type I hyperbolic 

region (λ ∼ 12 − 13 µm) as well as the type II hyperbolic region (λ ∼ 6 − 7 µm). We 
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have used the experimentally-verified permittivities for h-BN from Caldwell et al. for 

our numerical simulations [71]. 

3.3.3 Hyperbolic meta-surface 

Finally, Fig. 3.6 proposes a 2D-material system to enhance resonant dipole-dipole 

interactions, using hyperbolic metasurfaces. Our theoretical proposal provides addi-

tional future directions for designer metasurfaces based on graphene, black phospho-

rous, h-BN, gold/air, or silver/air nanogratings [78–81] (see Fig. 3.6-a). We must 

emphasize that all of the experimental and theoretical studies thus far have focused 

on Purcell factor enhancements or the photonic spin-Hall effects. Here, we propose 

hyperbolic metasurfaces to control many-body dipole-dipole interactions. Fig. 3.6-a 

shows the key difference from bulk hyperbolic media where a two dimensional reso-

nance cone mediates giant long-range interactions due to in-plane hyperbolic disper-

sion (x-y plane anisotropy). In Fig. 3.6-b, we show an enhancement of the cooperative 

Lamb shift Jdd versus angle θxy of atom B. The angle θxy is defined with respect to 

the optic axis that lies parallel to the interface, such that � = diag[�x, �z, �z]. A clear 

enhancement is seen along the resonance angle θR compared to the vacuum and the 

dielectric half-space cases. Furthermore, when the position of atom B lies along the p 
resonance angle θxy = θR = tan−1 −�z/�x we find a clear order-of-magnitude en-

hancement in the cooperative Lamb shift up to distances of 200 nm [Fig. 3.6-b and 

Fig. 3.6-c]. Numerical simulations of the hyperbolic meta-surface were done using a 

dyadic Green function approach given explicitly in the addendum of this report. 

Chapter summary 

To summarize, we have revealed a class of singular excited-state atom-atom in-

teractions in hyperbolic media that arise from a fundamental modification of the 

Coulombic near-field. The experimental observation of such effects will require careful 

isolation of medium-induced cooperative interactions between atoms from the effect 
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of independent atoms interacting with the hyperbolic medium. Preliminary results 

have shown signatures of such interactions between molecules via FRET [82]. Future 

work should also focus on understanding the intricate role of non-locality [83, 84] on 

dipole-dipole interactions in hyperbolic media. Our work motivates the search for 

defect centers in natural hyperbolic media like hexagonal boron nitride, where the 

interaction is mediated by hyperbolic phonon-polaritons. It should also motivate the 

study of unique many-body physics in atomic lattice quantum metamaterials with 

hyperbolic response [85]. Finally, our work should also promote studies of long-range 

entanglement and self-organization [51]. This work provides a first step towards cold-

atom studies with hyperbolic meta-surfaces exhibiting unique effects that are not 

found in photonic crystals, waveguides, or cavities. 
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4. MANY-BODY ENERGY TRANSFER EFFECTS IN 

MULTI-LAYERED NANOPHOTONIC ENVIRONMENTS 

In this chapter, we extend the two-body theory of dipole-dipole interactions to take 

into account the effect many acceptors confined to a finite volume. This work was 

motivated by the experimental verification of the Super-Coulombic interaction (ex-

perimental work performed by Ward Newman) which lead to the successful demon-

stration of long-range dipole-dipole interactions through a hyperbolic metamaterial. 

This work is currently unpublished but under review. In the following, we present the 

many-body theory of Förster resonance energy transfer in multi-layered nanophotonic 

environments providing the full expressions for the energy transfer rate in terms of 

the dyadic Green function integrated over a finite volume. Of note, we compare the 

results to the well-known energy transfer spatial scaling laws in homogeneous envi-

ronments. In the second part of the chapter, we present our experimental results and 

discuss discrepancies between theory and experiment. The focus of this Chapter is 

the theory but we have included experimental results for the sake of completeness. 
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4.1 Many-body theory of FRET in multi-layered environments 

We begin by considering the two-body energy transfer rate between two molecules. 

Unlike the results of the previous chapter, we include the vibrational states of the 

molecules through the Born-Oppenheimer approximation which assumes the molecule’s 

nuclear degrees of freedom are slowly varying compared to the electronic degrees of 

freedom. This difference in timescales allows the total wavefunction of the molecule 

to be written as the product of nuclear and electronic contributions respectively. 

4.1.1 Energy transfer between two molecules 

For the case of two molecules, the total transition matrix element is given by 

daa0(bb0) = dA(B)vaa0(bb0) in the Born-Oppenheimer approximation. vaa0(bb0) corresponds 

to the overlap integral between the vibrational states of each molecule. Here, dA(B) is 

the electronic transition dipole matrix element between the electronic ground |ai (|bi) 

and excited state |a0i (|b0i) of atom A(B). We assume molecule A is initially prepared 

in its excited electronic state and molecule B is initially prepared in the electronic 

ground state with the electrodynamic field in the vacuum state, |ii = |a0i |bi ⊗ |{0}i. 

Using Fermi’s Golden rule, as outlined in Chapter 2, the Förster resonance energy 

transfer (FRET) rate from molecule A to molecule B is given by Z 
2π 

ΓET = dω |Vdd(ω)|2σA(ω)σB (ω) (4.1)
~2 � � 

where Vdd(ω) = ~ Jdd − iγdd = − ω
2 
db ·G(rb, ra; ωa)·da is the resonant dipole-dipole 2 �oc2 

interaction introduced in the previous chapter. σA(ω) and σB (ω) are proportional to 

the single-photon emission and absorption spectrum of molecule A and B respectively 

[86], 

X 
0σA(ω) = p 0 |vaa0 |2δ(ωa a − ω) (4.2)a 

0a,a 
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and X 
σB (ω) = pb|vb0b|2δ(ωb0b − ω) (4.3) 

b,b0 

where pi is the occupation probability of state |ii. The experimental signature of 

FRET is the reduction in the excited state lifetime of atom A which is sensitive to 

the presence of atom B in the near-field. 

4.1.2 Many-body energy transfer rate: analytical derivation 

We now calculate the change in the FRET rate when there is a large distribution 

of acceptors. The spatially integrated energy transfer rate is Z 
Γ̄ET = Na drAρA(rA)ΓET (rD, rA) (4.4) 

where ρA(rA) represents the spatial distribution of acceptors. For the rest of the 

Chapter, we consider a uniform distribution of acceptors with ρA = 1/Va, where Na is 

the total number of acceptors and Va is the confined volume surrounding the acceptor 

molecules. As shown in Appendix A, for multi-layered nanophotonic environments 

with cylindrical symmetry, the dyadic elements of the Green function may be written R R 
in the form Gij ∼ dkρ fij (kρ)Jn(kρρ) cos(nθ) or Gij ∼ dkρ fij (kρ)Jn(kρρ) sin(nθ), 

where fij (kρρ) is a function containing the reflection or transmission coefficients of the 

environment, while Jn(kρ) is the cylindrical Bessel function of order n. In cylindrical 

coordinates, the integral over the acceptor surface area yields the following types of 

integrals ⎧R 2π R ∞
cos(nθ) cos(mθ)dθ ρJn(kρρ)Jm(kρ 

0 ρ)dρZ ⎪
2π Z ∞ ⎨ 0 0 R 2π R ∞dθ ρ dρ |na · G(rA, rD) · nd|2 ∼ 

0 sin(nθ) sin(mθ)dθ 0 ρJn(kρρ)Jm(kρ 
0 ρ)dρ 

0 0 ⎪R 2π R ∞⎩ cos(nθ) sin(mθ)dθ ρJn(kρρ)Jm(k
0 ρ)dρ

0 0 ρ 

The orthogonality relations of the trigonometric functions together with the closure 

relation of the Bessel function ensures a complete evaluation of the surface integral for 

any component of the Green function. In the following, we provide an exact expression 
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for the spatially integrated transmitted Green function. In the experiment, linearly-

polarized laser light excites the donor molecules lying parallel to the interface. The 

Green function components related to parallel (x-oriented) donor dipole moment Z 
i kρ � � 

ikz (za+zd)Gxx(r) = dkρ e tssk1
2J+ 

c + kz 
2J− 

c tpp (4.5)
8πk1

2 kzZ 
i kρ � � 

ikz (za+zd)Gyx(r) = dkρ e k1
2tss − kz 

2tpp J2(kρρ) sin 2θ (4.6)
8πk2 

1 kzZ 
Gzx(r) = 

i 
dkρkρ 

2 e ikz (za+zd) [2itppJ1(kρρ) cos(θ)] (4.7)
8πk1

2 

where we have used the shorthand notation for the cylindrical bessel functions J± = 

Jo(kρρ) ± J2(kρρ) cos 2θ. The final result for the ensemble-averaged energy transfer 

rate for a two-dimensional sheet of acceptors is: Z Z2π Z ∞ hπ kρ i(kz −k∗)(za+zd)dθ ρ dρ |Gxx|2 = dkρ e 3|tssk2|2 + 3|tppkz 
2|2 

|8πk2|2 |kz|2 
z 

1 
0 0 1 i 

∗ k2 ∗ k2+ tppt k1
2 + t tssk

2∗ (4.8)ss z pp z 1 Z 2π Z ∞ Z 
4π i(kz −k∗ 

dθ ρ dρ |Gzx|2 = dkρkρ 
3 e z )(za+zd)|tpp|2 (4.9) 

0 0 (8πk1
2)2 Z 2π Z ∞ Z 

π kρ i(kz −k∗ 
dθ ρ dρ |Gyx|2 = dkρ e z )(za+zd)|tssk12 − tppkz 

2|2 (4.10)
|8πk2|2 |kz|2 

0 0 1 

To take into account the acceptor slab thickness, ta, we evaluate the following integral Z ta −2Im[kz ]ta1 − e−2Im[kz ]zadza e = (4.11) 
0 2Im[kz] 

−2Im[kz ]tai(kz −k∗)(zd+za) 1−e zand use the substitution e → in all of the previous equa-
2Im[kz ] 

tions. The final result is a one dimensional integral over the radial wavevector kρ. 

The integral is evaluated numerically using the Gauss-Kronrod method. The final 

expression (4.4) provides the total energy transfer rate from a donor to a 2-D sheet 

(or 3-D slab) of acceptors depending on whether we include a finite slab thickness for 

the acceptor molecules. These expressions form the main result of this Chapter. As 

we show below, the dimensionality of the acceptor volume alters the energy transfer 

spatial scaling law. 
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Fig. 4.1. Comparison of energy transfer power law behavior for di-
electric, metal, and ideal hyperbolic medium. We provide results for 
infinitely thin sheet of acceptors labelled as the 2D case, as well as 
finite-sized 20 nm slab of acceptors. We clearly see distinct power 
laws for short donor-acceptor separation distances corresponding to 
d−3 and d−4 scaling dependence for the 3D and 2D cases respectively. 
We emphasize that these power laws arise from the Coulombic r−6 

point-to-point interaction. 
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4.1.3 Comparison to energy transfer power laws in homogeneous media 

We now compare the results derived above to the well-known energy transfer 

spatial scaling laws for donor-acceptor systems inside a homogeneous medium where 

the energy transfer rate is given by ΓET = γo(Ro/r)
6 in the near-field. The many-

body energy transfer rate from a single donor molecule to a 2D sheet of acceptor 

molecules is given by: Z ∞ Z ∞ ρdρ R6 

R6 ca ΓET ρdρ = caγo o = caγo
o (4.12) 

0 0 (d
2 + ρ2)3 4d4 

where d is the distance between the donor to 2D-sheet of acceptors, while ca is the 2D 

sheet concentration. This unique spatial scaling arises from the near-field Coulombic 

coupling, ΓET = γo(Ro/r)
6 , and would not occur for radiative coupling r−2 . For the 

case of acceptors confined to a 3D slab with finite thickness ta, we must integrate 

over the third spatial dimensions corresponding to the acceptor slab thickness. Upon 

evaluation of this additional integral, we ensemble-averaged energy transfer rate be-

comes proportional to d−3 . The result shown in Fig. 4.1 compares the 2D and 3D 

scaling arising from a finite-slab (20 nm) of acceptors and 2D sheet of acceptors. Note 

the result in Fig. 4.1 is calculated with the integral expressions in k-space, clearly 

reproducing the limiting power law behavior derived in this sub-section. 

4.1.4 Wavevector-resolved energy transfer 

Using the expressions derived above, we numerically evaluate the wavevector-

resolved energy transfer rate as a function of k-space modes. This approach provides a 

clear separation of radiative and non-radiative contributions by separating the integral R ∞ R k1 
R ∞ 

as = + . These results are analogous to the k-resolved local density of
0 0 k1 

states used in nanophotonics [69], however, we must emphasize that wavevector-

resolved energy transfer rate is a non-local quantity. In Fig. 4.2 we show the origin of 

the extended Super-Coulombic scaling law as a result of the high-k spatial frequency 

modes allowed to propagate within a hyperbolic medium. 
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Fig. 4.2. Long distance sheet-sheet non-radiative dipole-dipole in-
teractions in a hyperbolic medium: (left) The scaling law of energy 
transfer between a 2D sheet of donors and a 2D sheet of acceptors 
is shown versus the sheet-to-sheet separation. We observe the persis-
tence of the near-field Coulombic scaling law (∼d−3) up to 5-10 µm, 
500× the conventional near-field of 5-10 nm. The near-field scaling 
is eventually curtailed by dissipative losses at large distance. The re-
sult is shown for various donor-acceptor dipole moment orientations. 
(right) This extension of the Coulombic near-field originates from the 
high spatial frequency bulk hyperbolic polaritons that propagate in 
the metamaterial. These high-spatial frequency modes retain a longi-
tudinal character even at large propagation distances, a fundamental 
requirement for near-field Coulombic interactions. 

4.2 Experimental demonstration of long-range interaction 

In Fig. 4.3-a, we present the primary experimental results showing the comprehen-

sive set of samples required to demonstrate the long-range dipole-dipole interactions 

through a hyperbolic metamaterial consisting of alternating layers of metal (Ag) and 

dielectric (SiO2). Nine total samples are required for isolating the role of the metama-

terial on the dipole-dipole interaction as opposed to the role of the: (i) local photonic 

density of states (LDOS) enhancement and (ii) non-radiative enhanced quenching of 

donor molecules above the metal. [87, 88]. We isolate the dipole-dipole contribution 

by carefully comparing the results between donors with acceptors (hybrid, front row 
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of Fig. 4.3-a) to the donor-alone and acceptor-alone cases (middle and back rows, Fig. 

4.3-a). Along with the metamaterial, experiments on Ag and SiO2 control samples of 

equal thickness to the metamaterial (100 nm) were also performed. 

Evidence of energy transfer from donor molecules to acceptor molecules is demon-

strated through steady-state fluorescence measurements. Once again, we compare the 

control samples to the hybrid, donor-acceptor samples. Fig. 4.3-b, Fig. 4.3-c, and 

Fig. 4.3-d show the transmitted photoluminescence (PL) spectra for the control and 

hybrid samples of three types of material systems corresponding to dielectric, metal, 

and metamaterial respectively. The fabricated samples are optically pumped with a 

steady-state fluence of approximately 25 µW/1 mm2 from a 405 nm continuous wave 

laser. Note the clear evidence of energy transfer from donor to acceptor molecules in 

all three material systems given by the increase in the acceptor emission intensity for 

the hybrid donor-acceptor case (black curve) compared to the acceptor-only case (red 

curve). Furthermore, there is a clear decrease in the donor emission intensity rela-

tive to the donor-only case (blue curve). We must also emphasize that while energy 

transfer is clearly evident for all three material systems, the transmitted PL spectra 

does not provide evidence of the increased dipole-dipole interaction magnitude for 

the hyperbolic metamaterial case. This is due to the acceptor molecules not having 

an equivalent photonic density of states for all three material systems. Ultimately, 

this will modify the observed acceptor PL spectra making it difficult to discern the 

strength of the dipole-dipole interaction. Evidence of an increased FRET rate is only 

attainable through the careful analysis of time-resolved photoluminescence. 

4.2.1 Time-resolved photoluminesence 

The main experimental result is shown in Fig. 4.3-e and Fig. 4.3-f demonstrating 

the nature of the energy transfer process through time-resolved photoluminescence 

of the Alq3 donor. The result clearly shows an additional increase to the donor 

relaxation rate in the presence of R6G acceptors across the metamaterial. Fig. 4.3 
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Fig. 4.3. a The sample-types used to isolate RDDI in various material 
systems is shown. Donors (Alq3, shown green) (b, c, d) The trans-
mitted PL spectra for the donor and acceptor separated by dielec-
tric, metal and metamaterial shown. We note that energy transfer is 
clearly visible in all three material systems; that is, the donor excited 
state is causing the acceptor to be excited and subsequently relax and 
emit a photon. This is concluded by noting an increased intensity of 
acceptor emission and a quenched donor emission when the emitters 
are placed in the hybrid geometry (black curve) relative to the donor-
only (blue curve) and acceptor-only (red curve) control systems. (e, 
f, g) The time resolved donor fluorescence for donor-only (blue) and 
hybrid (black) samples are shown for the three material systems. For 
the donors:acceptors separated by 100 nm of SiO2 or Ag (g, h), the 
hybrid decay traces reveal no additional lifetime reduction compared 
to the donor-only case, indicating no long-range RDDI. When the 
donor and acceptors are separated by a 100 nm Ag/SiO2 multilayer 
metamaterial (g), we observe a marked excited state lifetime reduc-
tion when the acceptor molecules are present, providing evidence of 
long-range super-Coulombic RDDI. 
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compares the decay trace for the 100 nm SiO2 film with (black curves) and without 

acceptors (blue curves). Introducing acceptors to the far-side of the SiO2 film produces 

no change in the emission kinetics, despite the fact that the steady-state fluorescence 

indicates that there is energy transfer from donors to acceptors. This suggests that the 

energy transfer mechanism occurs through a much weaker dipole-dipole interaction 

that is radiative in nature, i.e. mediated by a photon emitted by the excited donor 

which propagates through the 100 nm SiO2 film and is subsequently absorbed by the 

acceptor. For the 100 nm Ag material system, we only observe a Purcell-based effect 

which decreases the lifetime of the donor as a result of the metallic environment 

[89, 90], however, this system does not show any change in the donor decay trace 

similar to the 100 nm SiO2 thin film. 

Fig. 4.3-g shows the fundamentally different emission kinetics of the donor in the 

hyperbolic metamaterial system. The donor only sample shows a decreased excite-

state lifetime relative to the pure Ag sample (blue Fig. 4.3-f). This is due to the 

enhanced optical density of photonic states in the near-field of HMMs [69,70]. When 

acceptors are introduced to the opposite side of the hyperbolic metamaterial in the 

hybrid donor-acceptor sample (black data), we observe a notable decrease in the 

excited-state lifetime of the donor. This lifetime reduction offers proof of long-range 

super-Coulombic dipole-dipole coupling of donors and acceptors with a physical sep-

aration distance of 100 nm. 

4.3 Comparison between theory and experiment 

In the following, we outline the theoretical model that was developed to provide 

a theoretical estimate of the observed energy transfer rate extracted from the exper-

imental data discussed above. The final result comparing theory and experiment is 

shown in Fig. 4.5. 
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4.3.1 Theory of time-resolved donor fluorescence intensity 

To confirm the nature of the Super-Coulombic dipole-dipole interaction over large 

intermolecular distances, the experiment performed time-resolved ensemble measure-

ments of the donor fluorescence intensity. In the following, we provide a simple deriva-

tion showing how the integrated (many-body) energy transfer rate emerges naturally 

from the time-resolved donor fluorescence intensity. In general, the fluorescence in-

tensity decay trace of a donor surrounded by Na acceptor molecules depends on the 

probability of the energy transfer from the donor to each of the acceptors. For a 

given configuration specified by the donor position rD, and acceptor positions rAj , PNathe total donor decay rate γD is given by γD = γo + i ΓET (rAi, rD), where γo is 

the spontaneous emission rate of the donor in the absence of acceptor molecules. The 

total donor intensity decay trace is given by [91] Z Z Z P 
−γot −t ΓET i(rAi,rD )ID(t) ∼ e drA1 ρ(rA1) drA2 ρ(rA2) · · · drANa ρ(rANa )e i �Z �Na 

−tΓET (rA,rD )∼ e −γot drA ρ(rA)e (4.13) 

where we must spatially average over all possible acceptor locations for every acceptor 

molecule. In the limit of small point-to-point energy transfer rates tΓET � 1, an 

assumption that is generally valid for large separation distances between donors and 

acceptors, the exponential term may be expanded giving the final result, �Z �Na 

ID(t) ≈ e −γot drA ρ(rA)(1 − tΓET (rA, rD)) Z 
∼ e −γot exp [−cA drAΓET (rD, rA)t] (4.14) 

We used the basic definition of the exponential, exp (x) = limn→∞ (1 + x/n)n , and 

assumed a uniform acceptor density ρ(ra) = 1/Va in the thermodynamic limit (Na → 

∞, Va →∞, Na/Va → const). We emphasize this result predicts the measured donor’s 

photoluminescence decay trace will consist of the donor’s spontaneous emission γo 

contribution, in addition to the spatially-integrated energy transfer rate from the 

donor to the uniform distribution of acceptors. The integral is performed over the 
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total volume of the acceptors and is in agreement with the general result derived 

earlier in this Chapter. 

4.3.2 Calibration of theoretical model 

In Fig. 4.4, we provide a flow chart outlining the first-principles theoretical model 

used to estimate the many-body energy transfer. The results from this model are 

compared with the extracted energy transfer rates from the experiment. Note that 

the theoretical model avoids the use of fitting parameters, only using measured exper-

imental parameters as calibrated inputs. For example, the theoretical model uses the 

dielectric permittivity values obtained through ellipsometry measurements, as well 

as film thicknesses independently verified through SEM imaging, a quartz crystal 

monitor, and ellipsometry measurements. Similarly, the estimated two-point FRET 

rate was calibrated through independent measurements of the FRET radius Ro, the 

spatially-averaged spontaneous emission lifetime of the donor molecules γo, and the 

acceptor concentration ca estimated independently through transmission measure-

ments utilizing the Beer-Lambert law. Additional details related to the FRET radius 

calibration is included at the end of this Chapter. 

4.4 Spatial scaling of energy transfer rate 

To elucidate the distance scaling law of dipole-dipole interactions mediated by 

metamaterials, we fabricated additional structures displaying varying strengths of 

RDDI owing to the different separation distance (20, 60 nm) between donors and 

acceptors. We experimentally quantify the effective FRET strength between the 

donors and acceptors using the harmonic mean of the measured decay rates of the 

donor emission kinetics with and without acceptors (see [92]). If the observed decay 

traces I(t) are normalized to unity at time zero, the integral of the trace over time R 
γ−1yields an averaged excited-state lifetime, ¯ = τ̄ = dtI(t). Since we are in the 

weak coupling limit, the difference between the average decay rate of the donors 
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Fig. 4.4. Flow chart for going from point-to-point super-Coulombic 
dipole-dipole interactions, to many body ensemble dipole-dipole in-
teractions observed in experiment. 
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Fig. 4.5. Spatial scaling of Super-Coulombic interactions. (a) Ex-
perimental confirmation of enhanced energy transfer rates due to the 
Super-Coulombic effect in a hyperbolic metamaterial (green) com-
pared to silver film (blue) and SiO2 film (red). The noise floors are 
denoted by dashed curves and the numerically calculated many-body 
dipole-dipole interaction curves are denoted by the colored bands. 
The theoretical predictions include 10% error bands accounting for 
uncertainty in the independently extracted physical parameters. (b) 
Numerically simulated spatial dependence of sheet-to-slab (2D sheet 
of donors and thin slab of acceptors) many-body dipole-dipole interac-
tions demonstrating an enhanced FRET rate of the effective medium 
model (yellow) with d−3 power law dependence. Super-lattice struc-
tures with unit-cell sizes of 40 nm, 20 nm, and 4 nm respectively 
are also shown exhibiting an extended spatial range with enhanced 
Coulombic interactions beyond the scale of a wavelength. The green 
stars correspond to the experimentally measured data. The solid grey 
line shows the ideal EMT limit of adsorbed quantum emitters on a 
hyperbolic medium whereas the dashed black line presents the ana-
lytical scaling law taking into account the finite distance between the 
emitter and metamaterial. 



53 

with and without acceptors yields the effective FRET rate of donors to acceptors: 

Γ̄ET = γ̄ DA − γ̄ D. Here, γ̄ D denotes the averaged excited-state lifetime for a system of 

donor molecules without acceptors, while γ̄ DA denotes the excited-state lifetime for a 

system of donor molecules in the presence of acceptors. 

The observed effective FRET rates and their scaling for three separation distances 

between donor and acceptor molecules are shown in Fig. 4.5. Using the theoretical 

framework developed in this Chapter, we provide a detailed quantitative comparison 

of the metamaterial response in the ideal effective medium theory (EMT) limit as well 

as the practical finite-sized multilayer structure. Using only physical quantities ex-

tracted independently from experiment (permittivity, layer thicknesses, FRET radius, 

donor decay rate, quantum yield and acceptor concentration) with no additional fit-

ting parameters, the predicted many-body Super-Coulombic interaction theory shows 

excellent agreement with the experimentally observed FRET rates across the meta-

material (Fig. 4.5-a). The enhancement of FRET due to the HMM is close to two 

orders of magnitude compared to the dielectric and one order of magnitude larger 

than the metal case. Our simulations take into account the discrete nature of the 

metamaterial. The sawtooth behavior of the FRET rate is related to the influence of 

the termination layer (metal or dielectric) in the metamaterial sample. 

4.4.1 Modified Super-Coulombic scaling law 

Motivated by the agreement between theory and experiment (green stars and 

green dots in Fig. 4.5-b, we also compare the spatial scaling of the integrated FRET 

rate for the experimental realization of the metamaterial to the ideal effective medium 

theory limit of super-Coulombic RDDI for adsorbed quantum emitters on a hyper-

bolic medium (light gray line). We plots results for various unit-cell sizes. As the 

unit-cell size is decreased to 4 nm, a very strong agreement is noticed between effective 

medium theory (yellow curve) and the multi-layered system (black dots). We empha-

size that the dramatic spatial extension of the Coulombic spatial scaling (ΓET ∼ d−3) 
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to beyond the wavelength scale (d > 500 nm) despite the inclusion of realistic losses, 

dispersion, absorption and finite unit-cell size of the metamaterial is evidence of the 

super-Coulombic effect. The dashed black curve presents our analytical model (given 

by the following equation) of the super-Coulombic FRET taking into account the 

finite distance between the emitter and metamaterial (za). The modified Coulombic 

scaling law taking into account this proximity effect is p 
)−3ΓET ∼ (d Re[ �x/�z] + za . (4.15) 

Strong agreement in the scaling law between EMT and multi-layered simulations 

occurs when the unit-cell size is significantly smaller than the molecule-interface 

separation distance (ao < za). The spatial range of the Super-Coulombic interac-

tion is ultimately curtailed by material absorption (�00) with an interaction range of q
�00|�0 |+�00|�0 
|�0 |+|�0 

x 

z 

z 

x 

z xξ−1 ω = |
| . c 

This metamaterial-mediated non-radiative Förster interaction with Coulombic 

scaling should be contrasted with the previously reported super-radiant lifetime change 

in quantum dots which only showed a radiative interaction and Vdd ∼ 1/R scaling at 

the comparable distance of 150 nm [93]. Furthermore, two mesoscopic atomic clouds 

have shown Förster interaction at 40 microns [94]. However, the transition wave-

length is 1 cm placing the experiment in the extreme near-field regime (d ≈ λ/250). 

For comparison, if similar mesoscopic atomic systems were interacting through a hy-

perbolic metamaterial functioning at ω = 30 GHz ≡ 1 cm, the interaction distance 

would be a centimeter. 

4.4.2 Chapter Summary and Outlook 

In this chapter, we developed a rigorous first-principles theoretical framework for 

many-body energy transfer in multi-layered nanophotonic environments. We used 

the result to estimate the long-range energy transfer rate and compared it to an ex-

periment performed by Ward Newman. We obtained excellent agreement thereby 

providing the first demonstration of long-range Super-Coulombic dipole-dipole in-
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teractions mediated by metamaterials in the optical frequency regime. We envision 

that Super-Coulombic interactions will impact deterministic entanglement creation 

between remote emitters [95], will increase the range of bio-molecular FRET rulers 

and FRET imaging systems [96], and will accelerate the progress towards the long-

standing goal of strongly coupled quantum systems at room temperature. 
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Chapter Appendix: FRET radius for calibration 

In order to calibrate the first-principles theory to the experiment, we use the 

famous Förster formula [97] Z ∞ΓET 
= 18π fd(ω)σa(ω)|na · G(rA, rD; ω) · nd|2dω (4.16)

γo 0 

expressed in terms of the normalized emission spectrum fd(ω) of the donor, as well 

as the absorption cross-section σa(ω) of the acceptor which is phenomenologically 

determined through photoluminescence measurements. Here, γo is the donor decay 

rate measured in a homogeneous environment with na and nd representing the unit 

orientation vectors for each dipole. This formula is directly related to measured quan-

tities found in experiments, providing a direct approach to calibrate the theoretical 

predictions. 

In free-space, the dyadic Green function is frequency-independent in the near-field 

limit (kr � 1). One may therefore remove the Green function contribution from the 

spectral integral resulting in the conventional definition for the FRET radius, Z ∞4κ29c fd(ω)σa(ω)
R6 

o = QD dω. (4.17)
4ω48π n0 

The FRET radius is defined as the donor-acceptor separation distance resulting in 

the FRET rate being equal to the donor spontaneous emission rate. For general 

nanophotonic environments, this definition of the FRET radius is not possible due 

to the frequency- dependence of the dyadic Green function. However, as shown in 

Fig. 4.6, the transmission for extraordinary-polarized light is slowly varying as a 

function of wavelength. In the spectral overlap region, the transmittance changes 

very slowly as a function of wavelength indicating that the permittivity values also 

change slowly. This suggests we can remove the Green function dependence from the 

spectral integral and approximate the FRET rate as 

ΓET 
= 16π2k4Ro 

6 |na · G(rA, rD; ωda) · nd|2 (4.18)
γo 
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where the FRET radius is equal to the conventional definition written above. The 

numerical Green function is evaluated at the peak of the emission-absorption spectrum 

overlap. 

Fig. 4.6. The transmittance for extraordinary polarized light is shown 
for various metal and metamaterial samples. The donor and acceptor 
emission peaks are denoted by the green and yellow vertical dashed 
lines respectively. 
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¨ 5. FIGURES OF MERIT FOR ENGINEERING FORSTER 

RESONANCE ENERGY TRANSFER 

This chapter presents the starting point for the second part of this thesis. Here, we 

present results related to an ongoing debate regarding the control of Förster resonance 

energy transfer in nanophotonic environments. We demonstrate that a simple image 

dipole model can be used to explain various regions of enhancement, suppression, and 

null-control of resonance energy transfer above a half-space dielectric as well as for 

two atoms near a dielectric or metal nanoparticle. The results are valid in the weak 

and incoherent coupling limits of resonance energy transfer. The coherent coupling 

limit of resonance energy transfer requires a fundamentally different analysis as given 

by the proceeding Chapter. 

5.1 Motivation: an ongoing debate 

Over the past 15 years there has been an ongoing debate regarding the influ-

ence of the environment on Förster resonance energy transfer (FRET). Disparate 

results corresponding to enhancement, suppression and null effect of the photonic 

environment have led to a lack of consensus between the traditional theory of FRET 

and experiments. Here we show that the quantum electrodynamic theory (QED) of 

FRET is exactly equivalent to an effective near-field model describing electrostatic 

dipole-dipole interactions. This connection leads to an intuitive and rigorously exact 

description of FRET, previously unavailable, bridging the gap between experimental 

observations and theoretical interpretations. Furthermore, we show that the widely 

used concept of Purcell factor variation is only important for understanding sponta-

neous emission and is an incorrect figure of merit (FOM) for analyzing FRET, as has 

been done in several experiments. To this end, we introduce two new figures of merit 
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which characterize resonance energy transfer: (1) the FRET rate enhancement fac-

tor (FET ), (2) FRET efficiency enhancement factor (Feff ) and 3) two-point resonant 

dipole-dipole interaction (VEE ) which contains the photonic properties of the envi-

ronment governing FRET and is analogous to the local density of states that controls 

spontaneous emission. Counter to previous claims, we show that suppression of the 

donor Purcell factor is necessary for enhancing the efficiency of the FRET process. 

We place bounds on the FRET figures of merit arising from both material absorp-

tion within environment as well as from intrinsic properties of the emitters including 

quantum efficiencies and dipole-moment orientation dependence. Finally, we use our 

approach to conclusively explain several experiments while predicting regimes where 

the FRET rate is expected to be enhanced, suppressed or remain the same. Our work 

paves the way for a complete theory of FRET with predictive power for designing the 

ideal photonic environment to control FRET in incoherent coupling limit. 

While the microscopic nature of FRET is widely understood and accepted in sim-

ple homogeneous systems, the fundamental nature of FRET in complex photonic 

environments remains poorly understood and has been widely debated over the past 

15 years (see table I). The debate is largely based on the vastly different and seem-

ingly contradictory results of many experiments (see table I) when donor-acceptor 

pairs are placed in the vicinity of photonic cavities or nanoparticles. In some cases 

FRET has been shown to be enhanced [98–110], suppressed [108–113], or remain un-

changed [114–117]. While the theory of FRET has been developed extensively since 

the first initiation by Förster, ranging from semi-classical electrodynamic theories 

to microscopic and macroscopic quantum electrodynamic (QED) theories [118–134], 

there remains a significant disparity between experimental results and theoretical 

predictions. This has also led to conjectures that the FRET rate is independent of 

the photonic environment. Thus, no insightful approach exists that can explain the 

underlying physics behind the disparity of observations in experiments. 

The purpose of the present work is to illuminate the fundamental nature of FRET 

in a nanophotonic environment for experimentally-relevant scenarios, thereby resolv-
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Table 5.1. 
Experimental Results of FRET 

Enhancement Suppression No effect 

Microcavity 

Nanoparticles 

[98–100, 106] 

[101–105, 107–110] 

[113] 

[108–112] 

[114, 115, 117] 

[116] 

ing the debate that has been ongoing for fifteen years. We show that the QED 

perturbative approach to analyzing dipole-dipole interactions in a nanophotonic en-

vironment can be completely captured by an effective near-field dipole model. This 

lends itself to a physically intuitive picture of environmental FRET rate modification 

that was not available before. As a result of our model, we are able to conclusively 

explain key recent experiments which have shown surprisingly contradictory results 

of enhancement, suppression and even no effect of the environment on FRET. We 

also show that the lack of FRET rate variation in recent experiments is not a univer-

sal behavior but is strongly dependent on environmental conditions and orientation 

effects. We define a FRET rate enhancement factor analogous to the Purcell factor 

used in spontaneous emission modification calculations to quantify the influence of 

nanostructures on the FRET rate. These introduced figures of merit (FOM) cap-

ture the contradictory regimes of FRET completely in the widely used planar and 

spherical nanostructured geometries. Our work also clarifies an important puzzling 

observation that the FRET rate enhancement factor (FET ) as generally smaller than 

the Purcell factor (Fp) in most experiments; however, we show how careful design 

of environmental properties can result in cases where FET can be greater than Fp. 

A striking manifestation of this property can be exploited to enhance FRET effi-

ciency in an all-dielectric (transparent and lossless) system where we predict that the 

FRET efficiency can be enhanced by more than 300-400%. Finally, we place bounds 

on the achievable figures of merit in realistic photonic environments that arise from 

orientation effects and limitations of intrinsic quantum efficiency of donors. 
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5.2 Theory of spontaneous emission 

It is well understood that spontaneous emission and FRET have underlying con-

nections but we show that the environmental attributes which govern them are en-

tirely different. Using Fermi’s Golden rule and the first order transition amplitude, 

one arrives at the general expression of the spontaneous emission (SE) rate 

2ω2 |dD|2 

γD,rad = D [nD · Im{G(rD, rD; ωD)} · nD] (5.1) 
~�0c2 

for an atom in an inhomogeneous environment. ωD is the radial frequency, ~ is the 

reduced Planck’s constant, c is the speed of light, �o is the free-space permittivity, 

and G(r, r; ω) is the classical dyadic Green function (GF) related to the electric field 

of the dipole with dipole moment dD = dDnD. It is well established that the SE rate 

is dependent on the density of photonic modes of the environment quantified by the 

partial local density of states (LDOS) [135] 

6ω 
ρE(rD; ω) = nD · Im{G(rD, rD; ω)} · nD (5.2)

πc2 

for a given dipole orientation nD. Note that the LDOS depends on the position rD of 

the donor dipole moment only. An enhancement in the LDOS ρE(rD; ω) compared to 

that in vacuum ρoE (rD; ω) translates into a larger decay rate described by the Purcell 

factor 
γD,rad ρE (rD; ω)

Fp = = . (5.3)
γo ρo (rD; ω)D,rad E 

This is the well known figure of merit that is used to describe the decay rate en-

hancement or suppression of spontaneous emission in the case of low absorption. 

In the general case where the donor atom has an intrinsic quantum yield given by 

QD = γrad , where γnrad is a nonradiative decay rate that is assumed to be 
γrad+γnrad 

independent of the environment, the overall enhancement of spontaneous emission 

becomes [136, 137] 
γD 

= (1 − QD) + QD Fp. (5.4)
γo 
D 
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Fig. 5.1. (a) Energy-level diagram depicting spontaneous emission. 
γrad denotes the rate of radiative energy transfer to any location in 
the environment. The acceptor is not considered as part of the en-
vironment. (b) Energy-level diagram depicting FRET. FRET occurs 
when two neighboring atoms or molecules, denoted as donor and ac-
ceptor, have overlapping emission and absorption spectra and couple 
due to a Coulombic dipole-dipole interaction. The FRET rate ΓDA 

denotes the energy transfer to the acceptor location only. 

5.3 Environment-modified FRET 

While the preceding results have been well established in literature, questions 

have emerged whether the same physical quantities can characterize the effect of 

the environment on Förster resonance energy transfer. FRET can be understood 

as spontaneous emission of a donor molecule to the specific location of the acceptor 

triggered by near-field dipole-dipole interaction. Within the semi-classical picture, 

a donor dipole induces a dipole moment of a nearby polarizable acceptor. If the 

donor and acceptor have overlapping emission and absorption spectra (see Fig. 5.1-

b), then resonance energy transfer occurs. In the QED picture, FRET rate variation 

is mediated by virtual photons [127]. One arrives at the expression for the FRET 

rate, Z 
2π 

ΓDA = dω |VEE (ω)|2σD(ω)σA(ω) (5.5)
~2 

using Fermi’s Golden rule by including the second order transition amplitude [129, 

138]. Here, σD(ω) and σA(ω) represent the single-photon emission and absorption 

spectra of the donor and acceptor respectively. The results given above are applica-
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Fig. 5.2. Environment modified dipole-dipole interactions and 
FRET. QED theory of dipole-dipole interactions in the near-field is 
completely captured by an effective dipole model. FRET is governed 
by induced image dipoles in the metallic environment explaining a 
multitude of puzzling experimental observations. (a) Image dipole 
method for half-space structure. The magnitude of the image dipole 

�2−�1moment is given by pimage = pD. (b) Visualization of normalized
�2+�1 

electric field plots for vertical donor dipole (above) and vertical image 
dipole (below) with |�2| > |�1|. Note that a non-trivial superposition 
of fields due to the vectorial nature of the electric field results in 
regimes of suppression, enhancement, and null effect on FRET. These 
regimes cannot be explained by the LDOS or Purcell factor alone. (c) 
FRET rate figure of merit for two dipoles 7 nm apart, and 7 nm 
above silver. Enhancement is seen when |�2| < |�1|, suppression is 
seen when |�2| > |�1|, while no effect is seen when |�2| ≈ |�1|. These 
regimes are determined by the orientation of the image dipole. Note 
also that the FRET rate enhancement has a non-trivial dependence 
on the wavelength (see also table I). Exact QED results are denoted 
by the solid lines which are in complete agreement with our analytical 
expressions (circles). 

ble for quantum emitters placed in a linear, absorbing and dispersive electromagnetic 

environment. We emphasize that elaborate calculations with macroscopic QED the-

ory yield the exact same results as a semi-classical theory with only minor differences 

in the definition of the dipole moment. The dependence of FRET rate ΓDA on the 

environment is clear through resonant dipole-dipole interaction (RDDI), 

ω2 

VEE (rA, rD; ω) = − dA · G(rA, rD; ω) · dD (5.6)
�oc2 
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as the environmental quantity that acts in an analogous way to the LDOS but instead 

mediates the magnitude of the FRET dipole-dipole interaction through virtual photon 

exchange. The subscript EE refers to an electric dipole interaction which is governed 

by the electric field of each dipole. The definition can be generalized to the case of 

magnetic dipole interactions (VBB ) and electric-magnetic dipole interactions (VEB ) as 

well. Note that in the near-field limit (kr << 1), the FRET rate reduces to the well 

known Förster formula (ΓDA ∝ 1/n4r6) with the expected r−6 and n−4 dependence. 

Note that the LDOS and FRET rate are both dependent on the dyadic Green func-

tion which contains all of the environmental information. The FRET rate is clearly 

not dependent on the LDOS, as debated in several papers [114–116]. Nevertheless, it 

is dependent on the environment through the two-point Green function. While the 

LDOS is a measure of the energy transfer rate to any location in the environment, 

the RDDI is a measure of the energy transfer rate to the acceptor location only (see 

Fig. 5.1). Analogous to the Purcell factor, we now introduce the FRET rate figure 

of merit 
ΓDA 

FET = (5.7)
Γo 
DA 

where the denominator is the homogeneous FRET rate. Combining these results, the 

total decay rate of a (high-yield) donor in an inhomogeneous environment is 

γDA = FpγD
o + FET Γ

o
DA (5.8) 

where the first term denotes the modified spontaneous emission rate and the second 

term denotes the modified FRET rate. 

5.4 Near-field image dipole model 

We now show that the QED picture, consisting of virtual photon exchange, is 

completely captured by an effective dipole model that may be derived independently 

using the method of images. In a homogeneous environment, the FRET rate becomes 

comparable in magnitude to the SE rate for donor-acceptor separation distances of 
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r � c/ωD. This implies that the dipole-dipole interaction is dominated by a qua-

sistatic field. Therefore to control FRET we must engineer the quasistatic fields as 

opposed to the electrodynamic fields. In both semi-classical and quantum theories of 

energy transfer, the FRET rate (5.5) is governed by the projected electric field in-

duced by the donor, E(rA; ω) = ω2µoG(rA, rD; ω) ·dD, at the location of the acceptor. 

In the near-field of a planar interface (see Fig. 5.2-a), it can be written as 

κ0dD κ dimage 
nA · E(rA; ωD) = + (5.9)

4πn21 r
3 4πn21 r

03 

which simply denotes the dipole-dipole interaction between the donor and accep-

tor (first term) and the image dipole and acceptor (second term). Here, r and r0 

represent the donor-acceptor and image-acceptor separation distances respectively, 

κ = (3 cos θAr cos θDr − cos θA,D) is the commonly used orientation parameter be-

0tween the donor and acceptor [127], and κ0 = (3 cos θAr0 cos θD0r − cos θA,image) is the 

orientation parameter between the acceptor and the image dipole. 

Eqs. (5.5) and (5.9) imply that the total FRET rate is dependent on the total 

field generated at the acceptor location by the donor as well as its image dipole. 

This leads to a subtle interplay of interference effects that completely govern the 

nature of FRET. Note that while the donor dipole moment dD is independent of the 

environment, the induced image dipole has an environment-dependent dipole moment 

given by 
�2 − �1

dimage = dD. (5.10)
�2 + �1 

The FRET rate figure of merit is finally given by 

κ �2 − �1 κ
0 2 

FET = + . (5.11) 
r3 �2 + �1 r03 

At this point we must make several observations in comparison to experimental re-

sults. First, note that the magnitude of the image dipole moment is enhanced at 

the surface plasmon (SP) resonance condition (�1 + �2 = 0). As expected, this ex-

plains why many experiments have observed FRET rate enhancements near the SP 

resonance (see table I). More importantly, FRET can be enhanced or suppressed de-

pending on interference effects arising from the field of the image dipole. This is 
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clearly evident from our theoretical model since the orientation of the image dipole 

determines constructive or destructive interference effects depending on the magni-

tude of �1 and �2. The image dipole maintains its original orientation [see Fig. 5.2-a] 

if |�2| > |�1| leading to enhancement, on the other hand, the image dipole orientation 

flips if |�2| < |�1| causing FRET rate suppression (see eqn (5.9) and (5.11)). Thus 

in the case of metals which are highly dispersive, both regimes can be observed in 

different wavelength ranges. 

Third, note that the vectorial structure of the near-field of the donor and image 

dipole results in a spatial inhomogeneity of the quasi-static fields. This affects the 

FRET rate depending on the acceptor location (see Fig. 5.2-b). This explains why 

various donor-acceptor geometric configurations with similar materials can result in 

suppression or enhancement of FRET. We emphasize that two important aspects 

which govern the regimes of enhancement, suppression or no effect throughout the 

various experimental studies of FRET are (a) the spectral overlap region in which 

FRET takes place and (b) the donor-acceptor separation compared to the distance 

from the photonic environment. The FRET rate will be independent of the environ-

ment only if the distance of the donor-acceptor pair from the photonic environment 

is much larger than the donor-acceptor separation distance. Environmental effects 

are also reduced when the mode resonances of the photonic environment do not lie 

in the spectral overlap region of the donor-acceptor pair [see Table 5.1]. 

(1) Perfect Reflector For the case of a perfect reflection eqn (5.10) shows that 

the image dipole moment magnitude is equal to the donor dipole moment magnitude. 

The perfect reflector condition is satisfied when there is high absorption in medium 

2 (�00 2 → ∞), or when there is a high contrast between the permittivities of medium 

1 and 2 (|�0 |/�1 � 1) which typically occurs far from the SP resonance in the long-2 

wavelength limit. 
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A simple analysis of the FRET rate dependence yields the following table of 

regimes: 

Table 5.2. 
Perfect reflector regimes for FET 

FET collinear dipoles 

(κ2 = 4) 

parallel dipoles 

(κ2 = 1) 

randomly oriented 

(hκ2i = 2/3) 

zD/ρ � 1 

zD ∼ ρ 

zD/ρ � 1 

suppression 

enhancement 

no effect 

enhancement 

suppression 

no effect 

suppression 

no effect 

no effect 

In the table, we let zA = zD while ρ denotes the horizontal separation distance 

between the donor and acceptor. We have used κ2 as the commonly used relative 

orientation parameter between donor and acceptor. Note the large sensitivity of the 

behavior of FRET to both distance and orientation which has not been elucidated 

before. As outlined in table II, the perfect metal reflector can surprisingly inhibit or 

enhance FRET and even have no effect depending on the orientations and distances 

achieved in experiment. 

(2) Realistic Metal For the case of realistic losses, the FRET figure of merit 

across wavelengths has the form 

�002[(�0 2 + �1) + q]2 2 (1 + Ω)2 

FET = + (5.12)
|�2 + �1|2 |�2 + �1|2 

where q = Ω(�0 2 − �1) is a Fano-like parameter and Ω = (r3/r03)(κ0/κ) is an orienta-

tion/distance parameter. The first term, which corresponds to a dispersive dipole-

dipole interaction, resembles a Fano resonance profile. The second term which de-

pends on �00 2 is a dissipative dipole-dipole interaction with a Lorentzian-like profile. 

When losses are sufficiently low the Fano term dominates. The result is shown in Fig. 

5.2-c, which shows the excellent agreement between the exact QED result and the 
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quasi-static expression [Eqn. (5.12)]. The same system can show regions of enhance-

ment, suppression, and no effect depending on the wavelength of operation. These 

various regimes are explained by the image dipole model, as outlined in the perfect re-

flector case. In stark contrast, the Purcell factor for a realistic metal is approximately 

given by 
�1�

003 κ0 
Fp = 1 + 2 (5.13)

16 |�1 + �2|2 (k1zD)3 

which is always enhanced in the near-field (Fp > 1). We now contrast the fundamental 

differences between the Purcell factor and FRET rate enhancement factor at the SP 

resonance (�0 2 = −�1). Eqn. (5.12) reduces to � �2 � �2
κ02 6 3r �1 κ0r 

FET = 4 + 1 + . (5.14)
κ2r06 �00 κr03 

2 

where we identify the quantity Q = �1/�00 2 as the quality factor of the SP resonance. 

Similarly, eqn. (5.13) reduces to � �3 � � 
3 λD �1

Fp = 1 + (5.15)
�0032π3n31 zD 2 

at the SP resonance. Note these expressions separate the material and geometrical 

properties of the system. Furthermore, the Purcell factor follows the well-known 

linear dependence on the quality factor while FET is dependent on the square of the 

quality factor. 

We now use (5.14) and (5.15) to shed light on why Purcell factor enhancements 

have always shown large values in comparison to FRET rate enhancements (see table 

I). The key distinction between the two figures of merit lies in the difference in length 

scales captured by the r6/r06 and λ3 
D/zD 

3 terms. For the half-space problem that we 

have considered here, geometric considerations imply that the donor-acceptor distance 

(r) is always smaller than the image-acceptor separation (r0). This drastically reduces 

the FRET figure of merit due to the sixth power dependence. The length scale factor 

of spontaneous emission, on the other hand, depends on the ratio of the wavelength 

of emission to the emitter distance from environment (λ3 
D/zD 

3 ) and is always much 

larger than 1 in the near-field. The cubed power dependence helps enhance the overall 
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Fig. 5.3. Effect of losses. (a) Purcell factor Fp. (b) FRET figure of 
merit FET . Bottom half-space is modelled as Drude metal with ωp = 
6.3 × 1015 −1s and the Drude relaxation time of τ = 5fs (black) and 
τ = 2.5fs (red). Dashed lines correspond to the two terms, dispersive 
dipole-dipole interaction and dissipative dipole-dipole interaction, in 
Eqn. (5.12). Note the FRET enhancement factor is in general much 
smaller than the Purcell factor in agreement with widely reported 
observations. 

Purcell factor and so in general we find that regardless of the material quality factor, 

the FRET figure of merit will be much smaller than the Purcell factor for metals with 

low material quality factors. In Fig. 5.3, we compare the Purcell factor and FRET 

enhancement factors across wavelengths which re-emphasizes this important point. 

Note that this explains the multitude of experiments which have observed negligible 

enhancements of the FRET rate as opposed to the SE rate (See Table 5.1). 
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5.4.1 (3) Dielectric 

We now consider medium 2 as a dielectric (�2 > 0). In this case, there are three 

general scenarios that may occur. (i) If �1 ≈ �2 then the magnitude of the image 

dipole moment approaches zero and FET ≈ 1. (ii) If �2/�1 � 1 then the dielectric 

acts like a perfect reflector with the different regimes outlined in the previous section. 

(iii) If �2/�1 � 1 then the image dipole flips orientation and the dielectric acts like a 

perfect reflector with opposite regimes to those outlined in Table II. 

5.5 FRET efficiency 

We now place limits on the FRET efficiency based on the quantum yield of the 

donor and elucidate fundamental competition between FRET efficiency and the Pur-

cell factor. The efficiency of energy transfer to the acceptor location as compared to 

the energy transfer to the rest of the environment is given by 

ΓDA 
ηet = . (5.16)

γD + ΓDA 

In many applications and experiments, controlling the FRET efficiency is as important 

as controlling the FRET rate hence we introduce the FRET efficiency figure of merit: 

ηet
Feff = 

ηo 
(5.17)

FET 
= 
FET ηo + [(1 − QD) + QDFp](1 − ηo) 

where the denominator in the first line denotes the FRET efficiency in a homogeneous 

environment. It then follows that the condition of FRET efficiency enhancement 

(Feff > 1) is 

FET > (1 − QD) + QD Fp (5.18) 

which shows that the intrinsic quantum efficiency of donors (QD) has a large effect 

on the FRET efficiency. 



71 

5.5.1 (1) High-yield donor (QD ≈ 1) 

From the equations above, the condition to increase the FRET efficiency for high 

yield donors requires the FRET rate enhancement factor to be larger than the Purcell 

factor. 

Feff > 1 =⇒ FET > Fp (5.19) 

Our analysis from the previous section shows that this condition is very difficult to 

achieve for realistic metals. Using (5.14) and (5.15), we find that the minimum quality 

factor required to observe (FET > Fp) is given by � �3 063 λD κ2r 
Q > . (5.20)

3 κ02 6128π3n1 zD r 

For a donor-acceptor pair that is equidistant from the metal surface, the minimum 

quality factor can range from 103 and upwards. Since this value is not found in 

realistic metals, it is generally the case that FRET efficiency cannot be enhanced 

with high-yield donors explaining experimental observations. 

5.5.2 (2) Low-yield donor 

Using realistic parameters for metal-based systems (e.g Fp ≈ 10 and FET ≈ 4), we 

find that the intrinsic quantum efficiency must be less than 33% in order to observe 

FRET efficiency enhancement. This implies that low quantum yield donors will 

exhibit an increase in the FRET efficiency even if Fp > FET . We emphasize that this 

explains why many plasmonic-based experiments with metallic nanoparticles have 

observed enhancements in the FRET efficiency [103, 139, 140]. However, note that if 

Fp � FET then there will no efficiency enhancement even with a low quantum yield 

donor. 
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5.6 FRET near a nanosphere 

We now turn our attention to the effect of FRET near spherical nanoparticles, as 

has been the focus of a wide range of experiments [see Table I]. Our effective near-

field dipole model captures the observed effects of FRET near these structures, in full 

agreement with the QED result. In the quasistatic regime, kR � 1, the nanoparticle 

can be treated as a dipole-driven multipolar source that acts to modify the overall 

FRET rate. For accurate predictions, we have used the full dyadic Green function 

for spherically multilayered media originally developed in ref. [141] (see the Appendix 

towards the end of this Chapter). 

In Fig. 5.4-a, we compare the FRET rate enhancement factor with the Purcell 

factor for a donor-acceptor pair that has a fixed separation distance of 8 nm across 

the visible wavelength region. We consider a silver nanoparticle with a 10 nm radius. 

Two distinct peaks are observed in the spectrum. The peak at lower frequencies is the 

result of the dipolar surface plasmon resonance of the nanoparticle, while the second 

peak at higher frequencies is the result of the high-order (non-radiative) modes in the 

nanoparticle. Note that the Purcell factor (Fp) is orders of magnitude larger than 

the FRET rate enhancement factor (FET ) near these resonant regions, in agreement 

with our previous arguments. Note, however, that in the low-frequency region the 

two factors became comparable in magnitude. Most interestingly, when the donor 

and acceptor are tangential to the surface of the sphere, the FRET rate is enhanced 

(FET > 1) while the Purcell factor is suppressed (Fp < 1). 

In Fig. 5.4-b, we compare FET and Fp as a function of separation distance from 

the nanoparticle for an operating wavelength of 650 nm. Note that unlike the planar 

half-space case, the Purcell factor of a tangential dipole can be suppressed for certain 

distances. We emphasize that the FRET characteristics from the effective dipole 

model given in Table II captures the distance and orientation dependence completely 

in this spherical geometry. 
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Fig. 5.4. FRET near nanosphere. (a) FRET rate enhancement 
factor for spherical nanoparticle systems widely used in experiment. 
The donor and acceptor are both 8 nm away from an Ag nanosphere 
of 10 nm radius. Inset: Calculated Purcell factor for same system. 
The peaks are related to dipolar surface plasmon resonance and higher 
order multipolar non-radiative modes. We emphasize that Fp � FET 

for plasmonic systems near the LSP resonance implying the energy 
transfer to the sphere (environment) is larger than the energy trans-
fer to the acceptor. (b) Distance dependence of FET and Fp at the 650 
nm wavelength region (away from resonance). Note that a tangential 
dipole exhibits a suppression in the Purcell factor due to near-field 
interference effects. This effect can be used to boost the FRET ef-
ficiency (Feff ∝ FET /Fp). The enhancement, suppression and null 
effect features in the three curves of different colors corresponding to 
the orientations of the dipole moments of the acceptor and donor are 
in agreement with table I. 
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In Fig. 5.5, we directly compare the ratio of FET and Fp which dictates the FRET 

efficiency enhancement as outlined in the previous section. We consider the case 

shown in the inset of Fig. 5.4-b, but with a nanoparticle with 40 nm radius. Note 

that in the quasi-static regime, a larger radius enhances all of the figures of merit 

since they are directly related to the polarizability of the nanoparticle. This can be 

seen from the dipole contribution of the nanoparticle which has a polarizability of α = 

R3 (�2−�1)4π�o . In Fig. 5.5-a, we find that there exists an optimum separation distance 
(�2+2�1) 

where FET /Fp ≈ 2.7 which occurs only for the case when the donor and acceptor have 

dipole moments oriented tangential to the spherical nanoparticle (co-tangential case). 

We therefore suggest the implementation of co-tangential dipoles as an important 

design principle for enhancing the FRET efficiency for future experiments. 

Finally, in Fig. 5.5-b we present an all-dielectric platform for enhancing the FRET 

efficiency. We consider a dielectric nanosphere with �2 = 6.25 and 40 nm radius. 

Here, the ratio is shown to be as large as FET /Fp ≈ 2.45. We note that the overall 

enhancement of the efficiency is mainly due to the suppression of the Purcell factor 

Fp ≈ 0.48 and a moderate enhancement in the FRET rate FET ≈ 1.2. We emphasize 

that while the FRET rate can be drastically enhanced near resonances with large 

quality factors, the Purcell factor will be simultaneously enhanced as well. As a result, 

enhancing the FRET efficiency will be difficult to achieve near resonances since most 

of the energy from the donor is funneled to the environment (nanoparticle) and not 

the acceptor. However as we have shown in Fig. 5.5, away from resonances we find 

that engineering the FRET efficiency can result from the modification of the quasi-

static fields. In essence, the nanosphere platform allows a simultaneous suppression 

of the Purcell factor while also enhancing the FRET rate close to the nanoparticle. 

Moreover, the material parameters become irrelevant away from resonance whereas 

the orientation and the geometrical parameters play a much more important role. 
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Fig. 5.5. FRET efficiency.(a) FRET efficiency enhancement occurs 
when FET /Fp > 1. We show that this ratio can be optimized for 
particular distances away from the nanoparticle. Results are shown 
for same set-up as Fig. 5.4-b but with a R = 40 nm nanoparti-
cle. (b) Counter-intuitive to prevalent designs, here we provide an 
all-dielectric design to engineer FRET efficiency using a transparent 
nanosphere (�2 = 6.25 > 0) and 40 nm radius. The efficiency en-
hancement in FRET implies a larger fraction of the donor energy is 
transferred to the acceptor in presence of the nanosphere. This ef-
fect arises from suppression of the Purcell factor which is necessary 
to avoid energy transfer to the environment. 

5.7 Comparison to experiments 

To provide a conclusive settlement to the debate surrounding FRET, we use our 

theory to explain recent experiments which have found that FRET intriguingly is not 
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Fig. 5.6. Comparison to experiments. (a) Theoretical compari-
son to experiment in ref. [115]. The system configuration is shown in 
the inset. The FRET figure of merit is theoretically calculated to be 
FET ≈ 1 for a wide range of separation distances d from the mirror, in 
agreement with the experiment (plotted at the donor’s peak emission 
wavelength of 525 nm). Theoretical Purcell factor Fp shows excellent 
agreement with experimental results (lower inset). However, using 
our theoretical model, we predict a drastic change in the FRET FOM 
near the Ag SPP resonance in the limit d → 0 (top inset). This shows 
that FRET rate can be modified for the same experiment if the regime 
is modified. (b) Theoretical comparison to experiment in ref. [116]. 
The donor-acceptor pair is embedded inside a nanocrystal (4 nm di-
ameter) with assumed refractive index n = 1.7 (LaP O4). By varying 
the refractive index of the surrounding medium, we find that FET ≈ 1 
in agreement with our analysis. Note that we also predict the linear 
dependence of the Purcell factor as measured in the experiment (in-
set). (c) However, we predict that a silver-coated nanocrystal would 
produce a drastic change in the FRET FOM as well as the Purcell 
factor. This result would require the donor-acceptor overlap spectrum 
to lie around the 400 nm wavelength range. Note that the above re-
sults clearly show that FRET can be engineered by the environment 
even though it is extremely difficult in comparison to modifying spon-
taneous emission. The dyadic Green function formalism and results 
from QED theory were used to calculate all results and parameters 
were obtained from the experiments. 

affected by the environment. Our goal is to show that this is not universal behavior. 

Our theory explains the experimental results while simultaneously pointing to regimes 

in the same experiment where FRET rate enhancement or suppression can occur. We 

have carefully isolated the experimental parameters of interest from the relevant works 

for theoretical consideration below. 
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We first turn to the planar multilayer system considered in [115] which showed a 

null result of the environment on FRET. Our theory shows that this result is specific 

to the experimental parameters considered. The multilayer structure is shown in the 

inset of Fig. 5.6 consisting of a half cavity system. The donor-acceptor pairs are 

separated by a distance d from a Ag mirror. In the experiment, the distance from the 

mirror is varied in order to study the environmental influence on FRET. By using a 

transfer matrix method as well as the GF formalism, we calculated the FRET figure 

of merit for the exact configuration in the experiment. Here, we show that our results 

capture the Purcell factor variation and match exactly with the observed null effect 

in the FRET rate. There are two reasons contributing to the no-effect result: (i) the 

separation distance between the donor-acceptor pair and the mirror is far too large 

to influence the quasi-static fields, and (ii) the surface plasmon resonance lies near 

the UV region which is outside the spectral overlap region of the donor-acceptor pair. 

We show that if the same experiment is repeated with donor-acceptor spectra in the 

UV region, the SPP resonance would surely have an effect on FRET. This plasmonic 

resonance could be tailored with surface layers or metamaterials to overlap with the 

relevant spectrum of FRET. 

We also conclusively explain a more recent experiment [116] consisting of a donor-

acceptor pair inside a LaP O4 nanocrystal with 4 nm diameter (see inset Fig. 5.6-c 

which again showed the null result of the environment on the FRET rate. A change in 

the environment was achieved by dispersing the nanocrystals in solvents with different 

refractive indices. The range of the refractive index change in the experiment is 

highlighted in the blue region. Our theory predicts that for the exact range of solvent 

refractive indices considered in the experiment, FRET is unchanged in agreement 

with experiment. We note that our calculations for the SE rate enhancement also 

show the same linear dependence that was observed in the experiment (see Fig. 5.6-b 

inset) reinforcing our results. However, closer inspection reveals that changing the 

refractive indices beyond this range should have a clear effect on FRET. In Fig. 

5.6-c, we propose a new experimental set-up where the nanocrystal has a 10 nm 
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silver coating. We have calculated the results for a 400 nm operating wavelength to 

elucidate the role of the resonances. It is striking that a subtle change in the exact 

same environment leads to a large variation in the FRET enhancement factor across 

the identical solvent index range that was probed in the experiment. 

We now consider the FRET-nanoparticle experiment of [103] which consisted of 

a donor-acceptor pair with a fixed separation distance of 9.2 nm placed at a fixed 

position away from a silver nanoparticle with 10 nm radius. Our results help to iden-

tify the dipole moment orientation dependence of the observations and also point to 

mechanisms beyond conventional weak-coupling QED FRET theory. Based on the 

single-exponential lifetime fits from the experiment, the authors measured a donor 

lifetime enhancement of γD/γo = 2.35, a FRET rate enhancement of ΓDA/Γ
o = 29.4D DA 

and an overall FRET efficiency enhancement of Feff = 5.3. The donor molecule had 

a peak emission wavelength at 662 nm. The trends of the theoretical figures of merit 

will be very similar to those in Fig. 5.4-b. For our simulation, we assumed that the 

donor and acceptor were both 4.5 nm away from the nanoparticle. We provide the 

overall results in the following table for various orientations. In the table, FET and Fp 

FET Fp QD Feff 

co-tangential 

co-radial 

random 

1.58 

0.39 

0.72 

3.8 

13.9 

7.2 

0.48 

0.11 

0.22 

1.13 

0.15 

0.41 

were calculated independently based on the parameters mentioned above. The intrin-

sic quantum yield QD is used as a fitting parameter to reproduce the experimental 

decay rate enhancement γD/γD
o = 2.35. The theoretical FRET efficiency enhance-

ment factor can be obtained using (5.17) with an initial FRET efficiency of ηo = 0.12, 

given in [103]. As we can see from the table, the co-tangential FRET case is the 

only one able to reproduce the FRET efficiency enhancement seen in the experiment. 

Since the radial and random cases are in extreme disagreement with the experimen-

tal results, this might suggest that the measured lifetime values consisted primarily 
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of the co-tangential dipole contribution. Such preferred orientations can arise from 

steric effects of ligands that attach the donor and acceptor to the nanoparticle. We 

must emphasize that the low quantum yield of the donor is an important factor in 

the observed FRET efficiency enhancement – in agreement with our previous argu-

ments. Moreover, while the co-tangential case provides qualitative agreement with 

the experiment, the theoretical values of FET = 1.58 and Feff = 1.13 vastly under-

estimate the experimental values of ΓDA/Γ
o = 29.4 and Feff = 5.3 reported in theDA 

experiment. Since our current theory provides the upper bound for a weak-coupling 

model, these experimental results are suggestive of more exotic physical phenomena 

that would influence the overall energy transfer rate. The possibilities include surface 

roughness-induced plasmonic hot-spots that increase the two-point Green function, 

non-adiabatic effects, or coherent-like effects in energy transfer [142]. 

At this point, it is important to consider some of the approximations that were 

made in the QED derivation of the FRET rate. The two primary approximations 

consists of: (1) weak-coupling and Markovian approximation, and (2) the dipole 

approximation. Since going beyond these approximations is beyond the scope of the 

current work, it would be interesting to see in the future how the transition to the 

strong coupling regime affects FRET in inhomogeneous environments, as well as how 

finite-size emitters affects FRET. The bounds we have established for the FRET 

efficiency in the weak-coupling regime will be important to identify new pathways of 

energy transfer such as quantum coherence in photosynthesis [142]. 

5.8 Chapter Summary 

In conclusion, we have shown that the environment modifies dipole-dipole inter-

actions and FRET which can be captured by an effective near-field dipole model. We 

have clearly isolated the regimes which show enhancement, suppression and no effect 

on the FRET rate settling the long-standing debate surrounding FRET. Finally, we 

also conclusively explained several recent experiments that examined the role of the 
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environment of FRET. Engineering FRET is fundamental to multitude of applica-

tions from energy harvesting to molecular sensing and our theory provides intuitive 

insight unavailable up until now. 
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Chapter appendix 

Orientational Averaging Here, we provide the generalized coordinate-free trace 

formulas for orientational averaging. The relevant quantity for the local density of 

states is given by 

1 · G(rD, rD) · nDi = Tr[G(rD, rD)]. (5.21)hnD D 3 

Similarly, one can show that the relevant quantity for FRET is given by: 

1 h|nA · G(rA, rD) · nD|2iD,A = Tr[G†(rA, rD)G(rA, rD)] (5.22) 
9 

where h iD,A denotes orientational averaging over donor and acceptor orientations, 

and † denotes the hermitian conjugate. 

Spherical nanoparticle System We provide details of the calculation for a spher-

ical nanoparticle system. The formulation of the scattered dyadic Green function in 

spherically multilayered media was originally cast in [141]. For self-consistency, we 

provide the results here in terms of a single summation rather than the double sum-

mation originally shown in [141]. The simplification is achieved through the use of 

Legendre addition rules. Xik1 h1ah1d
Grr = n(n + 1)(2n + 1) Pn(cos θ)Rp

f (5.23)
4π ρ1aρ1d n=1 Xik1 h0h1a 1dGrθ = (2n + 1) Pn 

0 (cos θ) sin θ Rp
f (5.24)

4π ρ1aρ1d n=1 X h0ik1 1ah1dGθr = (2n + 1) Pn 
0 (cos θ) sin θ Rp

f (5.25)
4π ρ1aρ1d n=1 �Xik1 h1ah1d

Gθθ = (2n + 1) Pn 
0 (cos θ) Rs

f + 
4π n(n + 1) 

n=1� � � 
h0 h0 P 0 (cos θ) cos θ1a 1d nPn(cos θ) − Rf (5.26)
ρ1aρ1d n(n + 1) p 
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�X h0 h0 P 0ik1 (cos θ)1a 1d n RfGφφ = (2n + 1) p + 
4π ρ1aρ1d n(n + 1) 

n�=1 � � 
P 0 (cos θ) cos θ 

h1ah1d Pn(cos θ) − n Rf (5.27) 
n(n + 1) s 

√ 
where θ = θD − θA, ρkl = kkrl, kk = �kω/c, and Gij = eiA G(rA, rD)ejD . Note 

(1)(1) d[ρklhn (ρkl)]that we have used the simplified notation hkl = hn (ρkl) and h0 kl = where
dρkl 

(1)
hn (ρ) is the spherical hankel function of the first kind. The indices i, j correspond 

the spherical coordinates r, θ, φ; the index k = 1, 2 corresponds to outer medium and 

inner medium with respect to sphere; and the index l = d, a correspond to donor and 

acceptor respectively. Rp
f and Rf

s denote the centrifugal reflection coefficients for TM 

and TE polarized light as outlined in [141]. 

In the quasistatic regime, one can approximate these results to get an expression 

for the FRET FOM in terms of a dipole-driven multipolar source. For radial dipoles, 

the FRET figure of merit takes the form: 

2 
3 Xr (n + 1)2α̃nPn(cos θA)

FET = 1 + . (5.28)n+2 n+2κ rA rDn=1 

where α̃n is the renormalized polarizability for the nth mode of the nanoparticle � �−1
αn(n + 1)k1

2n+1 

α̃n = αn 1 − i (5.29) 
n(2n − 1)!!(2n + 1)!! 

and 
n(�2 − �1) 

R(2n+1)αn = . (5.30)
n�2 + (n + 1)�1 

√ p
The resonant frequency of the nth mode is ωn = nωp/ n�∞ + (n + 1)�1. Similar 

expressions can be derived for other dipole orientations. 
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6. FUNDAMENTAL EFFICIENCY BOUND FOR 

COHERENT ENERGY TRANSFER IN 

NANOPHOTONICS 

In this Chapter, we ask the question of whether quantum coherence and entanglement 

can enhance energy transfer efficiency in a nanophotonic environment. To obtain 

a formal answer, we derive a unified quantum theory of coherent and incoherent 

energy transfer between two atoms (donor and acceptor) valid in arbitrary Markovian 

nanophotonic environments. Our theory predicts a fundamental bound ηmax = γa 

γd+γa 

for energy transfer efficiency arising from the spontaneous emission rates γd and γa of 

the donor and acceptor. We propose the control of the acceptor spontaneous emission 

rate as a new design principle for enhancing energy transfer efficiency. We predict 

an experiment using mirrors to enhance the efficiency bound by exploiting the dipole 

orientations of the donor and acceptor. Of fundamental interest, we show that while 

quantum coherence implies the ultimate efficiency bound has been reached, reaching 

the ultimate efficiency does not require quantum coherence. Our work paves the 

way towards nanophotonic analogues of efficiency enhancing environments known in 

quantum biological systems. 

6.1 Motivation: energy transfer in photosynthesis 

Energy transfer is typically distinguished as incoherent Förster-type resonance 

energy transfer (FRET), or coherent excitation energy transfer. The two regimes 

occur in the limits, Jdd/γtot � 1 and Jdd/γtot � 1, involving the ratio of the elec-

tronic dipole-dipole coupling Jdd to the total linewidth γtot of each molecule. The 

total linewidth is a measure of the coupling strength to the bath’s spin, vibrational 

or electrodynamic degrees of freedom. In photosynthetic systems, the system-bath 
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coupling is primarily dominated by vibrations. The complex nature of photosynthetic 

systems results in electronic and vibrational coupling strengths varying greatly be-

tween the incoherent and coherent coupling limits. Understanding the role of the 

environment from the weak-to-intermediate-to-strong coupling regimes has been an 

important topic of interest required to explain experimental observations [143]. In 

this regard, there has been tremendous progress in the development of a wide vari-

ety of open quantum system frameworks (modified-Redfield, Hierarchical equations 

of motion, Polaron-modified master equation) [144–150] that operate under a wide 

range of coupling strengths. While a complete understanding of photosynthetic energy 

transfer has not been achieved [151], there has been a lot of progress outlining how 

the environment can positively influence energy transfer efficiency [144–150,152–156]. 

Understanding the fundamental role of quantum coherence remains an open problem 

in photosynthesis, and it is still not clear whether it does play a role [157, 158]. It is 

possible that other guiding principles give rise to near-unity efficiencies in photosyn-

thesis. 

Precise control of resonance energy transfer has also emerged as a fundamental 

topic of interest in the nanophotonic community. There has been a multitude of the-

oretical [57, 123, 132, 134, 159] and experimental [99, 103, 104, 109, 113, 115, 116] work 

proposing and demonstrating nanophotonic control of energy transfer with plasmonic, 

optical waveguide, and cavity-based systems. Unlike work in the photosynthetic com-

munity, most nanophotonic theories of energy transfer have relied on classical electro-

dynamic descriptions or perturbative approaches based on Fermi’s golden rule. While 

some authors have provided rigorous quantum electrodynamic formulations, the fi-

nal analytical expressions are typically valid in either the weak or strong coupling 

regimes [42, 86, 127]. Moreover, a proper definition of the energy transfer efficiency 

has been lacking in nanophotonics where most results use Förster’s perturbative ex-

pression. 

In this Chapter together with Appendix B, we combine ideas from both com-

munities to develop an exactly solvable theory for resonance energy transfer from 
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first-principles. We derive a quantum master equation providing a unified picture of 

energy transfer dynamics in the coherent and incoherent coupling regimes applicable 

in arbitrary Markovian nanophotonic environments. We then solve the model exactly 

to derive a simple analytical expression for the energy transfer efficiency. Our re-

sult provides insight into the role of finely-tuned coupling strengths, dephasing rates, 

and detuning between the donor and acceptor required to achieve near-unity energy 

transfer efficiencies. The central result of this Chapter is the ultimate efficiency of 

γa
ηmax = . (6.1)

γd + γa 

This provides a fundamental limit to the energy transfer efficiency between two atoms 

regardless of coupling strength, quantum coherence and spectral overlap. It also 

implies the condition γa � γd is required to achieve near-unity efficiency with the 

corollary that two identical atoms will have a maximum efficiency of 50%. To the 

best of our knowledge, this surprisingly simple and intuitive result has not been 

discussed nor derived in the resonance energy transfer literature. We emphasize this 

fundamental bound will also apply to quantum transport in the two-chromophore 

system relevant to many biological systems. 

Interestingly, this bound suggests the acceptor spontaneous emission rate can be 

used as a new degree of freedom to control energy transfer. To illustrate the interplay 

of these effects, we predict an experiment to control the efficiency between two atoms 

above a mirror. We also show that while quantum coherence implies the ultimate 

efficiency bound has been reached, reaching the ultimate efficiency does not require 

quantum coherence. Ultimately, these results will enable the design of nanophotonic 

systems which can mimic quantum biological environments to enhance energy transfer 

efficiency. 
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6.2 Perturbative energy transfer efficiency 

The efficiency of energy transfer is conventionally defined as the ratio of the energy 

transfer rate Γda to the total dissipation rate of the donor, 

Γda
ηet = . 

Γda + γd 

In free-space, the spontaneous emission rate of the donor is γd = d2 
dω
3/(3π~�oc3). The 

energy transfer rate is Γda = 2π |Vdd|2Jda where Jda is the spectral overlap integral of ~2 

the donor emission and acceptor absorption. The resonant dipole-dipole interaction 

(RDDI), Vdd = ~(−Jdd+iγdd/2) = 
�
ω 
oc 

2 
da ·G(ra, rd, ω)·dd, defines the magnitude of the 2 

dipole-dipole coupling. The results are written in terms of the dyadic Green function 

G(ra, rd, ω) containing both near-field Coulombic and far-field radiative contributions. 

These definitions of the spontaneous emission and energy transfer rates are based on 

Fermi’s Golden rule valid in the incoherent limit. From these relations, we observe 

that increasing dipole-dipole coupling (|Vdd| → ∞) results in a near-unity energy 

transfer efficiency, and therefore no fundamental bound exists. 

6.3 Non-perturbative energy transfer efficiency 

In this Chapter, we follow the extensive work of photosynthetic excitation energy 

transfer [160, 161] and use the following definition for the energy transfer efficiency, Z ∞ 

ηet = γa ρaa(t)dt, (6.2) 
0 

valid for non-stationary processes such as when the donor is initially in its excited 

state. This result is general enough to work in the weak and strong coupling regimes 

between two atoms. Here, the energy transfer efficiency is proportional to the time-

integrated luminescence originating from the acceptor. ρaa(t) is the time-dependent 

density matrix population of the acceptor in the excited-state. For many applications, 

this is a much more useful and intuitive definition for the energy transfer efficiency. 

In Appendix B, we derive the RDDI master equation for two non-identical atoms 

of the form, 
∂t 
∂ ρ = i[ρ, Hcoh] + L[ρ], from first principles. The first term involves the 
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Fig. 6.1. (a) A donor initially in its excited-state will either transfer 
energy to an acceptor, or spontaneously emit light with rate γd. Once 
the energy is transferred to the acceptor, the energy can either return 
to the donor or escape into vacuum with rate γa. The energy transfer 
efficiency is defined as the total probability of an acceptor emitting the 
initial excitation as opposed to the donor. (b) Using this metric, we 
find the energy transfer efficiency will have a fundamental bound as 
the separation distance between two atoms decreases (orange curve), 
in stark contrast to the conventional definition for the FRET efficiency 
(black curve). (c) The result can also be understood in terms of the 
renormalized transfer rate Γ̃ 

da (orange curve) having a fundamental 
bound as compared to the energy transfer rate Γda. We take γa = 2γd 

giving an ultimate efficiency of ηmax = 2/3. 



88 

coherent dynamics due to dipole-dipole coupling Jdd. The second term is a Lindblad 

superoperator describing the incoherent dynamics due to spontaneous emission and 

pure dephasing of the donor and acceptor respectively. For rest of the Chapter, we 

will ignore non-local cooperative decay γdd typically associated with superradiant 

and subradiant effects. We will explore these effects in a future paper. Our results 

are general enough to work in any Markovian bath with a correlation time τc that 

is much smaller than the relaxation times of the atoms, τc 
−1 � γd, γa, Γda. This 

extends the range of applicability of this approach beyond the vacuum case, allowing 

the consideration of more complicated nanophotonic environments. Using the RDDI 

master equation, a central result of this Chapter is the exact analytical expression of 

the energy transfer efficiency valid in the coherent and incoherent coupling regimes, 

Γ̃da
ηet = (6.3)

Γ̃da + γd 

where we define the renormalized energy transfer rate, 

γaΓda
Γ̃da = . (6.4)

γa + Γda 

Surprisingly, we recover the same functional form of Förster’s perturbative energy 

transfer rate, Γda = 2π |Vdd|2Jda, however, the master equation approach allows for an ~2 

exact solution of the spectral overlap integral, 

(γd + γφ,d + γa + γφ,a)/(2π)Jda = . (6.5)
(ω̃d − ω̃a)2 + (γd + γφ,d + γa + γφ,a)2/4 

The overlap integral Jda is equal to the integral of two Lorentzians with resonant 

frequencies ω̃d = ωd + δωd, ω̃a = ωa + δωa and linewidths γd + γφ,d, γa + γφ,a re-

spectively. Here, we introduce γφ,i as the phenomenological dephasing rate for each 

atom accounting for fluctuations in the transition frequency. The dephasing rate con-

tributes to an observable linewidth broadening dominant in ambient temperatures 

where γφ,i � γi. 

While the functional form for the energy transfer rate Γda is similar to conven-

tional FRET theory, this approach goes beyond the perturbative result by taking 
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Fig. 6.2. Energy transfer efficiency as function of (a) dephasing rate 
γφ and (b) atom-atom detuning Δ = ω̃d − ω̃a. Note the energy trans-
fer efficiency always remains below the fundamental bound regardless 
of coupling strengths, spontaneous emission, dephasing or detuning. 
This bound may be reached asymptotically for the case of two atoms 
with zero detuning in the limit of small dephasing (green curve left). 
Black arrow denotes (a) increased detuning and (b) increased dephas-
ing. 

into account the modification of the resonant frequency and linewidth of each atom, 

ω2 2ω2 
δωi = − ~�oc2 di · Re G(ri, ri, ω) · di and γi = ~�oc2 di · Im G(ri, ri, ω) · di, resulting 

in modified non-perturbative emission and absorption spectra for the donor and ac-

ceptor respectively. In general, the dyadic Green function consists of vacuum and 

scattered contributions, reinforcing the applicability of this approach to more com-

plicated nanophotonic environments. 

6.4 Ultimate energy transfer efficiency 

The renormalized energy transfer rate (6.4) arises from the exact non-stationary 

solution for two non-identical atoms. The perturbative expression for the FRET 

efficiency can be recovered when Γda � γa. This condition suggests Förster’s result is 

only valid when the acceptor has a fast enough dissipation rate to ensure irreversible 
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energy transfer. In realistic systems, the finite dissipation rate of the acceptor will 

result in a bottleneck effect. Energy cannot be transferred efficiently at a rate faster 

than the dissipation rate of the acceptor. In the limit of large dipole-dipole coupling, 

|Vdd| → ∞, the renormalized transfer rate is bounded, Γ̃ 
da → γa. The ultimate bound 

(6.1) for the energy transfer efficiency immediately follows. 

The results for the non-perturbative efficiency ηet and the renormalized transfer 

¯ rate Γda are shown in Fig. 6.1 for two atoms in vacuum as a function of separation 

distance. The renormalized transfer rate Γ̄ 
da has a r−6 inverse power law dependence 

until it reaches the bottleneck limit of γa, at which point the energy transfer efficiency 

reaches the fundamental bound. For comparison, we plot the energy transfer efficiency 

as would be predicted through Förster’s expression (black line). 

In Fig. 6.2, we provide numerical evidence of the robustness of this bound to atom-

atom detuning Δ = ω̃d − ω̃a as well as dephasing. It is shown that the fundamental 

efficiency bound can be approached in the limit of zero detuning, Δ → 0. For large 

detuning, the energy transfer rate will decrease due poor spectral overlap in the 

absence of dephasing. As dephasing is increased (see Fig. 6.2-a) the energy transfer 

efficiency reaches a maximum when the following condition is satisfied 

(ω̃d − ω̃a)
2 = (γd + γa + 2γφ)

2/4. (6.6) 

Here, we have assumed equal dephasing for both atoms, γφ = γφ,d = γφ,a. Condition 

(5) corresponds to the optimal emission-absorption spectral overlap. The use of de-

phasing to enhance efficiency is often referred to as environment assisted quantum 

transport (ENAQT). 

6.5 Role of quantum coherence and entanglement 

In general, quantum coherence occurs in the strong coupling regime, |Vdd| � 

γd, γa, γφ. The strong coupling condition coincides with the condition, |Vdd| → ∞, 

required to achieve the fundamental bound therefore any system with strong coupling 

and quantum coherence will operate at an efficiency equal to the fundamental bound 
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(1). However, we emphasize the opposite is not true: operating near the fundamental 

bound does not imply the system has quantum coherence. To demonstrate this effect, 

we show the population dynamics and efficiency of two distinct systems. We use 
√ √ √ √ 

Wootter’s concurrence [162], C = max[0, λ1 − λ2 − λ3 − λ4], to measure 

quantum entanglement. Here, λi are the eigenvalues of the operator ρ(σy ⊗σy)ρ∗(σy ⊗ 

σy) in descending order. A concurrence of 1 implies maximally entangled states while 

a concurrence of zero implies separable states with zero entanglement. Interestingly, 

for the non-stationary energy transfer problem the concurrence is exactly equal to the 

off-diagonal coherence, C = 2|ρad|, therefore it serves as a measure of both coherence 

and entanglement. In fig 3-a, the system consists of a perfectly tuned donor-acceptor 

pair, Δ = 0, with zero dephasing. This system achieves the ultimate efficiency of 

ηmax = 2/3. The time-dependent concurrence (bottom plot) clearly shows quantum 

coherence is present in this system. In Fig. 6.3-b, we have two detuned atoms 

Δ/(2π) = 10 THz with large dephasing γφ/(2π) = 4 THz close to the necessary 

condition (5) for optimal spectral overlap. Interestingly, the second system exhibits 

irreversible energy transfer with negligible concurrence and therefore lacks quantum 

coherence but nevertheless reaches an efficiency that lies within 1 percent of the 

fundamental bound. The clear advantage of quantum coherence is that it reaches 

ηmax for longer distances, r = 45 nm, while the detuned system requires a separation 

distance of r = 4.5 nm. 

6.6 Nanophotonic control of fundamental efficiency bound 

The fundamental bound (1) suggests a new design strategy for increasing the 

energy transfer efficiency based on control of donor and acceptor spontaneous emission 

rates. In figure 4, we present a canonical example illustrating how a nanophotonic 

environment can positively influence the energy transfer efficiency between two atoms 

using a non-resonant mirror eliminating the need for high-Q cavities. The basic 

idea is to use an orientation-dependent Purcell effect close to the mirror, understood 
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Fig. 6.3. Population dynamics of donor (blue) and acceptor (orange) 
as well as concurrence (bottom) used as a measure of quantum co-
herence. (a) Quantum coherent energy transfer between two atoms 
(r = 45 nm) operating at the ultimate efficiency ηmax = 2/3. (b) 
Irreversible energy transfer between two atoms (r = 4.5 nm) oper-
ating within 1 percent of the ultimate efficiency exhibiting negligible 
quantum coherence. 

through an image dipole model (inset). A parallel dipole close to a mirror will form an 

image dipole with the opposite orientation suppressing spontaneous emission, while 

a perpendicular dipole close to a mirror will form a collinear image dipole enhancing 

spontaneous emission. This suggests an ideal configuration where the donor is parallel 

and acceptor is perpendicular to the mirror surface (orange curve). The mirror-

enhanced efficiency bound is reached at approximately 10 nm from the mirror. Note 

that this configuration is typically forbidden in free-space, but becomes possible due 

to image dipole formation. 
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Fig. 6.4. Nanophotonic control of energy transfer between two atoms 
above a silver mirror. Here, we provide an example of how the envi-
ronment can positively or negatively influence the energy transfer ef-
ficiency based primarily on the transition dipole moment orientation. 
We consider two atoms with spontaneous emission rates γa = 2γd 

corresponding to a vacuum bound of ηmax = 2/3. To overcome the 
vacuum bound, we propose using the orientation dipole moments of 
each atom relative to the mirror to control spontaneous emission rates. 
The ideal configuration corresponds to a donor parallel to a mirror 
and an acceptor perpendicular to a mirror, as it achieves the condi-
tion γa � γd around 10 nm from the mirror. In this scenario, the 
environment modifies the fundamental bound of the energy transfer 
efficiency resulting in an overall enhancement. The opposite config-
uration (blue) will decrease the fundamental bound suppressing the 
overall energy transfer efficiency. Results are calculated with the full 
dyadic Green function for two atoms r = 10 nm apart. 
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6.7 Chapter Summary. 

To conclude, we have derived a fundamental efficiency bound for resonance en-

ergy transfer between two atoms in the limit of large dipole-dipole coupling and in 

the absence of cooperative decay. We use the bound to derive design principles for 

controlling resonance energy transfer in nanophotonics and present an exactly solv-

able canonical example to illustrate the interplay of these effects. Our results will 

be critical in understanding the role of the environment in resonance energy transfer 

using nanophotonic and metamaterial approaches [45]. Future work will focus on 

developing a rigorous non-Markovian theory of energy transfer expanding the range 

of applicability to a wider range of electrodynamic engineered-reservoirs. 
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7. CONCLUSIONS AND OUTLOOK 

For hyperbolic media, we have developed a foundation towards the study of hyperbolic 

many-body physics. Our work presents a unified framework to deriving a wide-

range of seemingly disparate multi-atom processes for both ground-state and excited-

state atoms. This approach avoids ad-hoc assumptions typically made through semi-

classical treatments while also providing a clear identification of quantum-enhanced 

processes. Future work focusing on many-body physical phenomena in hyperbolic 

media will likely result in exciting discoveries with unique properties unlike those 

observed in cavity or waveguide QED. 

An interesting idea to pursue, from the author’s perspective, regards the study 

of light-induced self-organization in hyperbolic media. As we outlined in Chapter 3, 

the Super-Coulombic effect is only manifested in excited-state atoms. This implies 

this class of phenomena is only observable for atoms that are directly driven by light. 

Our theory predicts light-driven, freely-moving dopants/defects inside a hyperbolic 

medium would tend reorganize themselves in order to minimize their free energy. The 

self-organized structure should have long-range dipole-dipole correlations with poten-

tial superradiant emission properties when arranged along the hyperbolic resonance 

angle. 

Regarding the second part of this thesis, the work requires further developments 

in both theory and experimental fronts. Theoretically, the definition for the energy 

transfer efficiency needs to be expanded to take into account the excitation of the 

donor. Furthermore, a careful comparison between theory and experiment should 

test the wide-ranging definitions of efficiency that exist within the literature. From 

an experimental perspective, it remains challenging to control the individual positions 

of atoms and molecules. Recent developments based on DNA scaffolding and STM-

based positioning systems could potentially overcome these limitations. Finally, we 
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must emphasize that the quantum design principles we have proposed are basic rules 

of thumb which will require further refinement for an application-based photovoltaic 

design. Further work should focus on applying these principles for the design of the 

designer molecules for organic-based solar cells. 
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[86] H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the 
presence of dispersing and absorbing media,” Physical Review A, vol. 65, no. 4, 
p. 043813, 2002. 

[87] S. Bidault, A. Devilez, P. Ghenuche, B. Stout, N. Bonod, and J. Wenger, “Com-
petition between forster resonance energy transfer and donor photodynamics in 
plasmonic dimer nanoantennas,” ACS photonics, vol. 3, no. 5, pp. 895–903, 
2016. 

[88] C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, 
and W. L. Vos, “Nanophotonic control of the förster resonance energy transfer 
efficiency,” Physical review letters, vol. 109, no. 20, p. 203601, 2012. 

[89] R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence 
and energy transfer near interfaces,” Advances in Chemi-
cal Physics, vol. 37, pp. 1–65, 1978. [Online]. Available: 
http://onlinelibrary.wiley.com/doi/10.1002/9780470142561.ch1/summary 

[90] G. Ford and W. Weber, “Electromagnetic interactions of molecules with 
metal surfaces,” Physics Reports, vol. 113, no. 4, pp. 195–287, 1984. [Online]. 
Available: http://totuvach.free.fr/Articles/fordweber.pdf 

[91] L. Klushin and O. Tcherkasskaya, “Effects of molecular distribution on the 
fluorescence transfer: Exact results for slab geometry,” The Journal of chemical 
physics, vol. 119, no. 6, pp. 3421–3428, 2003. 

[92] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. New York: 
Springer, 2004. 

[93] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and 
D. Hommel, “Superradiance of quantum dots,” Nature Physics, vol. 3, no. 2, 
pp. 106–110, 2007. 

[94] C. Van Ditzhuijzen, A. Koenderink, J. Hernández, F. Robicheaux, L. Noordam, 
and H. v. L. Van Den Heuvell, “Spatially resolved observation of dipole-dipole 
interaction between rydberg atoms,” Physical Review Letters, vol. 100, no. 24, 
p. 243201, 2008. 
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A. APPENDIX: DYADIC GREEN FUNCTION 

ABOVE A UNIAXIAL MEDIUM 

In this appendix, we derive the scattering coefficients and dyadic Green functions 

required for the problem of two atoms interacting atoms above a uniaxial half-space. 

We consider both homogeneous and scattering contributions, providing simplified 

results in all cases. 

A.1 Scattering coefficients of a general uniaxial half-space 

In this section, we will develop a formalism that determines the reflection and 

transmission coefficients between an isotropic medium and a general uniaxial medium 

with arbitrary optic axis c. The incident, reflected and transmitted electric field 

vectors will then take the form 

Ei = (A1s + A2p±) (A.1) 

Er = (B1s + B2p ) (A.2) 

Et = (C1eo + C2ee) (A.3) 

where s = k × n is vector that lies perpendicular to the plane of incidence, and 

p± = k± × s lies perpendicular to k and s. Inside the uniaxial medium, general wave 

propagation is decomposed in terms of an ordinary wavevector eo and extraordinary 

wavevector contribution ee. Using k×Ek = ωµoHk, the magnetic field intensity takes 

the form 

Hi = k1(A1p± − A2s) (A.4) 

Hr = k1(B1p  − B2s) (A.5) 

Ht = (C1(kto × eo) + C2(kte × ee)) (A.6) 



111 

Applying these equations to the boundary conditions, we get 

[A1s + A2p± + B1s + B2p  − C1eo − C2ee] × n = 0 (A.7) 

[A1k1p± − A2k1s + B1k1p  − B2k1s − C1(kto × eo) − C2(kte × ee)] × n = 0 (A.8) 

which are vector equations. To convert to a scalar equation, we must take the dot 

product with some arbitrary vector m. What is the correct choice of m? In the kDB 

basis, there are only three independent choices: k, s, and p. If we apply all three, 

we see that only k and s give non-zero solutions. We thus obtain the set of four 

independent equations: 

k · [A1s + A2p+ + B1s + B2p− − C1eo − C2ee] × n = 0 

(A.9) 

s · [A1s + A2p+ + B1s + B2p− − C1eo − C2ee] × n = 0 

(A.10) 

k · [A1k1p+ − A2k1s + B1k1p− − B2k1s − C1(kto × eo) − C2(kte × ee)] × n = 0 

(A.11) 

s · [A1k1p+ − A2k1s + B1k1p− − B2k1s − C1(kto × eo) − C2(kte × ee)] × n = 0 

(A.12) 

A bit of simple vector manipulation yields 

[A1s + A2p± + B1s + B2p  − C1eo − C2ee] · s = 0 (A.13) 

[A1s + A2p± + B1s + B2p  − C1eo − C2ee] · kρ = 0 (A.14) 

[A1k1p± − A2k1s + B1k1p  − B2k1s − C1(kto × eo) − C2(kte × ee)] · s = 0 (A.15) 

[A1k1p± − A2k1s + B1k1p  − B2k1s − C1(kto × eo) − C2(kte × ee)] · kρ = 0 (A.16) 
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where kρ = n × s is a unit vector. Using the orthonormality relations s · p± = 0, 

s · kρ = 0, and s · s = 1, we get 

A1 + B1 − C1(eo · s) − C2(ee · s) = 0 (A.17) 

(eo · kρ) (ee · kρ)
A2 − B2 − C1 − C2 = 0 (A.18)

(p± · kρ) (p± · kρ) 
(kto × eo) · s (kte × ee) · s 

A2 + B2 + C1 + C2 = 0 (A.19)
k1 k1 

(kto × eo) · kρ (kte × ee) · kρ
A1 − B1 − C1 − C2 = 0 (A.20)

k1(p± · kρ) k1(p± · kρ) 

where we used p± · kρ = ±kz1/k1 . Further manipulation yields 

C1 C2
A1 = (eo · s)(kz1 + kzo) + (ee · s)(kz1 + kze) (A.21)

2kz1 2kz1 

C1 C2
B1 = (eo · s)(kz1 − kzo) + (ee · s)(kz1 − kze) (A.22)

2kz1 2kz1 

C1 C2
A2 = ± [k1

2(eo · kρ)   kz1(kto × eo) · s] ± [k1
2(ee · kρ)   kz1(kte × ee) · s]

2kz1k1 2kz1k1 

(A.23) 

C1 C2
B2 =   

2kz1k1 
[k1
2(eo · kρ) ± kz1(kto × eo) · s]   

2kz1k1 
[k1
2(ee · kρ) ± kz1(kte × ee) · s] 

(A.24) 

We can now write the results in matrix form as⎛ ⎞ ⎛ ⎞⎛ ⎞ 
b⎝A1 ⎝ 

a ⎝C1⎠ = ⎠ ⎠ (A.25) 
A2 ±c ±d C2 

which we can invert to get ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎝C1 ⎝t11 t12 ⎝A1⎠ = ⎠ ⎠ (A.26) 
C2 t21 t22 A2 

where 

2kz1 
[k2t11 = (kρ · ee )]1 )   kz1s · (kte × ee

Δ 
(A.27) 

2kz1k1 
t12 =   (s · ee)(kz1 + kze)

Δ 
(A.28) 

2kz1 
[k2t21 = − (kρ · eo )]1 )   kz1s · (kto × eo

Δ 
(A.29) 

2kz1k1 
t22 = ± (s · eo)(kz1 + kzo)

Δ 
(A.30) 
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where 

Δ = (s·eo)(kz1+kzo)[k12(kρ ·ee) kz1s·(kte×ee)]−(s·ee)(kz1+kze)[k12(kρ ·eo) kz1s·(kto×eo)] 

(A.31) 

Similarly, we have ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎝B1 ⎝ 
a0 b0 ⎝C1⎠ = ⎠ ⎠ 

B2  c0  d0 C2 ⎛ ⎞⎛ ⎞⎛ ⎞ ⎝ 
a0 b0 ⎝t11 t12 ⎝A1⎠ ⎠ ⎠= 

 d0 c0 t21 t22 A2 ⎛ ⎞⎛ ⎞ ⎝ 
a0t11 + b0t21 a0t12 + b0t22 ⎝A1⎠ ⎠= (A.32) 
 c0t11   d0t21  c0t12   d0t22 A2 

or ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎝B1 ⎝r11 r12 ⎝A1⎠ = ⎠ ⎠ (A.33) 
B2 r21 r22 A2 

where 

r11 = 
1
(s · eo)(kz1 − kzo)[k1

2(kρ · ee)   kz1s · (kte × ee)]
Δ 

− 
1
(s · ee)(kz1 − kze)[k1

2(kρ · eo)   kz1s · (kto × eo)] (A.34)
Δ 
2kz1k1 

r12 = ± (s · ee)(s · eo)(kzo − kze) (A.35)
Δ 

2kz1k1 
r21 = [s · (kte × ee)(kρ · eo) − s · (kto × eo)(kρ · ee)] (A.36)

Δ 

r22 = 
1
(s · ee)(kz1 + kze)[k1

2(kρ · eo) ± kz1s · (kto × eo)]
Δ 

− 
1
(s · eo)(kz1 + kzo)[k1

2(kρ · ee) ± kz1s · (kte × ee)] (A.37)
Δ 
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Specific Examples 

We will now use the formulas from the previous section. Here, we will specify the 

geometry of the optic axis and basis vectors. The results will be used to calculate the 

Green function of a dipole above a regular hyperbolic medium, as well as a hyperbolic 

meta-surface. 

A.1.1 Optic axis perpendicular to interface: Bulk Hyperbolic Medium 

Let c = z, so that the basis vectors are defined as ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

ky 

−kx 

⎟⎟⎟⎠ , p± = 
k1 
p 
1 

k2 + k2 
x y 

⎜⎜⎜⎝ 

±kxkz 

±kykz 

⎟⎟⎟⎠ , 
1 

(A.38)ps = 
k2 + k2 
x y 

0 −(kx 
2 + ky 

2) ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

ky 

−kx 

⎟⎟⎟⎠ 

⎜⎜⎜⎝ 

±kxkzp 

±kykzp 

⎟⎟⎟⎠ 
1 1±and e (A.39)eo = p p√= ek2 + k2 
x y k2 + k2 

x y�xko 

0 −(kx 
2 + ky 

2) �
� 
x

z 

We now calculate 

kze √ 
kρ ·eo = 0 , kρ ·ee = √ , s·(kte×ee) = − �xko , s·(kto×eo) = 0 , s·eo = 1 , s·ee = 0 

�xko 

(A.40) 

We therefore get 
ko

Δ = √ (kz1 + kzo)(�1kze + �xkz1) (A.41)
�x 

which leads to the transmission coefficients r 
2kz1 2�xkz1 �1 

t11 = , t12 = t21 = 0 , t22 = (A.42)
kz1 + kzo �xkz1 + kz

p�1 �x 

and the reflection coefficients 

kz1 − kzo �xkz1 − �1kze 
r11 = , r12 = r21 = 0 , r22 = (A.43)

kz1 + kzo �xkz1 + �1kze 
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A.1.2 Optic axis parallel to interface: application to hyperbolic Meta-

surface 

Let c = x and the normal n = z so that the basis vectors are defined as ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

ky 

−kx 

⎟⎟⎟⎠ , p± = 
k1 
p 
1 

k2 + k2 
x y 

⎜⎜⎜⎝ 

±kxkz 

±kykz 

⎟⎟⎟⎠ (A.44) 
1 

s1 = p
k2 + k2 
x y 

0 −(kx 
2 + ky 

2) 

We emphasize that the basis vectors in a uniaxial medium are defined with respect 

to the optic axis, such that ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

−(k2 + k2) �z 
ze y �x 

kykx 

⎜⎜⎜⎝ 

0 

±kzo 

⎟⎟⎟⎠ , ee± = √ 
�zko 

⎟⎟⎟⎠ 
1 1 

(A.45)eo = p p
k2 + k2 
zo y k2 + k2 

ze y 

p 

−ky ±kxkze 

We now calculate 

k2±kykzo −kx zo kρ , kρ (A.46)p p
k2 + k2 k2 + k2 
x y y zo 

p√· eo · ee = = 
k2 + k2 
ze y k2 + k2 

x y�zko 

p 
√ 

k2ky ± �zkokxkze o�z 
s · (kto × eo) = − , s · (kte × ee) = (A.47)p p p

k2 + k2 
zo y k2 + k2 

x y k2 + k2 
ze y k2 + k2 

x y 
√ − �z p 

ky 

k2 + k2 
x y 

ko kx 

k2 + k2 
x y 

p 
kzo 

k2 + k2 
y zo 

(A.48)p ps · eo , s · ee == 
k2 + k2 
ze y 

The denominator can then be written as 

k2 ko )(�1k
2 

xkzo (kz1 + kzo zo p 
k2k3 
y o (kz1 + kze)(�1kzo + �zkz1)+ �zkz1kze ) + �z 

Δ = ± p√ 
(k2 + k2�z x y k2 + k2 

zo y k2 + k2 
ze y) 

(A.49) 
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so that we get 

2kz1kxko �1k
2 + �zzo kz1kze 

t11 = − √ q (A.50)
�zΔ (k2 + k2)(k2 + ky 

2 
x y ze ) 

2kz1kyk
2 (kz1 + kze) 

√ 
�1�z 

t12 = ± o q (A.51)
Δ (k2 + k2)(k2 + k2)x y ze y 

k22kz1ky o �1kzo + �zkz1 
t21 =   q (A.52)

Δ (k2 + k2)(k2 + k2 )x y y zo 

2kz1kzok1kx kz1 + kzo 
t22 = − q (A.53)

Δ (k2 + k2 + k2)(k2 
zo x y y ) 

similarly we get the following reflection coefficients 

k2kokzo(kz1 − kzo)(�1k2 + �zkz1kze) + �zk2k3(kz1 − kze)(�1kzo + �zkz1)x zo y o 
r11 = ± q√ 

Δ(k2 + k2) (k2 + k2 )(k2 + k2 )�z x y y zo y ze 

(A.54) 
√ 

2kz1kzokxkyko 
2(kzo − kze) �1�z 

r12 = q = −r21 (A.55) 
Δ(k2 + k2) (k2 + k2 )(k2 + k2 )x y y zo y ze 

k2k3 kz1) + k2 )(�1k
2 )�z y o (kz1 + kze)(�1kzo − �z xkzoko(kz1 + kzo zo − �zkz1kze 

r22 =   q√ 
�zΔ(k2 + k2) (k2 + k2 )(k2 + k2 )x y y zo y ze 

(A.56) 

Homogeneous and scattered Green functions 

In the following, we provide explicit expressions for the bulk Green function as 

well as the scattered (reflected and transmitted) Green functions. The dyadic Green 

function approach can be used to calculate the electric and magnetic field profiles of 

a dipole, as well as the resonant dipole-dipole interaction, Casimir-Polder interaction, 

etc. in an arbitrary multilayered environments. In particular, we will demonstrate 

how to simplify the Green function to a single 1-d integral that can be readily calcu-

lated via numerical methods. This approach can easiliy be generalized for spatially 

dispersive materials. 
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Simplification of bulk DGF 

The non-singular part of the homogeneous dyadic Green function in an isotropic 

medium is given by ��Z
Z 

ikz zi kk eikρ·ρGo(r) = dkxdkye I − (A.57)
k2 
1 kz8π2 

ikz zi 
dkxdkye 

ikρ·ρ [p±p± + ss] 
e 

(A.58)= 
8π2 kz 

where ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

±kxkz 

±kykz 

⎟⎟⎟⎠ 

⎜⎜⎜⎝ 

ky 

−kx 

⎟⎟⎟⎠ 
1 1 

and p± = (A.59)s = p p
k2 + k2 
x y k2 + k2 

x yk1 

0 −(kx 
2 + ky 

2) 

where ± refers to directions above/below the dipole respectively. We can simplify the 

integral by converting to cylindrical coordinates, using 

kx = kρ cos φ , ky = kρ sin φ 

x = ρ cos θ , y = ρ sin θ. 

and Z ∞ Z ∞ Z 2π 
ikρ·ρ ikρρ cos(φ−θ)dkxdky e = dkρkρ dφ e . 

−∞ 0 0 

The dyadic terms are then explicitly written as ⎞⎛ 
sin2 φ − cos φ sin φ 0 

− cos φ sin φ cos2 φss = 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ (A.60)0 

0 0 0 

⎞⎛and 
kz 
2 cos2 φ kz 

2 cos φ sin φ  kρkz cos φ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1 

p±p± = 
k2 
1 

kz 
2 cos φ sin φ kz 

2 sin2 φ  kρkz (A.61)sin φ 

 kρkz cos φ  kρkz sin φ kρ 
2 
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Integrating over angle φ yields ⎞⎛ 
Jo + J2 cos 2θ J2 sin 2θ 0Z 2π 2πikρρ cos(φ−θ)dφ e ss = 

20 

⎜⎜⎜⎝ J2 sin 2θ Jo − J2 cos 2θ 0 
⎟⎟⎟⎠ (A.62) 

0 0 0 

kz 
2(Jo − J2 cos 2θ) −kz 

2J2 sin 2θ  2ikρkzJ1 cos θ 
⎞⎛ Z ⎜⎜⎜⎝ 

2π 2πikρρ cos(φ−θ)dφ e = −kz 
2J2 sin 2θ kz 

2(Jo + J2 cos 2θ)  2ikρkzJ1 sin θp±p± 
2k1
2 

 2ikρkzJ1 cos θ  2ikρkzJ1 sin θ 2kρ 
2Jo 

(A.63) 

where we used the identities: 2 sin φ cos φ = sin 2φ, sin2 φ = (1 − cos 2φ)/2, cos2 φ = 

(1 + cos 2φ)/2, and Z 2π 
ikρρ cos(φ−θ)dφ cos(nφ)e = 2πinJn(kρρ) cos(nθ) (A.64) 

0Z 2π 
ikρρ cos(φ−θ)dφ sin(nφ)e = 2πinJn(kρρ) sin(nθ) (A.65) 

0 

The result is easily proven by variable substitution, expanding the exponential func-

tion, and then using the summation definition of the cylindrical bessel function of 

order n. The final result is written as 

Z �� 
k2J+ + k2 
1 z J− 

i kρ ikz |z−zo|dkρ eGxx(r) = 
8πk1

2 kzZ �� 
k1
2Js − k2Js 
2 z 2 

i kρ ikz |z−zo|dkρ eGxy(r) = 
8πk1

2 kzZ
Z 

Gxz(r) = 
i 

dkρkρ 
2 e ikz |z−zo| [ 2iJ1 

c]
8πk1

2 

i ��kρ ikz |z−zo|e k2J− + k2 
1 zGyy(r) = dkρ J+

8πk1
2 kzZ
Z 

i ikz |z−zo| [ 2iJsGyz(r) = dkρkρ 
2 e 1 ]8πk1

2 

k3 
ρi ikz |z−zo|2Jo(kρρ)Gzz(r) = dkρ e 

8πk1
2 kz 

⎟⎟⎟⎠ 
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Note that Gxy = Gyx, Gxz = Gzx, Gyz = Gzy. We have also defined the shorthand 

notation for the cylindrical bessel functions 

J c = J2(kρρ) cos 2θ2 (A.66) 

Js = J2(kρρ) sin 2θ2 (A.67) 

J c = J1(kρρ) cos θ1 (A.68) 

Js = J1(kρρ) sin θ1 (A.69) 

J± = Jo(kρρ) ± J2(kρρ) cos 2θ (A.70) 

Scattered DGF above a uniaxial half-space 

Consider a dipole in an isotropic medium that is a distance d above a general 

half-space. The scattered dyadic Green function will take the form Z 
i e 

Gs(r) =
8π2 

dkxdkye 
ikρ·ρ [rpp(p+p−) + rsp(sp−) + rps(p+s) + rss(ss)] 

ikz (d+z) 

kz 

(A.71) 

Let us simplify the double integral as before by writing out the dyadic terms in 

cylindrical coordinates: ⎞⎛ 
−kz 

2 cos2 φ −kz 
2 cos φ sin φ −kρkz cos φ 

−k2 cos φ sin φz −k2 sin2 φz −kρkz sin φ 

kρkz cos φ kρkz sin φ k2 
ρ 

⎛ ⎞ 

1 
p+p− = 

k2 
1 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎜⎜⎜⎝ 

kz cos φ sin φ −kz cos
2 φ 0 

kz sin
2 φ −kz cos φ sin φ 0 

⎟⎟⎟⎠ 
1 

p+s = 
k1 

−kρ sin φ kρ cos φ 0 

−kz cos φ sin φ −kz sin
2 φ −kρ sin φ 

⎞⎛ ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1 

sp− = 
k1 

kz cos
2 φ kz cos φ sin φ kρ cos φ 

0 0 0 
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Explicitly, the double integral result is given by Z 
k2Gxx(r) = 

i 
dkρdφ 

kρ 
[rss 1 s 

2φ + k1kzc(φ)s(φ)(rps − rsp)
8π2k2 

1 kz 

k2 2φ]e ikρρ cos(φ−θ)+ikz (z+d)− rpp z c Z (A.72) 

Gxy(r) = 
i 

dkρdφ 
kρ 
[−rssk12 s(2φ)/2 − (rpsc 

2φ + rsps 
2φ)k1kz

8π2k2 
1 kz 

ikρρ cos(φ−θ)+ikz (z+d)k2− rpp z s(2φ)/2]e Z (A.73) 

i kρ ikρρ cos(φ−θ)+ikz (z+d)Gxz(r) = dkρdφ [−rspk1kρs(φ) − rppkρkzc(φ)]e (A.74)
8π2k2 Z kz1 

i kρ 
[−rssk12 s(2φ)/2 + (rpss 

2φ + rspc 
2φ)k1kzGyx(r) = dkρdφ 

8π2k2 
1 kz 

ikρρ cos(φ−θ)+ikz (z+d)k2 
z s(2φ)/2]e Z 

− rpp (A.75) 

k2Gyy(r) = 
i 

dkρdφ 
kρ 
[rss 1 c 

2φ − (rps − rsp)k1kzc(φ)s(φ)
8π2k1

2 kz 

k2 2φ]e ikρρ cos(φ−θ)+ikz (z+d)− rpp z s Z (A.76) 

i kρ ikρρ cos(φ−θ)+ikz (z+d)Gyz(r) = dkρdφ [rspk1kρc(φ) − rppkρkzs(φ)]e (A.77)
8π2k2 Z kz1 

i kρ ikρρ cos(φ−θ)+ikz (z+d)[−rpsk1kρs(φ) + rppkρkzc(φ)]eGzx(r) = dkρdφ 
8π2k2 Z 

(A.78)
kz1 

i kρ ikρρ cos(φ−θ)+ikz (z+d)Gzy(r) = dkρdφ 
8π2k2 

1 

[+rpsk1kρc(φ) + rppkρkzs(φ)]e (A.79)
kzZ 
k3 
ρi ikρρ cos(φ−θ)+ikz (z+d)Gzz(r) = dkρdφ 

8π2k2 
1 

(A.80)rpp e 
kz 

This is the main result that will be necessary when the symmetry along the x − y 

plane is broken. In such cases, the reflection coefficients will depend on the magnitude 

of wavevector as well as the angle, e.g. r11 = r11(kρ, φ). This will be important when 

we consider a uniaxial medium with the optic axis lying in the x − y plane. 

For media that has x − y symmetry, we can integrate over the angle φ, ⎞⎛ 
−kz 

2(Jo − J2 cos 2θ) kz 
2J2 sin 2θ −2ikρkzJ1 cos θ 

kz 
2J2 sin 2θ −kz 

2(Jo + J2 cos 2θ) −2ikρkzJ1 sin θ 

Z ⎜⎜⎜⎝ 

2π 2πikρρ cos(φ−θ)dφ e =p+p− 
2k1
2 

2ikρkzJ1 cos θ 2ikρkzJ1 sin θ 2kρ 
2Jo 

(A.81) 

⎟⎟⎟⎠ 0 



121 

0 

0 

⎞⎛ ⎜⎜⎜⎝ 

−kzJ2 sin 2θ −kz(Jo − J2 cos 2θ) 0 

kz(Jo + J2 cos 2θ) kzJ2 sin 2θ 0 
⎟⎟⎟⎠ 

Z 2π 2πikρρ cos(φ−θ)dφ e p+s = (A.82)
2k1 

−2ikρJ1 sin θ 2ikρJ1 cos θ 0 

kzJ2 sin 2θ −kz(Jo + J2 cos 2θ) −2ikρJ1 sin θ 
⎞⎛ Z ⎜⎜⎜⎝ 

2π 2πikρρ cos(φ−θ)dφ e sp− = kz(Jo − J2 cos 2θ) −kzJ2 sin 2θ 2ikρJ1 cos θ2k1 

0 0 0 

(A.83) 

yielding the final result Z ��i kρ ikz (z+d) k2J c Js Js − k2J c 
1 +rss − k1kz 2 rps + k1kz 2 rsp z −rpp � 
2k1 

Gxx(r) = dkρ (A.84)e 
8πk1

2 kzZ �i kρ ikz (z+d) Js J c J c + k2Js 
2 rss − k1kz −rps − k1kz +rsp z 2 rppGxy(r) = dkρ (A.85)e 

8πk1
2 kzZ
Z 

Gxz(r) = 
i 

dkρ 
kρ 
e ikz (z+d) [−2ik1kρJ1 

s rsp − 2ikρkzJ1 
c rpp] (A.86)

8πk1
2 kz ��i kρ ikz (z+d) k1

2Js J c J c + k2Js 
2 rss + k1kz +rps + k1kz −rsp z 2 rppGyx(r) = dkρ (A.87)e 

8πk1
2 kzZ ��i kρ ikz (z+d) k2J c Js Js − k2J c 

1 −rss + k1kz 2 rps − k1kz 2 rsp z +rppGyy(r) = dkρ (A.88)e 
8πk1

2 kzZ
Z
Z
Z 

Gyz(r) = 
i 

dkρ 
kρ 
e ikz (z+d) [2ik1kρJ1 

c rsp − 2ikρkzJ1 
s rpp] (A.89)

8πk1
2 kz 

Gzx(r) = 
i 

dkρ 
kρ 
e ikz (z+d) [−2ik1kρJ1 

s rps + 2ikρkzJ1 
c rpp] (A.90)

8πk1
2 kz 

Gzy(r) = 
i 

dkρ 
kρ 
e ikz (z+d) [+2ik1kρJ1 

c rps + 2ikρkzJ1 
s rpp] (A.91)

8πk1
2 kz �� 

2kρ 
2Jorpp (A.92) 

i kρ ikz (z+d)Gzz(r) = dkρ e 
8πk1

2 kz 

We emphasize that this is the most general result that can be used along the x − y 

plane or the x − z plane. 

⎟⎟⎟⎠ 



122 

A.1.3 Transmitted DGF in uniaxial half-space (c = z) 

We will first consider the case where the optic axis of the uniaxial medium lies 

perpendicular to the interface c = z. Z ikρ·ρ+ikz1di e − − kzpz 
e ⊗ p−) + tps(ee ⊗ s)]eGt(r) = dkxdky [[tpp(e 

8π2 kz 

kzsz]+ [tsp(eo ⊗ p−) + tss(eo ⊗ s)]e (A.93) 

The basis vectors in the uniaxial medium are given by ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

−kxkzp 

−kykzp 

⎜⎜⎜⎝ 

ky 

−kx 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 
1 1−and e (A.94)eo = p p√= ek2 + k2 
x y k2 + k2 

x y�xko 

0 −(kx 
2 + ky 

2) �
� 
x

z 

The dyadic terms can be written explicitly as ⎞⎛ 
sin2 φ − cos φ sin φ 0 

− cos φ sin φ cos2 φeos = 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ (A.95)0 

0 0 0 

kzk
p cos2 φ kzk

p cos φ sin φ kpkρ cos φz z z 

⎞⎛ ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1− 

kp kpcos φ sin φz kz z sin
2 φ kp 

z kρ sin φ√ kz e p− = e ko 
2�1�x 

kρkz cos φ �x kρkz sin φ �x kρ 
2 �x 

�z �z �z 

⎞⎛ ⎜⎜⎜⎝ 

−kzp cos φ sin φ kz
p cos2 φ 0 

−kzp sin2 φ kp 
z cos φ sin φ 0 

⎟⎟⎟⎠ 
1− √e s = e �xko 

−kρ sin φ �x kρ cos φ �x 0
�z �z 

⎞⎛ 
−kz cos φ sin φ −kz sin

2 φ ⎟⎟⎟⎠ 

−kρ sin φ 

kz cos
2 φ kz cos φ sin φ kρ cos φ 

⎜⎜⎜⎝ 
1 

eop− = 
k1 

0 0 0 
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Applying the same procedure as before, we obtain the double integral result Z 
i 

Gxx(r) = dkρdφ 
kρ 
[tssk1k2s 

2φ + tpsk1kz
pc(φ)s(φ)

8π2k1k2 kz 

ikρρ cos(φ−θ)+ikz (z+d)+ tspk2kzc(φ)s(φ) + tppkzkz
pc 2φ]e (A.96)Z 

Gxy(r) = 
i 

dkρdφ 
kρ
[−tssk1k2s(2φ)/2 + tpsk1kz

pc 2φ 
8π2k1k2 kz 

ikρρ cos(φ−θ)+ikz (z+d)− tspk2kzs 
2 Z 
φ + tppkzkz

ps(2φ)/2]e (A.97) 

i kρ ikρρ cos(φ−θ)+ikz (z+d)Gxz(r) = dkρdφ [−tspk2kρs(φ) + tppkρk
pc(φ)] e 

8π2k1k2 kz
z 

(A.98)Z 
Gyx(r) = 

i 
dkρdφ 

kρ
[−tssk1k2s(2φ)/2 − tpsk1kz

ps 2φ 
8π2k1k2 kz 

ikρρ cos(φ−θ)+ikz (z+d)+ tspk2kzc 
2φ + tppkzkz

ps(2φ)/2]e (A.99)Z 
Gyy(r) = 

i 
dkρdφ 

kρ
[tssk1k2c 

2φ + tpsk1kz
pc(φ)s(φ)

8π2k1k2 kz 

kp 2φ]e ikρρ cos(φ−θ)+ikz (z+d)+ tspk2kzc(φ)s(φ) + tppkz z s (A.100)Z 
Gyz(r) = 

i 
8π2k1k2Z 

dkρdφ 
kρ ikρρ cos(φ−θ)+ikz (z+d)kρk

p[tspk2kρc(φ) + tpp s(φ)]ezkz � � 
(A.101) 

Gzx(r) = 
i 

8π2k1k2 
dkρdφ 

kρ 

kz 

�x−tpsk1kρs(φ) 
�z 

�x 
+ tppkρkzc(φ) 

�z 

ikρρ cos(φ−θ)+ikz (z+d)e 

Z � � 
(A.102) 

Gzy(r) = 
i 

8π2k1k2 
dkρdφ 

kρ 

kz 

�x 
+tpsk1kρc(φ) 

�z 

�x 
+ tppkρkzs(φ) 

�z 

ikρρ cos(φ−θ)+ikz (z+d)e 

(A.103) 

Gzz(r) = 
Z 

i 
8π2k1k2 

dkρdφ 
k3 
ρ �x 
tpp

kz �z 

ikρρ cos(φ−θ)+ikz (z+d)e (A.104) 
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√ 
where k2 = �xko. Upon integrating over angle φ we will also obtain the simpler 1-d 

integral result Z 
i kρ � � 

ikz (z+d)Gxx(r) = dkρ e tssk1k2J
c − k1k

pJ2 
stps − k2kzJ2 

stsp + kzk
pJ− 

c tpp+ z z8πk1k2 kz 

(A.105)Z 
i kρ � � 

ikz (z+d)Gxy(r) = dkρ e k1k2J2 
stss + k1k

pJ− 
c tps + k2kzJ

c tsp + kzk
pJ2 

stpp
8πk1k2 kz

z + z 

(A.106)Z 
Gxz(r) = 

i 
dkρ 

kρ 
e ikz (z+d) [−2ik2kρJ1 

stsp + 2ikρkz
pJ1 

ctpp] (A.107)
8πk1k2 kzZ 

i kρ � � 
ikz (z+d)Gyx(r) = dkρ e k1k2J2 

stss − k1kz
pJ+ 

c tps + k2kzJ− 
c tsp + kzkz

pJ2 
stpp

8πk1k2 kz 

(A.108)Z 
i kρ � � 

ikz (z+d)Gyy(r) = dkρ e k1k2J− 
c tss − k1kz

pJ2 
stps − k2kzJ2 

stsp + kzkz
pJ+ 

c tpp
8πk1k2 kz 

(A.109)Z 
i 

Gyz(r) = dkρ 
kρ 
e ikz (z+d) [2ik2kρJ1 

ctsp + 2ikρk
pJ1 

stpp] (A.110) 
8πk1k2 kz

z Z � � 
i kρ �x �xikz (z+d) J cGzx(r) = dkρ e −2ik1kρJ1 

stps + 2ikρkz 1 tpp (A.111)
8πk1k2 kz �z �zZ � � 

i kρ �x �xikz (z+d) JsGzy(r) = dkρ e +2ik1kρJ1 
ctps + 2ikρkz 1 tpp (A.112)

8πk1k2 kz �z �zZ � � 
i kρ �xikz (z+d)Gzz(r) = dkρ e 2kρ 

2Jotpp (A.113)
8πk1k2 kz �z 

A.1.4 Transmitted DGF in uniaxial half-space (c = x) 

We will now consider the case where the optic axis of the uniaxial medium lies 

parallel to the interface c = x. Z ikρ·ρ+ikz1di e − − kzezGt(r) = dkxdky [[tpp(ee ⊗ p−) + tps(ee ⊗ s)]e 
8π2 kz1 

kzoz]+ [tsp(eo ⊗ p−) + tss(eo ⊗ s)]e (A.114) 
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where ⎞⎛⎞⎛ 
0 −(k2 + k2) �z 

ze y �x⎜⎜⎜⎝−kzo 

⎟⎟⎟⎠ 
− , e = e √ 

�zko 

⎜⎜⎜⎝ kykx 

⎟⎟⎟⎠ 
1 1− (A.115)p pe = o k2 + k2 

zo y k2 + k2 
ze y 

−ky −kxkze 

The dyadic terms can be written explicitly as before ⎞⎛ 
0 0 0 

−kykzo kxkzo 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1− e s = o (A.116)q 

kρ (k2 + k2)zo y −ky 
2 kxky 0 ⎛ ⎞ 
0 0 0 

kxkz1kzo kykz1kzo kzo k
2 
ρ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1− e p− = o (A.117)q 

k1kρ (k2 + k2)zo y 
k2 k2kxkykz1 y kz1 ky ρ⎛ ⎞ 

−ky(k2 + k2) �z kx(k
2 + k2) �z 0ze y ze y�x �x 

−kxk2 k2 
y xky 0 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
1 q− e s = e √ (A.118) 

�zkokρ (k2 + k2)ze y −kxkykze kx 
2kze 0 

kz1(k
2 + k2) �z kz1(k

2 + k2) �z kρ 
2(k2 + k2) �zkx ze y ky ze y ze y�x �x �x 

k2 k2 k2 
xkykz1 kx ykz1 ρkxky 

⎛ ⎜⎜⎜⎝ 
1 q− ee p− = √ 

�zkok1kρ (k2 + k2)ze y 
k2 k2 
xkz1kze kxkykz1kze kx ρkze 

(A.119) 

The full Green function can then be written as Z 
i 1 q �z

k2 + k2 
ze y �xq 

Gxx(r) = dkρdφ [−t21k1ky
8π2k1k2 kz 

�z ikρρ cos(φ−θ)+ikz (z+d)k2 
ze + ky 

2 ]e+ t22kxkz1 (A.120)
�x 

k2 
ρ 

Z � �i −ikzoz −ikzez ikρρ cos(φ−θ)+ikz dGzz(r) = dkρdφ t12k2kye + t22kxkzee e 
8π2k1k2 kz 

(A.121) 

⎞ ⎟⎟⎟⎠ 
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where 

�1k
22kz1kxko zo + �zkz1kze 

t11 = − √ q (A.122) 
+ k2)(k2 + k2)�zΔ (kx 

2 
y ze y 

2kz1kyko 
2 (kz1 + kze) 

√ 
�1�z 

t12 = ± q (A.123)
Δ (k2 + k2 + k2)(k2 

yx y ze ) 

k22kz1ky o �1kzo + �zkz1 
t21 =   q (A.124)

Δ (k2 + k2 + k2)(k2 
zo x y y ) 

2kz1kzok1kx kz1 + kzo 
t22 = − q (A.125)

Δ (k2 + k2)(k2 + k2 )x y y zo 

and 

k2kzoko(kz1 + kzo)(�1k2 + �zkz1kze) + �zk2k3(kz1 + kze)(�1kzo + �zkz1)x zo y o
Δ = ± √ p p

(k2 + k2 k2 + k2 k2 + k2�z x y ) zo y ze y 

(A.126) 

A.2 Green function inside a uniaxial medium. 

Finally, we provide the Green tensor as the unique solution to the homogeneous 

Helmholtz equation with permittivity tensor �(ω), 

ω2 

r×r× G(r, r 0; ω) − �(ω) 
c2 

G(r, r 0; ω) = Iδ(r − r 0), (A.127) 

and radiation condition G(r, r0; ω) = 0 for |r − r0| → ∞. The coordinate-free form of 

the Green function is given by [163]� �� �
ikore 21 e k2r + ikore − 10 o e �−1G(r, r ; ω) = √ �x�z

k2 24π �x re o re� 
2 � 

k2r + 3ikore − 3 �2 �2(�−1 · r)(�−1 · r)o e x z− 
k2r2 r2 
o e e� �

ikoro ikore�xe �ze (r × ̂c)(r × ̂c)
+ − 

ro re (r × ̂c)2 � ��
ikoro ikoree − e (r × ̂c)(r × ̂c)

+ I − ̂cĉ − 2 (A.128)
iko(r × ̂c)2 (r × ̂c)2 

where we have fixed the spatial coordinate of the source at the origin, i.e. r0 = 0. 

Note that this Green function is only applicable when r 6= r0 , since we have excluded 

the singularity term that occurs when r = r0 . 
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B. APPENDIX: FUNDAMENTAL EFFICIENCY BOUND 

FOR COHERENT ENERGY TRANSFER 

Appendix B is directly related to the Chapter 6. It is divided into four sections. 

Section 1 presents the quantum electrodynamic (QED) theory of two non-identical 

neutral atoms in arbitrary Markovian nanophotonic environments. Section 2 derives 

the non-stationary energy transfer efficiency between two atoms. Section 3 provides 

an analytical expression for the time-dependent concurrence of the two-atom system. 

We use this result to measure both entanglement and quantum coherence for the two-

atom quantum transport problem. Finally, section 4 provides the full Green function 

expression used to describe the two-atom interaction above a mirror and in free-space. 

B.1 Quantum electrodynamic theory of energy transfer 

We use a quantum electrodynamic (QED) theory to describe the interaction be-

tween two neutral atoms in an arbitrary nanophotonic environment. In the dipole 

approximation, the multipolar Hamiltonian is composed of three components, H = 

Hs + Hb + Hint, where X X 
Hs = ~ωn,d |ndihnd| + ~ωn,a |naihna| , (B.1) 

n=g,e n=g,e Z Z ∞ 

Hb = d3 r dω ~ω ̂f †(r, ω)̂f(r, ω), (B.2) 
0 

Hint = −d̂ 
d · Ê(rd) − d̂ 

a · Ê(ra), (B.3) 

describes the two-atom system, the electrodynamic bath, and the electric-dipole in-

teraction between each atom’s electric dipole moment d̂ 
k and the electrodynamic 

field respectively, k = {d, a}. We assume each atom only has two electronic en-

ergy levels while also ignoring multipolar and spin contributions. This Hamiltonian 
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has been derived previously by several authors and forms the basis of an effective-

field/macroscopic quantum electrodynamic theory valid in arbitrary dissipative media 

satisfying Kramers-Kronig causality relations [41,42]. Here, f̂ †(r, ω)/f̂(r, ω) represent 

the creation/annihilation operators of the elementary excitations of matter. In vac-

uum, f̂ †(r, ω) describes the creation of a photon. In macroscopic matter, it describes 

the creation of a polariton. These operators satisfy 

f̂(r, ω) |{0}i = 0 

f̂ †(r, ω) |{0}i = |1(r, ω)i 

as well as 

[̂f(r, ω), f̂ †(r 0, ω0)] = δ(r − r 0)δ(ω − ω0) 

[̂f(r, ω), f̂(r 0, ω0)] = 0 

In dissipative quantum electrodynamics, the electric field is defined as s Z 
~ω4 p

�00(rÊ(r, ω) = i d3 r 0 0, ω)G(r, r 0, ω)̂f(r 0, ω). (B.4)
π�oc4 

The electric field is decomposed in terms of positive-frequency and negative-frequency R ∞
E(+)(r)+ ̂ E(+)(r) =components, Ê(r) = ˆ E(−)(r), where ˆ 

0 dω Ê(r, ω) and [Ê(−)(r)]† = 

Ê(+)(r) due to reality conditions for the electrodynamic field. In the following, we 

derive a quantum master equation describing the atom-atom dynamics arising from 

the Hamiltonian (1). While such a master equation has been derived before, it is 

worth re-visiting the derivation to account for inconsistencies with different models in 

the self-energy (Lamb shift and spontaneous emission) and dipole-dipole interaction 

terms. Here, we derive the atom-atom dynamics without using the rotating-wave 



130 

approximation. To obtain a closed-form solution, we truncate the Hilbert space to 

the following states, 

|di ≡ |ed, ga, {0}i , (B.5) 

|ai ≡ |gd, ea, {0}i , (B.6) 

|gi ≡ |gd, ga, 1(r, ω)i , (B.7) 

|ei ≡ |ed, ea, 1(r, ω)i , (B.8) 

corresponding to an excited-state donor with acceptor and field in the ground-state, 

an excited-state acceptor with donor and field in ground-state, a single-excitation in 

the field with both atoms in the ground state, and finally a single field excitation with 

both atoms in the excited-state. Due to truncation of the Hilbert space, this approach 

is not fully non-perturbative and will fail to describe higher-order multi-photon effects 

that occur in the ultra-strong coupling regime. As we show below, this approach to 

derive the atom-atom dynamics provides a first-order correction to the dipole-dipole 

interaction (B.31) that is markedly different from the dipole-dipole frequency shift 

derived through the rotating wave approximation. In the truncated Hilbert space, 

the temporal evolution of the system is captured by the total wavefunction Z Z Z Z 
|ψ(t)i = d(t) |di + a(t) |ai + d3 r dω g(r, ω, t) |gi + d3 r dω e(r, ω, t) |ei (B.9) 

Using the Schrodinger equation, i~ ∂ |ψ(t)i = H |ψ(t)i, we obtain the dynamical
∂t 

equations for the probability amplitudes, Z Z 
i~ 
∂d 
= ~(ωg,a + ωe,d)d(t) + d3 r dω [g(r, ω, t)Vdg + e(r, ω, t)Vde] (B.10)

∂t Z Z 
i~ 
∂a 
= ~(ωg,d + ωe,a)a(t) + d3 r dω [g(r, ω, t)Vag + e(r, ω, t)Vae] (B.11)

∂t 
∂g 

i~ = ~(ωg,a + ωg,d + ω0)g(r 0, ω0, t) + Vgdd(t) + Vgaa(t) (B.12)
∂t 
∂e 

i~ 
∂t 
= ~(ωe,a + ωe,d + ω0)e(r 0, ω0, t) + Vedd(t) + Veaa(t) (B.13) 
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where we define Vkn = hk|Hint|n(r, ω)i as the interaction coupling coefficient with 

˜ −i(ωg,a+ωe,d)tk = {a, d} and n = {g, e}. In the interaction picture, d(t) = d(t)e , a(t) = 

−i(ωg,d+ωe,a)t −i(ωg,a+ωg,d+ω)t −i(ωe,a+ωe,d+ω)tã(t)e , g(t) = g̃(t)e and e(t) = ẽ(t)e , we obtain Z Z 
∂d̃  � � 

d3 −i(ω−ωd)t −i(ω+ωa)ti~ = r dω Vdgg̃(t)e + Vdeẽ(t)e (B.14)
∂t Z Z 
∂ã � � 

i~ = d3 r dω Vagg̃(t)e 
−i(ω−ωa)t + Vaeẽ(t)e 

−i(ω+ωd)t (B.15)
∂t 
∂g̃ −i(ωd−ω)t −i(ωa−ω)ti~ = Vgdd̃(t)e + Vgaã(t)e (B.16)
∂t 
∂ẽ ˜ +i(ωa+ω)t +i(ωd+ω)ti~ = Vedd(t)e + Veaã(t)e (B.17)
∂t 

where ωk = ωe,k − ωg,k. The formal solutions to the third and fourth equations are Z t � � 
−i(ωd−ω)t0 −i(ωa−ω)t0 i~(g̃(t) − g̃(0)) = dt0 Vgdd̃(t

0)e + Vgaã(t
0)e (B.18) Z0 

t � � 
+i(ωa+ω)t0 +i(ωd+ω)t

0 
i~(ẽ(t) − ẽ(0)) = dt0 Vedd̃(t

0)e + Veaã(t
0)e . (B.19) 

0 

Assuming the donor is initially excited, g(t = 0) = 0 and e(t = 0) = 0, we obtain the 

coupled integro-differential equations through substitution of (18)-(19) into (14)-(15), Z Z Z t � 
d3 ˜ 0)e −i(ω−ωd)(t−t0) 0)e −i(ω−ωd)t−i(ωa−ω)t0∂d̃

= − 
1 

r dω dt0 VdgVgdd(t + VdgVgaã(t ~2∂t 0 � 
+ VdeVeddẽ 

−i(ωa+ω)(t−t0) + VdeVeaae˜ 
−i(ωa+ω)t e i(ωd+ω)t

0 Z Z Z t �∂ã 1 −i(ω−ωa)t−i(ωd−ω)t0 −i(ω−ωa)(t−t0)= − d3 r dω dt0 VagVgdd̃(t
0)e + VagVgaã(t

0)e 
~2∂t 0 � 

˜ i(ω+ωa)t0 −i(ω+ωd)(t−t0)+ VaeVedde
−i(ω+ωd)t e + VaeVeaae˜ . 
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Using the properties we defined above for the creation and annihilation operators, we 

find Z Z Zt �∂d̃ 1 ~ω4 
−i(ω−ωd)(t−t0)= − dt0 d3 r dω �00(r, ω) dd · G(rd, r, ω)G†(rd, r, ω) · d ∗d d̃(t0)eeg eg∂t ~2 π�oc4 

0 

−i(ω−ωd)t−i(ωa−ω)t0 
eg · G(rd, r, ω)G†(ra, r, ω) · d ∗a ã(t+ dd 

eg 
0)e 

˜ −i(ωa+ω)(t−t0)+ da · G(ra, r)G†(ra, r) · da∗ d(t0)ege ge � 
−i(ωa+ω)t i(ωd+ω)t

0 
+ da · G(ra, r)G†(rd, r) · dd∗ ã(t0)e ege ge Z t Z Z �∂ã 1 ~ω4 

= − dt0 d3 r dω 
4 
�00(r, ω) da · G(ra, r, ω)G†(rd, r, ω) · d ∗d d̃(t0)e −i(ω−ωa)t−i(ωd−ω)t0 

eg eg∂t ~2 0 π�oc 

−i(ω−ωa)(t−t0)+ da · G(ra, r, ω)G†(ra, r, ω) · d ∗a ã(t0)eeg eg 

−i(ω+ωd)t i(ω+ωa)t0 + dd · G(rd, r)G†(ra, r) · da∗ d̃(t0)e ege ge � 
−i(ω+ωd)(t−t0)+ dd · G(rd, r)G†(rd, r) · dd∗ ã(t0)e .ge ge 

We simplify the result using the relation [41], Z 
d3 s 

ω 
2

2 

�00(s, ω)G(r, s, ω)G ∗ (s, r 0, ω) = ImG(r, r 0, ω) (B.20) 
c 

along with the reciprocity condition GT (r, r0) = G(r0 , r), thereby obtaining the main 

result of this section. The temporal dynamics of two atoms are captured by the 

coupled integro-differential equations, Z t h i∂d̃ 1 0) ˜ 0)= − dt0 Kdd(t, t d(t
0) + Kda(t, t

0)ã(t (B.21)
∂t ~ Z0 

t h i∂ã 1 
= − dt0 Kad(t, t

0)d̃(t0) + Kaa(t, t
0)ã(t0) . (B.22)

∂t ~ 0 
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The memory Kernels are given by Z ∞ h i 
−i(ω−ωd)(t−t0) −i(ω+ωa)(t−t0)Kdd(t, t

0) = dd Im{Gdd}dd e + da Im{Gaa}da e ω2dωeg ge ge eg~π�oc2 0 

1 
Z ∞ h 

−i(ω−ωd)t i(ω−ωa)t0 Kda(t, t
0) = dd

egIm{Gda}da
gee e (B.23)

~π�oc2 0 i 
−i(ωa+ω)t i(ωd+ω)t

0 
+ da Im{Gad}dd e e ω2dωge 

1 
Z ∞ h 

eg 

−i(ω−ωa)t i(ω−ωd)t
0 

daKad(t, t
0) = Im{Gad}dd e e (B.24)

~π�oc2 0 
eg ge i 
−i(ωd+ω)t i(ωa+ω)t0 + dd Im{Gda}da e e ω2dωge 

1 
Z ∞ h 

eg i 
−i(ω−ωa)(t−t0) −i(ω+ωd)(t−t0)Kaa(t, t

0) = 
2 

deg
a Im{Gaa}dge 

a e + dge 
d Im{Gdd}deg

d e ω2dω 
~π�oc 0 

(B.25) 

For simplicity, we used the notation, Gkk0 = G(rk, rk0 ; ω). Solving this set of coupled 

integro-differential equations would provide the complete non-perturbative time dy-

namical description of two two-level atoms in arbitrary nanophotonic environments. 

A general analytical solution of this type is not possible to the best of our knowledge, 

though we will explore this notion in a subsequent paper. In the following, we provide 

the exact analytical response for the case of two atoms in a Markovian nanophotonic 

environment. 

B.1.1 Markov approximation 

A Markov process is a random process that is memoryless arising from a reservoir 

with an infinitely short correlation time and a flat spectral density. In the following, 

we assume the nanophotonic reservoir has a correlation time τc that is much shorter 

than the relaxation time of each atom. Generally, this is a valid assumption if the 

nanophotonic reservoir consists of intermediate-to-low quality factor (Q = ω/κ) cavi-

ties with damping rates that are much larger than the dissipation rates of each atom, 

κ � γa, γb. The Markov approximation assumes the probability amplitudes, valid in 

the interaction picture only, are slowly varying compared to the bath’s correlation 
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time. Evaluation of one of the dipole-dipole interaction time integrals is performed 

as follows: Z t Z t 
−i(ω±ωd)t i(ω±ωa)t0 −i(ω±ω+)(t−t0)  iω−(t+t0)˜e e ã(t0) dt0 = e e a(t0) dt0 

0 0 Z ∞ 
 2iω−t≈ ã(t)e e −i(ω±ω+)τ dτ �0 � �� 

1 2iω−t≈ ã(t)e πδ(ω ± ω+) − iP 
ω ± ω+ 

where we defined ω± = (ωd ± ωa)/2 and assumed ω+ � ω− in the second line. All 

other time integrals of the memory kernels are evaluated using the same approach. 

In the following, we present the self-energy and dipole-dipole interaction terms that 

arise from the time-integrated memory kernels under the Markov approximation. 

B.1.2 Self-energy and dipole-dipole interaction 

The first terms in the memory Kernels Kdd(t, t0) and Kaa(t, t0) respectively give 

rise to an excited-state self-energy correction, Σe,k = ~(−δωe,k + iγk/2), Z ∞P ω2 dk
eg · ImG(rk, rk, ω) · dk

ge 2ω2 
k dkδωe,k = dω and γk = eg ·ImG(rk, rk, ωk)·dk 

ωk − ω 2~�oπ 0 c2 ~�oc ge 

(B.26) 

corresponding to a frequency shift and a decay rate for the excited energy level of each 

atom. P denotes the principal value. As shown in [41], it is convenient to evaluate the 

principal value integral using contour integration techniques. Using a quarter-circle 

contour along the upper right-half of the complex ω plane, the principal value integral 

δωnres + δωres is decomposed into off-resonant and resonant contributions, δωe,k = e,k e,k , 

given by Z ∞ ωk
δωnres 

e,k = 
−1 

dη η2 

ω2 + η2 
dk
eg · ImG(rk, rk; iη) · dk

ge (B.27)
~�oπc2 0 k 

and 

δωres k 
e,k = − 

ω2 

deg
k · ReG(rk, rk; ωk) · dge 

k . 
~�oc2 

The resonant contribution is much more sensitive to nanophotonic environments be-

cause it is directly proportional to the Green function evaluated at the transition 
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frequency of the atom. For the rest of the appendix, we will assume the off-resonant 

contribution is accounted for in the definition of the excited-state frequency ωe,k. Pro-

ceeding with the calculation, the second terms of the memory Kernels Kdd(t, t0) and 

Kaa(t, t0) respectively give rise to the ground-state self-energy Z ∞P ω2 dk · ImG(rk, rk, ω) · dk 
ge eg

δωg,k = − dω 
2 

. (B.28)
~�oπ c0 ωk + ω 

composed of a frequency (Lamb) shift only. The denominator does not have a pole, 

therefore the frequency shift is only composed of an off-resonant contribution. In 

vacuum, this quantity is divergent within the dipole approximation. Special reg-

ularization and renormalization techniques are required to properly deal with this 

divergence. As is normally done in quantum optics, the rest of the calculation will 

proceed assuming the Lamb shift is accounted for in the definition of the ground-

state frequency. Focusing on the memory kernel, Kda(t, t0), we find the dipole-dipole 

interaction gives rise to the dissipative rate, 

+ dkγkk0 =
2ω2 

· ImG(rk, rk0 , ω+) · dk0 , (B.29)
~�oc2 eg ge 

also known as the cooperative decay rate. The dipole-dipole frequency shift is Z ∞ 
" 

dk0 
# 

P ω2 dk · ImG(rk, rk0 , ω) · dk0 · ImG(rk0 , rk, ω) · dk 
eg ge ge eg

δωkk0 = dω − 
π c2~�o 0 ω+ − ω ω+ + ω " #Z ∞P ω2 dk · ImG(rk, rk0 , ω) · dk0 dk · ImG(rk, rk0 , ω) · dk0 

eg ge eg ge 
= dω − 

~�oπ c2 ω+ + ω0 ω+ − ω " #Z ∞P ω2 dk · ImG(rk, rk0 , ω) · dk0 
eg ge 

= dω (B.30)
~�oπ c2 

−∞ ω+ − ω 

In the second line, we used the Onsager reciprocity condition, GT (r, r0) = G(r0 , r), 

while the third line used the condition, G∗(ω) = G(−ω). Using countour integration 

techniques, one may show that the principal value integral is exactly equal to 

ω+
2 

Jkk0 ≡ δωkk0 = − deg
k · ReG(rk, rk0 , ω+) · dge 

k0 . (B.31)
~�oc2 

As alluded to earlier, this is the reason we chose to work within the Hilbert sub-

space (5)-(8). The cooperative frequency shift δωkk0 (otherwise known as the dipole-

dipole potential Jkk0 ) does not contain an off-resonant component. This is a subtle 
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yet important distinction arising from the counter-rotating wave terms. This result 

does not agree with previous results which calculated the dipole-dipole interaction 

using the rotating-wave approximation, cf. [164]. On the other hand, this result does 

agree with rigorous quantum electrodynamic calculations using perturbation theory 

for intermolecular energy transfer [86,127]. The dipole-dipole potential Jkk0 , combined 

with the cooperative decay rate γkk0 , is often referred to as the resonant dipole-dipole 

interaction (RDDI) 

Vkk0 = ~(−Jkk0 + iγkk0 /2) = 
�

ω 

oc 
+
2

2 
dk
eg · G(rk, rk0 , ω+) · dk

ge 
0 
. (B.32) 

Combining these results, we obtain the following set of coupled differential equations 

for the probability amplitudes in the Schrodinger picture, h i 
˜i~ 

∂d 
= − Σe,d + Σ̃ 

g,a d(t) − Vdaa(t) (B.33)
∂t h i 

˜i~ 
∂a 
= −Vadd(t) − Σg,d + Σ̃ 

e,a a(t). (B.34)
∂t 

We have written everything in terms of the modified excited-state self-energy, Σ̃ 
e,k = 

−~ωe,k + Σe,k, the modified ground-state self-energy Σ̃ 
g,k = −~ωg,k + Σg,k, as well as 

the resonant dipole-dipole interaction. These coupled differential equations form the 

main result of this sub-section. 

B.2 RDDI quantum master equation 

Using (B.33)-(B.34), we find the following set of coupled differential equations for 

the probability densities and coherences, h i∂ 2 |d|2 = Re i(Σ̃ 
e,d + Σ̃ 

g,a)|d|2 + iVdaad ∗ (B.35)
∂t ~ h i∂ 2 |a|2 = Re iVadda ∗ + i(Σ̃ 

g,d + Σ̃ 
e,a)|a|2 (B.36)

∂t ~ h i∂ 1 
∂t
(da ∗ ) = 

i~ 
−(Σ̃ 

e,d + Σ̃ 
g,a)da ∗ − Vda|a|2 + Vad 

∗ |d|2 + (Σ̃ 
g,d + Σ̃ 

e,a) 
∗ da ∗ (B.37) 

https://B.33)-(B.34
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Using the definition of the density matrix ρ = |φihφ|, it is straightforward to show 

that these equations are equivalent to the RDDI quantum master equation, X∂ i γkk0 
ρ = − [Hcoh, ρ] − [σk 

† σk0 ρ − 2σk0 ρσk 
† + ρσk 

† σk0 ]. (B.38)
∂t ~ 2 

k,k0 P 
where the first term contains the coherent Hamiltonian, Hcoh = (ωn,d+δωn,d)σ

†σd+ n=g,e d P 
n=g,e(ωn,a + δωn,a)σa 

†σa + 
P 

k=6 k0 Jkk0 σ
† σk0 , while the second term contains the rel-k 

evant dissipative terms. The RDDI master equation has been derived here for two 

non-identical atoms. We emphasize this equation describes coherent coupling between 

two atoms in a Markovian reservoir but cannot describe non-Markovian dynamics or 

multi-photon effects arising from strong-coupling between the atoms and the electro-

dynamic field. In other words, it must operate in a regime where the frequency shifts 

and dipole-dipole couplings are much smaller than the transition frequencies of the 

atoms (δωk, Jkk0 � ωk, ωk0 ). Going beyond this regime requires an expansion of the 

Hilbert space and corresponds to the ultra-strong coupling regime. To recover the 

semi-classical Förster regime, we must include a phenomenological dephasing term 

for each atom described by the super-operators, γφ,dLφ,d + γφ,aLφ,a. These terms de-

scribe fluctuations in the energy levels resulting in linewidth broadening and loss of 

coherence. Explicitly, the dephasing super-operators acting on the density operator 

in the single-excitation sub-space are given by ⎛ ⎞ 
1 ⎝ 

0 ρda Lφ,d = L[σ̂d 
†σ̂d]ρ = − ⎠ , (B.39)

2 ρad 0 ⎛ ⎞ ⎝ 
0 ρda Lφ,a = L[σ̂† ˆ ]ρ = − 

1 ⎠ . (B.40)aσa 
2 ρad 0 

Combining the results above, we find the single-excitation populations satisfy 

ρ̇dd = 
i 
(Vdaρad − Vda 

∗ ρda) − γdρdd (B.41)
~ 

ρ̇aa = 
i 
(Vadρda − Vad 

∗ ρad) − γaρaa (B.42)
~ 
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while the coherences obey 

i 
ρ̇da = +iω1ρda + (Vdaρaa − Vad 

∗ ρdd) (B.43)
~ 

ρ̇ad = −iω1 
∗ ρad − 

i 
(Vda 

∗ ρaa − Vadρdd). (B.44)
~ 

To simplify the equations, we defined ω1 = (ω̃a − ω̃d)+ iγ1, and γ1 = (γd + γφ,d + γa + 

γφ,a)/2, with ω̃a = ωa + δωa = (ωe,a − ωg,a) + (δωe,a − δωg,a), and ω̃d = ωd + δωd = 

(ωe,d − ωg,d) + (δωe,d − δωg,d) which was also used in the main text. 

B.3 Non-stationary energy transfer efficiency 

In this section, we derive the fundamental relation that provides a unified treat-

ment of the energy transfer efficiency in the coherent and incoherent coupling regimes. 

The non-stationary energy transfer efficiency is obtained by integrating the popula-

tion equations (B.41)-(B.42) from 0 to ∞, Z ∞ Z ∞ Z ∞ 

ρdd(∞) − ρdd(0) = −1 = 
i
Vda ρad(t) dt − 

i
V ∗ ρda(t) dt − γd ρdd(t) dt, ~ ~ da 

0 0 0 

(B.45)Z ∞ Z ∞ Z ∞i i 
ρaa(∞) − ρaa(0) = 0 = Vad ρda(t) dt − Vad 

∗ ρad(t) dt − γd ρaa(t) dt. ~ ~ 0 0 0 

(B.46) 

We have assumed the donor is initially in the excited state, ρdd(0) = 1, with the 

acceptor in the ground state, ρaa(0) = 0. In the long-time limit, the initial excitation 

leaves the donor-acceptor system resulting in ρdd(∞) = ρaa(∞) = 0. Adding the 

population equations (B.45)-(B.46) yields the fundamental relation Z ∞ Z ∞ 

γd ρdd(t) dt + γa ρaa(t) dt = 1. (B.47) 
0 0 

Physically, this equation determines the probability of detecting a single photon from 

the two-atom system, which must equal one in the long-time limit. This result is 

applicable when a single excitation is initially present in the system. We also assume 

that both atoms have unit quantum efficiency and only decay through the emission of 

https://B.45)-(B.46
https://B.41)-(B.42
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a photon. It is important to note that we have assumed the cooperative decay rate, 

γda, is zero. We will address the role of cooperativity and superradiance in a future 

publication and for now it remains out of the scope of this thesis. 

B.3.1 Exact solution to the energy transfer efficiency 

R ∞
The energy transfer efficiency is defined as ηet = γa 0 ρaa(t

0)dt0 . The exact solu-

tion to this expression gives the energy transfer efficiency valid in both the weak and 

strong coupling regimes. There are two approaches to finding the integrated popula-R ∞
tion (t0)dt0 . The first approach finds the expression for ρaa(t0), then performs 

0 ρaa 

the time integral analytically. We introduce a second approach here. Integrating the 

coherence differential equations, (B.43)-(B.44), from 0 to ∞, we substitute the result 

into (45)-(46), 

−1 = −(γ̃d + Γda)ρ̄dd + Γdaρ̄ aa (B.48) 

0 = −(γ̃a + Γda)ρ̄aa + Γdaρ̄ dd (B.49) 

R ∞
where we have defined ρ̄ kk = 

0 ρkk(t
0)dt0 for the donor and acceptor respectively 

k = {d, a}. We also introduce the bare energy transfer rate, 

|Vdd|2 (γd + γφ,a + γd + γφ,b)
Γda = . (B.50)

~2 (ω̃d − ω̃a)2 + (γd + γφ,d + γd + γφ,a)2/4 

Solving for ρ̄ aa, the non-perturbative expression for the FRET efficiency is 

Γ̃da
η = (B.51)

Γ̃da + γd 

where Γ̃ 
da is the renormalized energy transfer rate 

γaΓda
Γ̃da = (B.52)

γa + Γda 

as shown in Chapter 6. This modified energy transfer rate is one of the major results 

of Chapter 6 highlighting the drastic modification of the energy transfer efficiency 

compared to previous theoretical models. These results imply a fundamental bound 

https://B.43)-(B.44
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for the energy transfer rate and efficiency as discussed in the thesis. Note we have also 

derived the same analytical expression using the first approach (1), i.e. analytically 

evaluating the time-integral. 

B.4 Quantum entanglement in energy transfer 

In the following, we introduce Wooter’s concurrence to describe quantum entan-

glement between two qubits. 

Concurrence. The general wavefunction describing 2 qubits is 

|ψi = α |ed, eai + β |ed, gai + γ |gd, eai + δ |gd, gai . (B.53) 

An appropriate measure of entanglement, given by the concurrence, is C = 2|αδ − 

γβ| ≥ 0. A concurrence of 1 refers to a maximally-entangled state, while C = 0 refers 

to separable states. In the energy transfer problem with a single excitation (α = 0), 

the concurrence is simply given by C = 2|βγ|. Using the notation of section 1, the 

time-dependent concurrence is C(t) = 2|d(t)a(t)|. The result is easily generalized for 

a density operator describing mixed states. Here, the concurrence is defined as 

p p p p 
C = max[0, λ1 − λ2 − λ3 − λ4] (B.54) 

where λi are the eigenvalues of the operator ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) in descending 

order. For the non-stationary energy transfer problem where the donor is initially in 

the excited-state, the eigenvalues are readily solved analytically giving the final result 

C = 2|ρda| (B.55) 

and is therefore exactly dependent on the coherence between both atoms in the site 

basis. Concurrence provides a measure of entanglement as well as coherence, making 

it an appropriate choice for studying non-classicality in the energy transfer problem. 
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B.5 Two atoms above a mirror 

B.5.1 Free-space Green function 

Here, we provide the full Green function expression for two atoms above a mirror. 
√ 

The dyadic Green function in a bulk medium with refractive index n = � satisfies 

the vector wave equation, 

ω2 

r×r× Go(r, r 0; ω) − � (r, r 0; ω) = 1δ(r − r 0). (B.56)
2 
Go 

c 
√ 

The homogeneous Green function has a well-known solution (k = � ω/c):� � 
ikr 1 e 

Go(r) = r⊗r + I (B.57)
k2 4πr 
ikre � � 1 

(k2 2 = r + ikr − 1)I + (3 − 3ikr − k2 r 2)r̂ ⊗ ̂r − δ(r)I (B.58)
4πk2r3 3k2 

containing both Coulombic near-field (kr � 1) and radiative far-field (kr � 1) 

components. We use this result for Fig. 6.1. 

B.5.2 Scattered Green function 

In the following, we provide the scattered Green function for two atoms above a 

mirror defined through the normal unit vector n = êz. The scattered Green function 

is found self-consistently through the use of electrodynamic boundary conditions. It 

is possible to show, upon simplification, that the scattered Green function takes the 

following form in cylindrical coordinates [86] Z 
i kρ � � 

2ikz dGs k2 − k2 
xx(r) = dkρ e 1 J+rs z J−rp (B.59)

8πk2 
1 kzZ 

Gs (r) = 
i 

dkρ 
kρ 
e 2ikz d [−2ikρkzJ1(kρρ)rp] (B.60)xz 8πk2 kzZ 

i kρ
Gs (r) = dkρ e 2ikz d [+2ikρkz ] (B.61)zx J1(kρρ)rp

8πk2 kzZ 
i kρ � � 

2ikz dGs 2k2 
zz(r) = dkρ e ρJo(kρρ)rp (B.62)

8πk2 kz 

where d is the distance of the donor and acceptor from the mirror interface, and ρ is 

the lateral separation distance between the donor and acceptor. We also introduced 
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J± = Jo(kρρ) ± J2(kρρ), where Jn(kρρ) is the cylindrical Bessel function of order n. 

The Fresnel reflection coefficients for p and s polarized light are: 

�2kz − �kz2 kz − kz2 
rp = and rs = . (B.63)

�2kz + �kz2 kz + kz2 q q 
with z-component wavevectors, kz = � ω2/c2 − kρ 

2 and kz2 = �2 ω2/c2 − kρ 
2 . The 

full Green function integral is evaluated numerically using an adaptive Gauss-Kronrod 

quadrature. In the near-field limit (d, ρ � λ) the interaction between each atom and 

the mirror, |�2| � �1, is easily understood through the image dipole model described 

in the main text. 
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