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PREFACE

The first chapter of this thesis is an introduction to the field of near-field photonic spin.

We present an overview to the new findings in this field that have emerged over the past

decade. Then the achievements of this field are summarized to show the need for a platform

to sense and exploit the near-field properties of photonic spin density (PSD) in quantum

technologies. We then introduce nitrogen-vacancy (NV) centers in diamond as a promising

tool for this purpose. Lastly, the properties and capabilities of NV centers are discussed

before we present the original contributions of this thesis.

Chapter  2 is a reproduction of previously published work

• F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,”

Applied Physics Letters, vol. 108, no. 6, p. 061102, Feb. 2016.

This chapter focuses on studying the PSD in evanescent waves and the optical forces that

arise from universal spin-momentum locking for these waves. We also study this effect for

the case of total internal reflection and optical waveguide modes.

Chapter  3 is a reproduction of previously published work

• F. Kalhor, L.-P. Yang, L. Bauer, and Z. Jacob, “Quantum sensing of photonic spin

density using a single spin qubit,” Physical Review Research, vol. 3, no. 4, p. 043007,

Oct.2021.

This chapter demonstrates that NV centers in diamond can coherently interact with a cir-

cularly polarized free space optical beam at room temperature. We show that the strength

of this interaction is proportional to PSD of the beam.

Chapter  4 is based on an unpublished work

• F. Kalhor, N. F. Opondo, S. Mahmud, L. Bauer, L.-P. Yang, S. A. Bhave, and Z.

Jacob, “Optically induced static magnetic field in ensemble of nitrogen-vacancy centers

in diamond,” manuscript in preparation.

This chapter demonstrates the optically induced magnetic field for an ensemble of NV centers.

We furthermore characterize the wavelength dependence of this effect and determine the
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optimal wavelength for optically induced magnetic fields for the spin qubit system at room

temperature.
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averaged force in ẑ direction. This component of the force is dominated by
radiation pressure. The particle is 100nm away from the surface of the prism.
See Appendix  A for the polarizability of the chiral and achiral particles. The
incident beam is p polarized with wavelength λ = 5µm and carries a power
of p = 50mW/mm2. The refractive index of the prism is n = 3.5 and the
horizontal axis is related to the incident angle of the beam. . . . . . . . . . .  44 

2.4 Direction of Poynting vector, spin density and spin density force on a chiral
particle form = 1 andm = −1HE11 modes. (a) and (b) Direction of Poynting
vector outside the optical fiber for the two modes. (c) and (d) Direction of spin
density and spin density force outside the optical fiber for the two modes. The
longitudinal component of the spin density has opposite directions for the two
modes, but, its transverse component is in the same direction for both modes
which shows the spin-momentum locking in evanescent fields. The direction
of spin density force on a chiral particle placed outside the optical fiber is also
shown. The longitudinal component of the force, Fz, has opposite directions
for the two modes, but, the transverse component, Fϕ, is in the same direction
for both modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

13



2.5 (a) Schematic of a chiral particle near an optical fiber. (b), (c) and (d) Time
averaged optical force in different directions plotted versus radius of the fiber.
The solid line shows the force for m = 1 mode and the dots show the force
for m = −1 mode. The r̂ component is dominated by the gradient force
and has the same value for both modes while the ϕ̂ component is dominated
by the spin density force. The transverse component of the Poynting vector
applies a radiation pressure force which is responsible for the difference in the
ϕ̂ component of the force for the two modes. The direction of the transverse
spin and transverse spin density force is independent of the OAM of the mode
and is locked to its direction of propagation. Both radiation pressure and the
spin density forces contribute to the ẑ component of the force. The radiation
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ABSTRACT

Optical signals are a necessary tool for quantum technologies to carry information both

for long-range and on-chip application. The scope of their use is determined by their ability

to effectively interact with qubits. The deep-subwavelength interaction volume demands the

understanding of the properties of optical fields in the near-field and light-matter interaction

in this regime. Recent studies have unraveled the rich characteristics in the physical quantity

known as the near-field photonic spin density (PSD). Photonic spin density is the spatial

distribution of light’s spin angular momentum. It is characterized by the degree of circular

polarization of an optical field in deep-subwavelength volumes. In this thesis we study the

properties of PSD in the near-field regime and demonstrate a platform for coherent light-spin-

qubit interaction based on PSD. We show that nitrogen-vacancy (NV) centers in diamond

can coherently interact with an optical beam where the interaction strength is determined

by PSD in the nanoscale. To understand the near-field characteristics of PSD we study the

evanescent waves and spin-momentum locking of light.

Evanescent electromagnetic waves possess spin-momentum locking, where the direction

of propagation (momentum) is locked to the inherent polarization of the wave (transverse

spin). We study the optical forces arising from this universal phenomenon and show that the

fundamental origin of recently reported optical chiral forces is spin-momentum locking. For

evanescent waves, we show that the direction of energy flow, direction of decay, and direction

of spin follow a right hand rule for three different cases of total internal reflection, surface

plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the

recently reported phenomena of lateral optical force on chiral and achiral particles is caused

by the transverse spin of the evanescent field and the spin-momentum locking phenomenon.

Our work presents a unified view on spin-momentum locking and how it affects optical forces

on chiral and achiral particles.

To probe the near-field properties of PSD, we propose and employ a single NV center in

diamond as a nanoscale sensor. NV centers have emerged as promising room-temperature

quantum sensors for probing condensed matter phenomena ranging from spin liquids, two-

dimensional (2D) magnetic materials, and magnons to hydrodynamic flow of current. Here,
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we demonstrate that the NV center in diamond can be used as a quantum sensor for detecting

the photonic spin density. We exploit a single spin qubit on an atomic force microscope

tip to probe the spinning field of an incident Gaussian light beam. The spinning field of

light induces an effective static magnetic field in the single spin qubit probe. We perform

room-temperature sensing using Bloch sphere operations driven by a microwave field (XY8

protocol). This nanoscale quantum magnetometer can measure the local polarization of light

in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally

measured phase change using the NV center Hamiltonian and perturbation theory involving

only virtual photon transitions.

In order to study the wavelength dependence of the optically induced magnetic field,

we demonstrate this effect for an ensemble of NV centers. We characterize the wavelength

dependence of the effective static magnetic field caused by the interaction of PSD and the

spin qubit. We show that the strength of the field is inversely dependent on the detuning

between the frequency of the optical beam and the optical transition of the NV centers.

We show an optically induced rotation of over 10 degrees in the spin qubit of NV centers

at room temperature. The direct detection of the photonic spin density at the nanoscale

using NV centers in diamond opens interesting quantum metrological avenues for studying

exotic phases of photons, nanoscale properties of structured light as well as future on-chip

applications.
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1. INTRODUCTION

Fundamental properties of particles such as linear and angular momentum govern their inter-

actions with their environment. Optical beams also possess linear and angular momentum.

Upon absorption or emission of light by particles these momenta are exchanged between

photons and the particles along with the energy of the photons. These properties are well

explained by the Poynting vector and Jones matrices in the far-field regime. However, these

interaction phenomena show richer properties in the near-field that has come to light only

recently. One reason is that probing the properties of optical fields in the near-field is chal-

lenging due to lack of universal probes in the nanoscale regime. These properties especially

become more important as we move toward nanoscale photonic devices and circuits. Engi-

neering the properties of optical fields in this regime is necessary to unlock the full potential

of optical technologies.

Optical signals can be a suitable information carrier for on-chip quantum technologies.

Understanding phenomena that govern the near-field properties of light leads to better tuning

of its interaction with particles. This interaction can be based on absorption and emission of

light by particles or coherent non-absorbing interactions. In order to study such applications

it is crucial to introduce new platforms where coherent interaction of light and spin qubits in

the near-field regime can be studied. In Chapter  3 we propose a room-temperature platform

to experimentally study the near-field properties of light and its coherent interaction with a

spin-qubit.

Nitrogen-vacancy (NV) centers are point defects in diamond lattice that have emerged as

a powerful tool for probing nanoscale phenomena in condensed matter physics both at room

temperature and cryogenic temperatures. NV centers have been extensively studied for their

sensitivity to magnetic fields, electric fields, strain, and temperature. NV centers can be used

in single NV configuration to achieve high resolutions or ensemble to increase the sensitivity

of a measurement. In this thesis, we propose and demonstrate that they can be used to

probe near-field properties of light such as photonic spin density at room temperature.

In this chapter, we first explore the properties of photonic spin density (PSD) and its

non-trivial features in the near-field regime. Then we focus on the properties of NV centers
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that make them suitable probes for nanoscale quantum sensing. This chapter serves as an

introduction to the subsequent chapters. In the next chapter, we first investigate optical

forces arising from spin-momentum locking in the evanescent optical fields. Then we in-

troduce NV centers as a room-temperature platform for studying the PSD in the near-field

regime and its interaction with spin qubits at room temperature.

1.1 Near-field Properties of Optical Fields

The polarization of optical fields governs many of their properties, such as the spin angular

momentum carried by the field and their transmission through different media, as well as

their interaction with particles [ 1 ], [  2 ]. In the far-field limit the electric and magnetic field

vectors lie in the plane transverse to the direction of the propagation of the beam. This is

not the case in the near-field which gives rise to non-trivial phenomena in this regime. Wang

and Chan [ 3 ] have shown that if a chiral particle is placed near a surface it can experience an

optical force perpendicular to the direction of the momentum of the incident beam. Mitsch et

al. [ 4 ] show that the directionality of the coupling of light scattered from a nanoparticle into

an optical waveguide can be controlled by changing the handedness of the polarization of the

incident beam. These seemingly unrelated examples along with other similar works [ 5 ]–[ 15 ]

can be unified in theory by studying the properties of optical fields in the near-field regime.

We start with an illustrative example to contrast the properties of spin density for prop-

agating plane waves and decaying evanescent waves. Exploring the characteristics of the

optical fields in the near-field reveals an intrinsic component of the photonic spin density in

the evanescent waves (Fig.  1.1 ). The spin density here is defined as S⃗obs = ϵE⃗⊥(r⃗, t) × A⃗⊥(r⃗, t)

where E⃗(r⃗, t) is the electric field, A⃗(r⃗, t) is the vector potential, the subindex ⊥ denotes the

transverse part of the vector field, and ϵ is the permittivity [ 16 ], [ 17 ]. For a monochromatic

wave propagating in the free space the spin density is time independent and can be written

as [ 18 ]–[ 20 ]

S⃗obs = (1/4ω) Im
[
ϵ0E⃗

∗ × E⃗ + µ0H⃗
∗ × H⃗

]
= S⃗obs

E + S⃗obs
M , (1.1)

where S⃗obs
E and S⃗obs

M are the electric and magnetic spin densities, respectively.
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For a plane wave propagating along ẑ in free space with complex electromagnetic fields

E⃗ = E0[cos(θ)x̂+ isin(θ)ŷ]eik0z (1.2)

and

H⃗ =
√
ϵ0/µ0E0[ − isin(θ)x̂+ cos(θ)ŷ]eik0z, (1.3)

the spin densities are

S⃗obs = 2S⃗obs
E = 2S⃗obs

M = [ϵ0sin(2θ)/ω]|E0|2ẑ. (1.4)

Here k0 is the free-space wavenumber and θ is an arbitrary angle where θ = ±π/4 corresponds

to left- and right-handed circularly polarized beams and θ = 0, π/2 corresponds to x̂ and ŷ

linearly polarized beam. This shows that the spin density for a plane wave is always along

the direction of propagation and its amplitude is maximum for a circularly polarized beam

and zero for a linearly polarized beam.

On the other hand, for an evanescent beam propagating in ẑ direction and decaying in ŷ

direction (k⃗ = κẑ + iηŷ, κ2 − η2 = k2
0) the complex electromagnetic fields are

E⃗ = E0[cos(θ)x̂+ isin(θ)(κŷ − iηẑ)/k0]ei⃗k·r⃗ (1.5)

and

H⃗ =
√
ϵ0/µ0E0[ − isin(θ)x̂+ cos(θ)(κŷ − iηẑ)/k0]ei⃗k·r⃗. (1.6)

The spin density for this wave is

S⃗obs = (ϵ0/4ω)[ − (2κη/k2
0)x̂+ sin(2θ)(κ/k0)ẑ]|E0|2e−2ηy. (1.7)

In contrast to the propagating plane wave, the evanescent wave has a component of spin

density perpendicular to the direction of propagation and decay. This component is inde-

pendent of the polarization of the beam (determined by m). This phenomenon known as
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Figure 1.1. Spin-momentum locking in total internal reflection (TIR). (a)
A propagating plane wave enters the prism beyond the critical angle and an
evanescent wave appears on the opposing side. A component of PSD transverse
to the direction of propagation exist in the evanescent wave. The direction of
this component is locked to the direction of propagation (κ) and direction of
decay (η). (b) The direction of decay is set by the boundary and a growing wave
away from the boundary violates causality. In order to generate a transverse
spin density in the opposite direction compared to panel (a) the direction of
propagation has to change.

spin-momentum locking of evanescent waves is discussed in more detail in the next subsec-

tion.

1.1.1 Spin-momentum locking in evanescent fields

Bliokh et al. [ 18 ] and Mechelen and Jacob [ 21 ] showed that for evanescent waves there

is an intrinsic component of spin that is transverse to the direction of propagation of the

beam. This component forms a right-handed triplet with the momentum vector and the

decay vector. Figure  1.1 shows this effect in total internal reflection from an air/dielectric

interface. Here the evanescent wave has a transverse component of photonic spin density

that is determined by the direction of propagation of the incident beam. This phenomenon

is called spin-momentum locking for evanescent waves and it is universal to all structures

that produce evanescent fields.

The spin-momentum locking phenomenon is also present in the evanescent field gener-

ated near optical waveguides. Figure  1.2 shows this effect for a ridge waveguide where the
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Figure 1.2. Spin-momentum locking in an optical waveguide. Reprinted with
permission from [ 15 ]. (a) Schematic of a ridge waveguide with the PSD near
the waveguide for a TE-like mode. (b) Electric component of PSD in the
vicinity of the waveguide showing the dependence on the direction of decay.
The PSD has opposite direction on the two sides of the waveguide following
the spin-momentum locking phenomenon. (c) Same as (b) for the magnetic
component of PSD. The magnetic component has higher intensity above and
below the waveguide due to the direction of the magnetic field in the optical
mode.

direction of PSD is locked to the direction of propagation of the beam inside the waveguide.

Figure  1.2 (b) and  1.2 (c) show the electric and magnetic components of the PSD in the

vicinity of the waveguide. These panels show the effect of the polarization of the optical

mode on the spatial distribution of the electric and magnetic components of PSD. How-

ever, the direction of the transverse spin density is governed by the spin-momentum locking

phenomenon.
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1.1.2 Spin based directional coupling of light into guided modes

The phenomenon of directional coupling is shown in Fig.  1.3 . This figure shows an

spinning dipole radiating next to a metallic (silver) or dielectric (ϵr = 2) surface. The dipole

couples to the high-k modes of the dielectric media and the plasmonic modes of the silver

layer with a preferred direction depending on the direction of its spin. This directional

coupling is related to the PSD of the high-k modes in the dielectric and the surface plasmon

polariton modes in the silver layer as illustrated in Fig.  1.1 . However, if the dipole is radiating

between two surfaces where the structure is symmetric the directional coupling is suppressed

in both layers (panels (d)-(f)). This is due to the existence of both the growing and decaying

evanescent waves in the gap between the two layers in contrast to the top panels where only

a decaying wave can be present in the vacuum.

This phenomenon is demonstrated in different platforms such as optical waveguides,

cavities, surface plasmon polariton modes, and metamaterials [ 4 ], [ 6 ]–[ 8 ], [ 12 ], [ 13 ], [ 22 ], [ 23 ].

The directional coupling allows for development of on chip spin-based interfaces and novel

applications such as optical diodes [ 24 ].

1.1.3 Novel applications based on near-field photonic spin density

Exploring the properties of PSD in the near-field has given rise to new applications in

nanophotonics. Exotic phenomena such as topologically non-trivial spin textures (Figs.  1.4 (b)

and  1.4 (c)) have been reported in the near-field arising from interaction of light with elec-

tronic excitations as well as interference of optical beams [ 25 ]–[ 27 ]. The spin texture in these

excitations have deep-subwavelength features that can be used for super-resolution imag-

ing. Moreover, the near-field spin density can be utilized to create non-reciprocal devices.

Figure  1.4 (d) shows such a device where cold atoms are trapped near an optical nanofiber

to make a non-reciprocal device. The nanofiber only allows transmission in one direction

depending on the externally controlled spin-polarization of the trapped atoms.

The near-field spin density of the optical modes can also be utilized to control the inter-

action between two optical modes [ 28 ], [ 30 ], [ 31 ]. Figure  1.4 (e) shows an optical nanofiber

interacting with the whispering gallery modes of a microcavity. The near-field PSD of each

27



Figure 1.3. Demonstration of the spin-momentum locking phenomenon for
a spinning dipole coupling to SPP modes and high-k modes of a dielectric
medium. (a)-(c) A spinning dipole is placed near the surface of a silver film
((a) and (b)) and a dielectric surface ((c), ϵ = 2). The radiation from the dipole
couples to the modes of these surfaces in a preferential direction determined by
the spinning direction of the dipole. This directional coupling arises from the
matching between the spinning direction of the dipole and the spinning fields
(PSD) of the optical mode. (d)-(f) The same dipole radiating between two
symmetric interfaces. The directional coupling disappears due to the added
symmetry to the system. The additional layer allows for decaying waves in both
directions, suppressing the directional coupling effect. The corresponding Ez

component of the electric field on the z = 0 plane is plotted in all panels. The
amplitude of the dipole is p = p0(3ix̂+ ẑ) and has a wavelength of λ = 500 nm.

mode of the fiber can determine which modes of the microcavity are excited which gives rise

to different response of the system. In addition, the near-field PSD can govern the direction

of coupling of emitted light from quantum dots into a waveguide or cavity [ 13 ], [  29 ]. This is

shown in Fig  1.4 (f) where a quantum dot emits light into a cavity based on its spin-state.

The phenomenon of spin-momentum locking is studied in detail in Chapter  2 . In Chap-

ter  2 we establish a connection between the phenomena of directional coupling, transverse

optical forces on chiral particles and spin-momentum locking for evanescent waves. We study
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Figure 1.4. Utilizing PSD in the near-field unlocks novel applications. (a)
Schematic of photonic spin and momentum transverse to the direction of
propagation of a beam for an evanescent wave. Reprinted with permission
from [ 18 ]. (b) Spin-texture in the momentum space showing a topologically
nontrivial state. Reprinted with permission from [  26 ]. (c) Formation of an
optical skyrmion when an optical beam interacts with a SPP mode. Reprinted
with permission from [ 25 ]. (d) Nonreciprocal waveguide using a tapered op-
tical fiber and spin-polarized atoms trapped next to the optical fiber. The
interaction between the spin-polarized atoms and the spin of the optical beam
only allows for transmission in one direction determined by spin-momentum
locking for evanescent waves. Reprinted with permission from [ 24 ]. (e) Polar-
ization dependent response in a YIG microcavity. The different transverse spin
of the two polarizations traveling in a nanofiber excites different modes of a
cavity resulting in a polarization dependent response. Reprinted with permis-
sion from [ 28 ]. (f) Photonic-spin based interface between a quantum dot and
a waveguide. The interaction between the spin of the quantum dot and the
spin of the optical mode of a waveguide determines the direction of coupling
of light into the waveguide. Reprinted with permission from [ 29 ].

the optical forces exerted on chiral and achiral particles in evanescent fields and show the

phenomenon of spin-momentum locked optical forces.

1.2 Nitrogen-vacancy Centers in Diamonds

NV centers are color centers in diamond consisting of a substitutional nitrogen atom next

to a vacancy cite (Fig.  1.5 ). These defects have long coherence time at room temperature
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Figure 1.5. Atomic structure and energy levels of NV center. (a) NV center
consists of a substitutional nitrogen atom next a vacancy defect. (b) Simplified
energy levels and transitions of NV center showing a 637nm optical transition
between the ground and excited states. The ground and excited states are
both spin triplets. The transition through the dark state is spin-flipping and
allows for optical polarization and readout of the NV center’s spin state. (c)
Ground state energy levels of NV center showing the zero-field splitting and
Zeeman splitting between | ± 1⟩ states due to an applied magnetic field. An
optically detected magnetic resonance (ODMR) measurement can reveal the
resonance gaps between the |0⟩ and | ± 1⟩ states.

and high sensitivity to magnetic fields. Due to their atomic size, NV centers have been

utilized to probe nanoscale phenomena in the condensed matter physics (Fig.  1.6 ) such as

probing spin waves [  32 ], probing magnetism in 2D materials [ 33 ], probing Johnson noise [ 34 ],

and mapping skyrmionic fields [  35 ].

1.2.1 Electronic structure of NV centers

NV center can appear in two different charge states–negatively charged and neutral [ 36 ].

In this thesis we refer to the negatively charged state as NV center. Figure  1.5 (b) shows a

simplified energy level of NV center in the negatively charged state that gives rise to its optical

properties that allow it to be a quantum sensor suitable for many applications. The ground

and excited state of NV center are both spin triplets. The dark state is a singlet state which

has a much longer lifetime (τ > 150ns) compared to the excited state (τ = 12 − 25ns) [ 36 ].

The emission spectrum features a zero-phonon line (ZPL) at λ = 637nm and a phonon

sideband extending from λ = 640nm to λ = 780nm [ 37 ]–[ 39 ].
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Figure 1.6. Quantum sensing with NV centers. (a) NV centers in diamond
are used to probe magnetic excitations in a ferromagnetic microdisk. Reprinted
with permission from [ 32 ]. (b) Single NV centers in diamond are used to probe
the thermally induced magnetic noise in the vicinity of a silver film. The
noise reduces the coherence time of the NV center. Reprinted with permission
from [ 34 ]. (c) An NV center is used to scan the magnetic field generated near a
flake of CrI3 with nanometer resolution. Reprinted with permission from [  33 ].
(d) An NV center is used to generate a map of the magnetic field produced by
an skyrmion at room temperature. Reprinted with permission from [ 35 ].

The ground state of the NV center has a zero-field splitting gap ∆gs = 2.87GHz between

the |0⟩ state and | ± 1⟩ states (Fig.  1.5 (c)). The degeneracy between the | ± 1⟩ states can

be broken by applying a magnetic field along the axis of the NV center. Most applications

use only two of the energy levels in the ground state (|0⟩ and | + 1⟩ or |0⟩ and | − 1⟩) as

a two level quantum system. The two levels can be selected by tuning the frequency of a

microwave excitation to the gap between the desired energy levels.

1.2.2 Polarization and readout

The optical excitation/relaxation cycle in NV center is spin preserving. However, an

intersystem crossing through the dark state allows a spin-flip from |0⟩ state to | ± 1⟩ states.
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The probability of this spin-flip is higher if the NV center is in spin ±1 states (P|±1⟩→|0⟩
P|0⟩→|±1⟩

≈

4) [ 40 ], [ 41 ]. This effect allows for optical polarization of NV center spin state. If the NV

center is illuminated by an optical excitation, after a number of excitation/relaxation cycles

the NV center is polarized in spin |0⟩ state. The purity of this polarization can exceed

80% [  41 ].

The other key property of the NV center is the possibility of optical readout of its

spin state. The dark state has a longer lifetime compared to the excited state of the NV

center. Therefore, when the NV center decays into the dark state the photoluminescence

(PL) probability decreases. Since the | ± 1⟩ states have a higher probability of decaying into

the dark state, the PL probability is lower for these states compared to the |0⟩ state. We

define a contrast to measure this change in the PL of an NV center

Contrast = I|0⟩ − Imeas

I|0⟩
(1.8)

where I|0⟩ is the PL intensity for the |0⟩ state and is the highest achievable PL intensity, and

Imeas is the PL intensity for an unknown state. The contrast is zero for an NV center in |0⟩

state and maximum for an NV center in | ± 1⟩ states. Therefore, we can optically read out

the spin state of an NV center. We first characterize the contrast for the | ± 1⟩ states and

compare it to the PL intensity of an unknown state.

The change in contrast is shown in Fig.  1.5 where a microwave excitation is tuned into

the two resonance energies between |0⟩ and | ± 1⟩ sublevels. When the microwave excitation

is resonant to one of the transitions, the NV center spin state couples from |0⟩ state to | ± 1⟩

states. This leads to a reduction in the PL of the NV center and therefore an increase in the

contrast.

Alternative readout techniques have been demonstrated for NV centers [ 42 ]–[ 45 ]. Most of

the proposed methods take advantage of charge state conversion of NV centers to perform the

readout. Charge state conversion is the transformation of a negatively charged NV center to

a neutral charge state through photoionization [ 46 ]–[ 50 ]. However, photoelectric detection

of magnetic resonance (PDMR) and laser threshold readout have been demonstrated as

well [ 51 ], [  52 ].
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1.2.3 Coherent manipulation of spin-states

An NV center can be optically polarized only into the |0⟩ state. To prepare the NV center

in | ± 1⟩ states or a mixed state we use a MW signal. When the MW signal is resonant to

|0⟩ → | − 1⟩ or |0⟩ → | + 1⟩ transitions, the spin-state coherently oscillates between the two

states. This behavior is known as Rabi oscillations and can be measured using the pulse

sequence shown in Fig.  4.2 (a). The inset of Fig.  4.2 (c) and Fig.  D.1 (c) show Rabi oscillations

for an ensemble and a single NV center, respectively.

Measuring the Rabi oscillations allows us to determine the MW pulse-lengths required

for performing dynamical decoupling and ac magnetometry. The period of Rabi oscillations

determines a full cycle of the spin-state changing from |0⟩ to |±1⟩ and back to |0⟩. Therefore,

if the spin-state is optically polarized into |0⟩ state, to polarize it into | ± 1⟩ states we apply

a MW pulse with a width equal to half of the Rabi cycle (π-pulse). Similarly, to change the

spin-state to a superposition of |0⟩ and | ± 1⟩ states we apply a pulse with a width equal to

a quarter of a Rabi cycle (π/2-pulse). The Rabi oscillations can be visualized by rotations

on the Bloch sphere. Changing the phase of the MW pulse allows us to determine the axis

of this rotation.

The readout of an unknown spin-state reveals the population of NV centers in each state

for an ensemble or the probability of finding an NV center in each of the states for a single

NV center. If the population is fully in |0⟩ state the readout contrast is equal to zero and if

the population is fully in | ± 1⟩ states the readout signal is maximum. On the Bloch sphere,

the readout signal is related to the projection of the spin-vector on the z axis. The interaction

of an external magnetic field or PSD induced effective field with an NV center only changes

the phase between the |0⟩ and | ± 1⟩ states and leaves the populations unchanged. A change

in the phase between the states is equivalent to a rotation of the spin-vector in the x − y

plane on the Bloch sphere. We use the MW induced rotations to project an acquired phase

onto the z axis before the readout is performed (see Fig.  3.3 (b)-(f)).
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1.2.4 Coherence time and dynamical decoupling

Sensitivity of NV center measurements are limited by the spin relaxation time and de-

phasing time of the NV center. Spin relaxation time (T1) determines the characteristic time

for transitions between the ground state sublevels to occur and reaches a few milliseconds

at room temperature. These transitions lead to thermalization of the population between

the triplet state sublevels. The spin relaxation time is sensitive to magnetic noise in the

environment and can be used to probe this noise [ 34 ].

On the other hand magnetic fluctuations in the environment can lead to homogeneous

dephasing in the NV center spin state as well. The dominant source of these fluctuations

in diamond crystal is carbon-13 atoms. Carbon-13 is an stable isotope of carbon that has

a 1.1% natural abundance. The homogeneous dephasing time (T2) is limited to 100us at

room temperature. However, in isotopycally engineered diamond this dephasing time can

exceed T2 = 1ms [ 53 ].

The coherence time of NV center can be limited by inhomogeneous dephasing both for

ensemble of NV centers and single NV center measurements. In the case of an ensemble

of NV center the inhomogeneous dephasing arises from each NV centers being affected by

a different local magnetic noise. For single NV center measurement this dephasing comes

from the inhomogeneity of the noise over many repetitions of the measurement in contrast

to the homogeneous dephasing where only a single measurement is of concern. The inhomo-

geneous dephasing time is limited to T ∗
2 ≈ 1µs for diamond crystals with natural abundance

of carbon-13 atoms. The T ∗
2 time can be revealed by Rabi oscillation measurements (shown

in  D.1 (c) for single NV center and  3.2 (c) for an ensemble of NV centers) or Ramsey inter-

ferometry [ 54 ]–[ 56 ].

To avoid the effect of inhomogeneous dephasing we take advantage of the nature of

magnetic noise in diamond. The dominant source of magnetic noise is the nuclear spins in the

lattice. This includes the carbon-13 atoms as well as nitrogen impurities. The characteristic

time dynamics of nuclear spins is much smaller than that of electronic spin of the NV centers.

The gyromagnetic ratio for carbon-13 atoms is γ13C = 10.7KHz/mT in comparison to γNV =

28MHz/mT for NV center electronic spin. This means while over repeating measurements
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on a single NV center the ambient noise fluctuates, during a single measurement the noise

is only slowly varying. We use this feature to eliminate the effect of the inhomogeneous

dephasing by dynamically decoupling the NV center’s electronic spin from the slowly varying

background noise. The simplest form of dynamical decoupling is spin echo [  57 ], [  58 ]. In these

techniques periodic rotation of the spin of the NV center prevents it from interacting with a

dc field. As a result of this only magnetic fields that oscillate at the same frequency with the

dynamical decoupling rotations can effectively interact with the spin qubit. Therefore, these

techniques cannot be combined with dc magnetometry technique to improve the sensitivity

of the system. If the time-scale of these rotations is much shorter than that of the variations

in the background noise, the effect of the noise on the dephasing of the qubit will be reduced.

Different pulse sequences have been implemented for increasing the coherence time of NV

centers [ 58 ], [ 59 ]. In our work we employ the XY8 technique for single NV center in Chapter  3 

and Hahn echo technique for an ensemble of NV center in Chapter  4 to achieve the highest

sensitivity with each system.

1.2.5 Fabrication of NV centers

Diamonds containing NV centers can be made in many different forms. Bulk diamond

NV centers and NV centers in nanodiamond are two main categories. Nanodiamond con-

taining NV centers are available in different sizes from a few nanometers to hundreds of

nanometers and can contain a single NV center or an ensemble of NV centers. This allows

for high resolution sensing as well as high sensitivity measurement by choosing the proper

nanodiamond. These nanodiamonds are useful for spin-coating on different surfaces or using

with biological samples for magnetic field measurements or temperature sensing [ 60 ]–[ 63 ].

The NV centers can also be found naturally or synthetically produced in bulk diamond.

The nitrogen impurities in diamond crystal can be introduced during the fabrication of

diamond or after fabrication through ion implantation [  64 ], [ 65 ]. The creation efficiency

of the NV centers is improved by electron irradiation and annealing after fabrication and

ion implantation of the nitrogen impurities [ 66 ]–[ 68 ]. The annealing temperature and time

determines the quality of the NV centers created in this method [ 69 ], [  70 ].
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The ion implantation technique allows for precise control over the location and depth of

NV center [  66 ], [ 71 ]. The implanted NV centers can be as close as 5nm to the surface of the

diamond which allows for high resolution sensing of the environment next to the diamond.

The coherence time of the shallow NV centers, however, is affected by the surface which

limits the distance to the surface [ 72 ]–[ 77 ].

1.3 Layout of the Thesis

The major achievement of the thesis is the merger of the fields of research related to

photonic spin density and quantum magnetometry using NV centers in diamond.

Chapter 2 will explore the optical forces arising from the PSD in the presence of evanes-

cent waves on both chiral and achiral particles. Moreover, we connect the different phenom-

ena that have been observed in the presence of evanescent optical fields such as unidirec-

tional coupling and transverse optical forces using the principle of spin-momentum locking

for evanescent waves. We show that the photonic spin, momentum, and decay direction form

a right-handed triplet in the presence of evanescent fields. This chapter presents theoretical

work that combines the Maxwell stress tensor formalism with photonic spin density to ana-

lyze optical forces. Measurement of such predicted forces will be possible in the future using

optically trapped nanoparticles.

Even though there have been recent indirect demonstratons of PSD using 2D materials,

quantum dots and their directional spontaneous emission, an open question for the field is

direct measurement of the PSD. We propose and demonstrate a nanoscale probe for PSD in

Chapter  3 —NV centers in diamond acting as room temperature quantum magnetometers.

We demonstrate that the NV center in diamond can coherently interact with an optical

beam at room temperature. We utilize this interaction to probe PSD of an optical beam.

This platform allows for study of spin-based interactions between light and a spin-qubit in

the presence of evanescent fields due to the nanometer size of an NV center. We further

explore the paths to enhancing this interaction in order to enable all-optical coherent control

of spin-qubits.
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There are two widely utilized NV center systems in the commmunity - one based on nan-

odiamond and the other based on bulk diamond. The nanodiamond system on an AFM tip

is used widely for scanning magnetometry of quantum materials as well as for temperature

measurements inside cells. On the other hand, bulk diamond nanobeams and resonators

with NV centers have been utilized for integrated quantum photonics applications. In the

final chapter, we show that circularly polarized light can induce an effective static magnetic

field in NV centers in bulk diamond. The distinct advantage of this platform compared to

the nanodiamond on the AFM tip employed in Chapter  3 is the reduced scattering and per-

turbation of the transverse field profile of in-coupled light. A detailed wavelength dependent

study is made possible by this new configuration since the power density at the location of

the NV center can be controlled to be constant.

Both experimental set-ups utilized to obtain the results in the final two chapters were

developed entirely from the ground up specifically for this thesis. This includes the single

photon level read-out optics, second order photon correlation set-up and microwave antenna

based qubit driving system. The work in this thesis can lay the foundations for the devel-

opment of future on-chip spin photonic applications and quantum technologies.
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2. UNIVERSAL SPIN-MOMENTUM LOCKED OPTICAL

FORCES

Evanescent electromagnetic waves possess a unique intrinsic property of spin-momentum

locking where the direction of phase propagation, which can be associated with momentum,

is locked to the direction of an intrinsic polarization [ 18 ], [ 78 ]–[ 80 ]. The similarities with

surface states of electronic topological insulators led to the coining of the term - quantum spin

Hall effect of light [ 81 ], [ 82 ]. However, it should be emphasized that the evanescent surface

electromagnetic waves on conventional media are not symmetry protected and the analogy is

limited only to spin-momentum locking [ 79 ]. This intrinsic polarization of evanescent waves

can be associated with a spin-density vector which is transverse to both the direction of its

momentum and the direction of decay [  79 ], [  81 ]. The evanescent waves also transfer the spin-

momentum locking to bulk modes through electromagnetic boundary conditions [ 79 ]. The

phenomenon of spin-momentum locking of light has been observed in a variety of systems

including optical fibers, surface plasmon-polaritons and photonic crystal waveguides [ 4 ], [  6 ],

[ 8 ], [  9 ], [  12 ], [  13 ], [  22 ], [  83 ]–[ 85 ]. A unifying theme in these experiments is that scattered or

spontaneously emitted light with an intrinsic polarization shows unidirectional propagation.

It is an interesting question whether this intrinsic polarization of the evanescent wave

(transverse spin) can lead to optical forces and whether they show fundamental behavior

different from well-known gradient and radiation pressure forces [  86 ], [ 87 ]. Very recent

studies involving optical forces on chiral particles, which contain both induced electric and

magnetic moments, show that these particles can experience an optical force perpendicular

to the direction of the momentum of the incident field [ 3 ], [ 5 ], [ 10 ]. It was recently shown

that the particle in the unidirectional coupling experiment also experiences an anomalous

optical force perpendicular to the direction of the momentum of the incident beam [ 11 ].

These anomalous forces cannot be explained by the gradient or radiation pressure forces.
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2.1 Outline of the Problem

In this chapter we present a unified view of anomalous optical forces on chiral and achi-

ral particles and uncover the fundamental connection to the spin-momentum locking phe-

nomenon associated with evanescent waves. This force is different in nature from the gradient

force or the optical pressure and is in fact related to the transverse spin of evanescent electro-

magnetic fields interacting with the particle. We make the important observation that there

exists a fundamental right-handed triplet vector for evanescent waves related to momentum,

decay and transverse spin which governs the direction of optical forces. The spin-density

forces are rigorously calculated using a stress tensor formalism for evanescent waves gen-

erated during total internal reflection (TIR) and the near-field of an optical fiber. Subtle

connections between spin-momentum locking and the non-trivial direction of the spin forces

are revealed paving the way for experimental demonstrations. Our work also shows clearly

the independence of the orbital angular momentum (OAM) of the propagating optical fiber

mode and the transverse spin-density of the evanescent waves associated with the near-field.

2.2 Spin Density and Transverse Spin in Evanescent Waves

We start with a discussion of the field quantities defining the intrinsic spin density of elec-

tromagnetic evanescent waves. This is a subtle question and can only be answered by making

connections to experimental observables such as energy and optical forces. Momentum den-

sity of electromagnetic waves is proportional to the Poynting vector [ 82 ], ⟨p⃗⟩ = ⟨N⃗⟩/c2,

where ⟨p⃗⟩ is the time-averaged momentum density, ⟨N⃗⟩ = 1/2Re
[
E⃗ × H⃗∗

]
is the time-

averaged Poynting vector, and c is the speed of light. For evanescent waves, the direction

of this momentum is always perpendicular to the direction of decay and is the same as the

direction of the real part of the wave vector [ 79 ]. The spin density of evanescent waves has

been defined by [  18 ], [ 19 ], [ 88 ], S⃗obs = ⟨s⃗⟩ = (1/4ω) Im
[
ϵ0E⃗

∗ × E⃗+µ0H⃗
∗ × H⃗

]
= S⃗obs

E + S⃗obs
M ,

where S⃗obs
E and S⃗obs

M are the electric and magnetic spin densities, respectively. Another

equivalent approach is to define the electric and magnetic spin densities by introducing the

generalized electric and magnetic Stokes parameters (see Appendix  A ), S⃗obs
E = V⃗ e/(ωc) and

S⃗obs
M = V⃗ m/(ωc).
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In Fig.  2.1 the direction of the component of the spin density transverse to the plane

of momentum and decay direction is shown for three different cases. This figure illustrates

that the triplet of momentum, decay direction and transverse spin follows a right-hand rule.

This means for a beam propagating in +ẑ direction if the wave is decaying in +x̂ direction

the transverse spin will be in +ŷ direction. We emphasize the subtle observation that the

opposite direction of the transverse spin is inconsistent with causality because it refers to a

wave growing in magnitude away from the boundaries.

2.3 Anomalous Optical Force and Directional Coupling

Spin-momentum locking has profound consequences on optical forces. Optical force

acting on a chiral particle in an incident electromagnetic field, with induced dipole mo-

ments

 p⃗
m⃗

 =

 αee iαem

−iαem αmm


E⃗
H⃗

, can be expressed as (see Appendix  A ) ⟨F⃗ ⟩ = ⟨F⃗gr⟩ +

⟨F⃗op⟩ + ⟨F⃗sr⟩ where all the forces are time averaged. ⟨F⃗gr⟩ and ⟨F⃗op⟩ are the gradient

force and radiation pressure, respectively. ⟨F⃗sr⟩ = −(ck4
0/6π)

{(
Re[αeeα

∗
mm] + |αem|2

)
⟨N⃗⟩ +√

µ0/ϵ0Re[αeeα
∗
em]V⃗ e +

√
ϵ0/µ0Re[αmmα

∗
em]V⃗ m −1/2Im[αeeα

∗
mm]Im[E⃗× H⃗∗]

}
is the scatter-

ing recoil force. It vanishes for an achiral particle with no magnetic polarizability. In the

case of a chiral particle, this force has two terms proportional to the electric and magnetic

fourth Stokes parameters (or equivalently electric and magnetic spin densities). The sum of

these two terms is known as the spin density force. Therefore, the spin density force is a

part of the overall scattering recoil force. Our aim is to show that the subtle phenomenon

of spin-momentum locking dictates the non-trivial direction of this force in various scenarios

where nanoparticles are interacting with evanescent waves.

We first consider the phenomenon of total internal reflection at a dielectric-air interface

with a nanoparticle placed on the air side as shown in Fig.  2.2 . The evanescent waves

generated have the same direction of propagation parallel to the interface as the incident

beam i.e. their momentum is fixed. This immediately fixes the transverse spin direction

of the evanescent wave by the spin-momentum locking phenomenon. Consequently, light

scattered by chiral and achiral particles will show fundamentally different behavior since the
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Figure 2.1. Direction of transverse spin in evanescent fields for (a) total
internal reflection, (b) surface plasmon polariton, and (c) optical fiber. The
blue vectors show the electric field at an instance of time and the orange vectors
show the direction of transverse spin. In all cases the direction of momentum,
direction of decay, and transverse spin follow a right-hand rule.
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incident evanescent wave is intrinsically handed. In Fig.  2.2 (a), the achiral particle scatters

the evanescent wave equally in two directions leading to zero net momentum in direction

transverse to the plane of incidence and therefore no recoil force in this direction. However,

Fig.  2.2 (b) shows the case of a chiral particle which interacts with the spin of the evanescent

waves and scatters the light asymmetrically leading to a “sideways” (lateral) recoil force i.e.

transverse to the incident plane. This phenomenon is the cause of the anomalous lateral

force reported in recent works [  3 ], [ 10 ]. The resulting force will be in opposite directions

for the two enantiomers of a chiral particle. To obtain a lateral force on an achiral particle,

we can use the reciprocal experiment of Fig.  2.2 (a) shown in Fig.  2.2 (c). This means, if

we illuminate an achiral particle placed near an air/dielectric interface with right-handed

circularly polarized light propagating in +ŷ direction, the scattered evanescent fields will

be right-handed i.e. their spin is fixed. This fixes the direction of momentum parallel to

the interface due to spin-momentum locking and the tunneled evanescent waves propagate

preferentially with a net momentum in −ẑ direction. This directional scattering will apply a

recoil force on the particle in +ẑ direction. Note the right-hand rule from Fig.  2.1 is central

to this interplay of spin and momentum of incident light and lateral recoil force.

2.4 Spin-momentum Locked Optical Force in Total Internal Reflection

The effect of the chirality of a particle on the transverse spin density force is illustrated

in Fig.  2.3 , where the forces on a chiral and an achiral particle are compared. By calculating

the force in a purely evanescent wave we show that the origin of the aforementioned lateral

optical force is the transverse spin of evanescent waves. Fig.  2.3 (c) shows that the lateral

force only appears when the angle of incidence is larger than the critical angle of the prism/air

interface. In this regime, the power is fully reflected and only evanescent fields exist beyond

the prism surface. Furthermore, this figure shows that only a chiral particle can probe the

transverse spin of an evanescent wave if the incident wave is linearly polarized.
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Figure 2.2. Lateral force caused by transverse spin of the evanescent fields. (a)
An achiral non-magnetic particle is placed in an evanescent field generated by total
internal reflection of a p polarized incident beam. The handedness of the scattered
radiation follows the direction of transverse spin of the evanescent field and is locked
to the direction of momentum of the incident field. Due to symmetry, the scattered
waves propagating in +ŷ and −ŷ directions have equal power densities which leads to
zero lateral force on the particle. (b) A chiral particle is placed in an evanescent field
experiences a lateral force. The lateral force is proportional to the transverse spin of
the evanescent field. The spin of the evanescent field causes a directional scattering
by the particle. The direction of the scattered radiation is parallel (anti-parallel) to
the direction of spin, therefore, the recoil force caused by the directional radiation
will be anti-parallel (parallel) to the direction of spin. (c) Reciprocal setup of (a).
An achiral particle placed near a dielectric surface is illuminated by a circularly
polarized beam. The scattered radiation by the particle propagates directionally
inside the dielectric and exerts a recoil force on the particle.
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Figure 2.3. Optical forces on a chiral particle (solid line) and an achiral
particle (dots) in an evanescent field. (a) Schematic of a chiral particle placed
near a prism showing the direction of incident beam and the forces. (b) Time
averaged force in x̂ direction. This component of the force is dominated by the
gradient force and is toward the prism. (c) Time averaged force in ŷ direction.
This component of the force is proportional to the transverse spin. (d) Time
averaged force in ẑ direction. This component of the force is dominated by
radiation pressure. The particle is 100nm away from the surface of the prism.
See Appendix  A for the polarizability of the chiral and achiral particles. The
incident beam is p polarized with wavelength λ = 5µm and carries a power
of p = 50mW/mm2. The refractive index of the prism is n = 3.5 and the
horizontal axis is related to the incident angle of the beam.

2.5 Spin-momentum Locked Optical Force in an Optical Fiber

We now show effects of spin-momentum locking phenomenon on optical forces in the

cylindrically symmetric case of an optical fiber. The fundamental mode of an optical fiber

is the HE11 mode [ 89 ] and can appear in two degenerate forms of m = 1 and m = −1

where m is related to the OAM of the mode. Fig.  2.4 depicts how this OAM related to the

propagating wave field is fundamentally different from the transverse spin density related

to the evanescent waves present outside the core of the fiber. This is revealed through the

arrows depicting the contrasting nature of energy flow and spin-density flow when the OAM

44



HE
11

m=1

φ̂

 r̂

 ẑ
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Figure 2.4. Direction of Poynting vector, spin density and spin density force
on a chiral particle for m = 1 and m = −1 HE11 modes. (a) and (b) Direction
of Poynting vector outside the optical fiber for the two modes. (c) and (d)
Direction of spin density and spin density force outside the optical fiber for
the two modes. The longitudinal component of the spin density has opposite
directions for the two modes, but, its transverse component is in the same di-
rection for both modes which shows the spin-momentum locking in evanescent
fields. The direction of spin density force on a chiral particle placed outside
the optical fiber is also shown. The longitudinal component of the force, Fz,
has opposite directions for the two modes, but, the transverse component, Fϕ,
is in the same direction for both modes.

is reversed. The direction of the twist of the transverse spin-density around the fiber is

fundamentally tied to the momentum and is unrelated to the OAM. A detailed analysis will

be presented in future work and here we focus only on the consequences of this phenomenon

on the non-trivial direction of optical forces on a chiral particle in the near-field of an optical

fiber.

To compare the magnitude of the spin-momentum locked optical force with the other

forces acting on a chiral particle, we have calculated the total force in different directions

on a chiral particle placed near an optical fiber (Fig.  2.5 ). This figure compares the force

for m = 1 and m = −1 modes. The radial component of the force Fr is dominated by the

gradient force. Since the spin density force has no contribution in this component of the

force, it has the same magnitude for both the modes. In Fig.  2.5 (d) we show the striking

contrast between positive and negative angular momentum modes. The longitudinal force Fz
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changes sign in accordance with the angular momentum mode. Its behavior is fundamentally

different from the transverse spin density force. Fig.  2.5 (c) is the non-trivial lateral force

which is related to the transverse spin-density. Its direction is independent of the angular

momentum and is related only to the propagation direction in the fiber. The difference

between the magnitude of this component for the two modes is because the ϕ̂ component of

the radiation pressure has different directions for the two modes (Fig.  2.4 ).

2.6 Conclusion

In conclusion, we have demonstrated universality of spin-momentum locking and the

resulting lateral optical force on chiral particles in evanescent fields. We have shown that the

phenomena giving rise to unidirectional coupling is also at the heart of the lateral optical

force. The lateral optical force can be harnessed for manipulation of small particles and

chirality sorting in evanescent wave fields.
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Figure 2.5. (a) Schematic of a chiral particle near an optical fiber. (b),
(c) and (d) Time averaged optical force in different directions plotted versus
radius of the fiber. The solid line shows the force for m = 1 mode and the
dots show the force for m = −1 mode. The r̂ component is dominated by the
gradient force and has the same value for both modes while the ϕ̂ component
is dominated by the spin density force. The transverse component of the
Poynting vector applies a radiation pressure force which is responsible for the
difference in the ϕ̂ component of the force for the two modes. The direction
of the transverse spin and transverse spin density force is independent of the
OAM of the mode and is locked to its direction of propagation. Both radiation
pressure and the spin density forces contribute to the ẑ component of the force.
The radiation pressure is in +ẑ direction for both modes but the spin density
force has opposite directions. Therefore, for the m = 1 mode the force is in
+ẑ direction but for the m = −1 mode the force in the opposite direction.
The particle is placed 100nm away from the surface of the fiber and has the
same properties as the particle in Fig.  2.3 . The refractive index of the fiber
is n1 = 1.5 and the surrounding medium is vacuum. The wavelength of the
incident beam is λ = 5µm and the mode carries a total power of P = 1µW .
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3. QUANTUM SENSING OF PHOTONIC SPIN DENSITY

USING A SINGLE SPIN QUBIT

Nitrogen-vacancy (NV) centers in diamond have been used to probe electron spin excitations

in matter such as magnons [ 32 ], magnetic thin films [ 33 ], and magnetic skyrmions [ 35 ]. Even

in nonmagnetic materials such as plasmonic silver; low-frequency evanescent wave Johnson

noise and ballistic transport of electrons can be probed by NV centers [ 34 ]. NV centers in

diamond can also work as navigation guidance systems by vector sensing of earth’s magnetic

field [ 90 ]. This emerging frontier of research shows how coherence in spin qubits allows for

ultra sensitive read-out of magnetic fields and magnetic noise in quantum materials and

beyond. It is therefore intriguing to explore how the synthetic magnetic fields generated by

light can be probed using the same quantum metrological principles. Here, we put forth the

concept of quantum metrology of a property of dynamical light fields at room temperature.

We propose and demonstrate that NV centers in diamond can sense the local polarization

of spinning light fields within ultra small mode volumes. Our sensor is a single spin qubit

interacting with the effective static magnetic field generated by a circularly polarized light

field. We measure the induced phase of the spin qubit through optical read out to directly

detect the photonic spin density (PSD) of a laser beam red-detuned to the optical transition

of the NV center. We demonstrate coherent interaction at room temperature paving the way

to probe exotic spin states of photons. We also put forth a rigorous theory of the interaction

between photon spin density and the spin qubit using the full NV center Hamiltonian. Fi-

nally, we shed light on how on-chip nanophotonic structures possess effective static magnetic

fields arising from the intrinsic spin of evanescent waves. This effect can be exploited in

future spin quantum electrodynamics devices for on-chip targeted addressing of spin qubits.

The spinning field of light has long been associated with the concept of global polarization

[ 1 ], [  2 ]. Here the spin angular momentum (SAM) of light is a vector with its direction pinned

parallel to the momentum of a far field propagating wave. In stark contrast, the PSD has only

recently emerged to the forefront of nanophotonics [ 18 ], [ 21 ], [ 91 ]–[ 93 ]. PSD in confined or

structured light beyond the traditional paraxial regime can exhibit exotic spatial variation

of local polarization known as spin texture [  94 ]. In recent years, exploring the near-field
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properties of this spin texture has led to the discovery of exotic phenomena such as photonic

skyrmions and topological electromagnetic phases of matter [ 25 ], [  26 ], [  95 ].

Interesting phenomena originating from near-field photon spin density include directional

spontaneous emission, one-way scattering of surface plasmon polaritons, transverse spin in

free space light beams, and anomalous optical forces [ 11 ], [ 14 ], [ 29 ], [ 88 ], [ 96 ]. Here, the

nature of PSD is inferred indirectly through directional phenomena, i.e., spin-momentum

locking or spin to orbital angular momentum conversion [  24 ], [ 97 ], [ 98 ]. We note that the

orbital angular momentum (OAM) of light is an extrinsic degree of freedom that can be

directly detected due to its wavelength scale helical phase signatures [ 99 ]. However, direct

measurement of PSD remains a challenge since the fundamental property of photon spin

density exists in subwavelength volumes of the light field. Therefore, there is an urgent need

to develop a nanoscale photon spin probe similar to near-field scanning optical microscopy

[ 88 ], [ 93 ] routinely used to detect dipolar electric fields or magnetic force microscopy which

can map nanoscale texture of electron spins.

3.1 Theoretical Model of Spin Qubit Interacting with Photonic Spin Density

In order to demonstrate the ultra-subwavelength probing of PSD, we study the interaction

between the spin of a monochromatic optical beam and an NV center that is placed on an

atomic force microscopy (AFM) tip. This is a versatile system for future explorations of spin

texture of complex optical beams. We note that the light-matter interaction between the

Gaussian beam and the spin qubit only occurs due to virtual photon transitions since our

incident beam is far detuned from the energy levels of the NV center. Thus the signature of

the PSD is in the phase of the single spin qubit. We therefore need quantum metrological

tools to quantify this unique coherent light-qubit interaction at room temperature.

In classical electrodynamics (CED), the total angular momentum of charged particles and

electromagnetic fields are given by J⃗CED = ∑
α x⃗α × p⃗α +ϵ

∫
d3xE⃗⊥ ×A⃗⊥ +ϵ

∫
d3xE j

⊥(x×∇)Aj
⊥

(see chap. I in Ref. [  17 ]), where E⃗(r⃗, t) is the electric field, A⃗(r⃗, t) is the vector potential, the

subindex ⊥ denotes the transverse part of the vector field, and ϵ is the permittivity. These

three terms denote the OAM of the charges, SAM of light, and OAM of light, respectively.
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In this equation, the integral kernels give the photonic spin and OAM densities. While the

term SAM is also used to describe the kernel of the SAM term in the literature, we use

the term PSD for the kernel to distinguish it from the SAM. Our goal is to emphasize on

the local and nanoscale characteristics of it. In this chapter, we demonstrate a technique

that can be used to measure the PSD beam S⃗obs = ϵE⃗⊥(r⃗, t) × A⃗⊥(r⃗, t) [  16 ] with nanoscale

resolution using a single NV center in diamond.

For a monochromatic beam with frequency ω0, the PSD can be written as S⃗obs =

(1/4ω0)Im[ϵE⃗∗ × E⃗ + µH⃗∗ × H⃗] = S⃗obs
E + S⃗obs

M where E⃗∗(H⃗∗) denotes the complex con-

jugate of the complex electric (magnetic) field [  19 ], [  20 ], i.e., E⃗⊥ = (E⃗ + E⃗∗)/2. The PSD is

time independent and is related to the handedness of the polarization of the beam. Accord-

ing to the selection rules of electric-dipole transitions, circularly polarized light will change

the electronic orbital angular momentum by ±h̄ while keeping the electron-spin state un-

changed. However, due to spin-orbit coupling, the transition frequencies in the NV center

become dependent on the electron spin states as shown in Fig.  3.1 (b). Under a detuned in-

cident light beam, virtual electric-dipole transitions will induce ac Stark shifts in the ground

electronic state [ 100 ]–[ 103 ]. As illustrated in Figs.  3.1 (c) and  3.1 (d), the amplitude of these

shifts (δ0 and δ±1) depend on both the electronic spin state of the NV center and the pho-

tonic spin density of the excitation. We show that this effect manifests itself as a PSD

dependent effective static magnetic field. We exploit the single NV center as a nanoscale

quantum magnetometer [ 104 ] to measure this effective static magnetic field created by the

target spinning light.

We consider the detailed energy level structure of NV centers in the basis of RCP and LCP

transitions to express the net energy shift as a function of PSD. The effective excited-state

Hamiltonian of the NV center is given by [ 105 ], [  106 ],

HES =(γNVB + ∆es + λz)|A↑⟩⟨A↑|

+ (−γNVB + ∆es + λz)|A↓⟩⟨A↓| − 2∆es|ER⟩⟨ER|

− 2∆es|EL⟩⟨EL| + (γNVB + ∆es − λz)|E↑⟩⟨E↑|

+ (−γNVB + ∆es − λz)|E↓⟩⟨E↓|, (3.1)
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Figure 3.1. Probing PSD with a single NV center. (a) A target beam, red-
detuned to the NV center transition, is incident on a single NV center on an
AFM tip. We measure the relative energy level shifts in the ground state and
show its proportionality to the PSD. The single NV center serves as a room-
temperature nanoscale probe for PSD. (b) Ground- and excited-state energy
levels of an NV center showing the selection rules for RCP and LCP excitation.
(c) Level shifts induced in the ground state due to the virtual transitions under
the off-resonant target beam. (d) Power and polarization (spin) dependence
of the relative energy shifts in the ground state, resembling Zeeman splitting.
An effective static magnetic field is defined as Beff = (δ+1 − δ−1)/2γ.
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where γNV = 2π × 28 MHz/mT, B is the external static magnetic field, λz ≈ 2π × 5.5 GHz

is the spin-orbit coupling, and ∆es ≈ 2π × 1.42/3 GHz is the spin-spin-induced zero-field

splitting. |A↑⟩, |A↓⟩, |ER⟩, |EL⟩, |E↑⟩, and |E↓⟩ are spin and orbital angular momentum

resolved excited states shown in Fig.  3.1 (b). Using second-order perturbation theory, ac

Stark shift for the ground-state energy levels is [  100 ], [  107 ],

δi = 1
4h̄2

∑
f

∣∣∣⟨f |d⃗|i⟩ · E⃗(r⃗, t)
∣∣∣2

∆if + Γ2
f/4∆if

. (3.2)

where |i⟩ and |f⟩ are the initial and final states for all possible transitions, ∆ij is the difference

between the center frequency of the off-resonant excitation (ω0) and the resonance frequency

of the transition (ωij), and Γf is the spontaneous decay rate of the final state. Using the

Hamiltonian in Eq. ( 3.1 ) and the transition rules for circularly polarized incident light, we

arrive at the result of the effective static magnetic field generated by spin density of light

(see Appendix  B ):

Beff ≡ δ+1 − δ−1

2γNV
∝ S⃗obs

E · n̂, (3.3)

where n̂ is the direction of the NV center. From Eq. ( 3.3 ), we see that the strength of the

effective static magnetic field is proportional to the projection of the electric PSD (S⃗obs
E ) on

the NV center axis (n̂). In the expression above, we have used the spin states | ± 1⟩ to form

the probe qubit as it leads to effective static magnetic fields directly proportional to the

PSD. One can also use |0⟩ ↔ | ± 1⟩ transitions as the probe qubit. We show a comparison

between the choice of probe qubits in Fig.  3.2 (c). The magnetic portion of the PSD (S⃗obs
M )

does not interact with the NV center since the optical transitions are derived by electric

dipole interactions.

The PSD of the target beam is determined by its power and degree of circular polarization.

In our experiment, the wavelength of the target beam is λ0 = 800nm, which is far off-resonant

to the optical transition of the NV center at λ = 637nm (Fig.  3.1 (b)). We control the PSD

by tuning the power of the beam and the angle θ between the linear polarizer and the

quarter-wave plate (QWP) (see Fig.  3.2 (a)). The degree of circular polarization (i.e., the

photonic spin density) is S⃗obs
E ∝ sin(2θ)ẑ, where ẑ is the direction of propagation of the
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Figure 3.2. Effective static magnetic field induced by PSD. (a) A linear
polarizer and a quarter wave plate control the PSD. (b) The effective magnetic
field calculated for different QWP angles (θ) and alignment angles (ϕ). (c) The
effective magnetic field calculated for an NV center in a (100) cut diamond,
ϕ = 54.7◦.

beam. Equation ( 3.3 ) shows that an NV center can only sense the projection of a magnetic

field on its defect axis. Therefore, the measured effective static magnetic field also depends

on the alignment angle ϕ between the NV center axis and the PSD vector. We show the

theoretical simulation of the effective static magnetic field Beff sensed by an NV center,

as a function of θ and ϕ in Fig.  3.2 (b). We should note that in the experimental results,

the alignment angle is fixed at ϕ = 54.7◦ due to the growth angle of the diamond crystal.

For this specific angle, we show the effective magnetic field experienced by the probe qubit

in Fig.  3.2 (c). This variation of the effective static magnetic field with degree of circular

polarization is the unique signature of PSD. We note that the target laser is red-detuned to

the optical transition of the NV center and is not absorbed by the NV center. Therefore,

the resulting effective static magnetic field is not due to the absorption or emission related

spectral features of the NV center. It is related to the induced phase in the spin qubit

measured by optical read out.
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Table 3.1. Dynamical decoupling measurement parameters used for the re-
sults shown in Fig.  3.4 .

Number of XY8 repetitions 4
Free precession time (τ) 1.2µs

Total sequence time ∼ 40µs
Target beam pulse length (τ ′) 1µs

Total interaction time 15µs
π-pulse length ∼ 50ns

3.2 Experimental Demonstration Using a Single NV Center

We overcome the challenge of room-temperature observation of PSD to pave the way

for future on-chip applications. We exploit a large detuning of the target PSD beam to

the optical transition of the NV center to avoid absorption of photons by the NV center

which would result in a loss of coherence. This detuning results in an amplitude of a few

tens of nanotesla for the generated effective static magnetic field. In order to probe this

effective magnetic field at the location of the single NV center, we use ac magnetometry

techniques at room temperature. In ac magnetometry, high sensitivity is achieved due to

a long coherence time from spectral filtering of magnetic fluctuations (e.g., nuclear noise)

coupled to the NV center [ 36 ], [  54 ]. Figure  3.3 shows the dynamics of the measurements.

A 532nm laser is used to initialize and readout the state of the qubit. After initialization,

a series of microwave pulses are sent in XY8 configuration to achieve dynamical decoupling

of the qubit from background noise [ 108 ]. The intensity of the target beam is modulated

to match the frequency of the XY8 pulse for ac magnetometry. Furthermore, we perform

two measurements for which the phase induced by the PSD has opposite signs (Figs.  3.3 (e)

and  3.3 (f)). This is achieved by taking advantage of the sign of an ac field as shown in

Fig.  3.3 (a). We suppress the effect of any systematic noise by subtracting the outcome of

these two measurements. The parameters used in the measurements are shown in Table  3.1 .

The first striking evidence of photonic spin density measurement is shown in Fig.  3.4 (c).

We observe that the effective static magnetic field generated by PSD directly follows the

ellipticity of the polarization of the target beam. For a Gaussian beam, the PSD is pro-

portional to the degree of ellipticity of the polarization. In our experiment, we control the
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Figure 3.3. Isolating the signature of photonic spin density using dynamical
decoupling and ac magnetometry with a single spin qubit. (a) Pulse sequence
used for measuring the PSD. In each measurement a pair of 532nm laser pulses
initialize (polarize) and read out the state of the NV center. During each
measurement an XY8 MW pulse performs dynamical decoupling on the spin
of the NV center. The target beam, generating the PSD, is turned on and
off during the XY8 sequence to generate a net effect on the final state of the
NV center. We perform two measurements in which the target beam induces
rotations in opposite directions on the spin vector in the Bloch sphere. By
subtracting the outcome of these two measurement we eliminate any systematic
noise in the measurement. [(b)-(f)] Bloch sphere representation of the state of
the qubit after polarization, before the XY8 pulse, after the XY8 pulse, and
before readout. Panels (e) and (f) show an schematic comparison between the
PSD-induced rotations in measurement 1 and measurement 2. The PSD is
generated by the target beam. RO, readout; Pol, polarizing.

ellipticity of the target beam using a linear polarizer and QWP. Fig.  3.4 (c) shows the ob-

served dependence of the effective static magnetic field on the angle of the QWP (θ). Also

plotted are a sinusoidal fit of the data (red dashed curve) and the result of full wave nu-

merical simulations (purple curve). The data show a small dc offset in the curve which is

not present in Eq. ( 3.3 ). This offset is related to an asymmetry in the system’s geometry,
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Figure 3.4. Demonstration of nanoscale PSD probe with a single NV center.
(a) Simplified schematic of the experimental setup. (b) Pulse sequence show-
ing dynamical decoupling for ac magnetometry and amplitude modulation of
the target beam to generate an ac effective magnetic field suitable for high
sensitivity measurement. (c) Measured PSD for different QWP angles with
target beam power of 4mW. The dashed red curve is a sine fit to the data,
the solid purple curve is the numerical simulation results, matching closely
to the measurements. (d) Measured PSD as a function of incident power for
θ = 3π/4 showing a linear dependence. The dashed red curve is a linear fit.
Insets show the raw measurement data for |0⟩ → | + 1⟩ (red) and |0⟩ → | − 1⟩
(blue) transitions. Panels (c) and (d) show that the effective field is directly
proportional to PSD.
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which would lead to the presence of transverse spin at the location of the NV center. This

transverse spin obeys spin-momentum locking rules [ 21 ], [ 96 ] and does not depend on the

QWP angle and therefore, gives rise to the offset (see Appendix  F ).

The second convincing proof of PSD measurement is the linear dependence of the effective

static magnetic field on the power of the beam [Eq. ( 3.3 )] shown in Fig.  3.4 (d). The PSD

is linearly proportional to the power of the beam. This is in contrast to real magnetic fields

where the amplitude scales with the square root of the power. The dashed red line shows a

linear fit to the measured data. It should be noted that for each data point in Figs.  3.4 (c)

and  3.4 (d) we measure the energy shifts δ±1 − δ0 separately and calculate the effective static

magnetic field Beff according to Eq. ( 3.3 ). The inset of these figures show the raw data for

these measurements.

These two unique features in the measured effective static magnetic field also show that

the measured quantity is not affected by temperature oscillations in the diamond caused by

the target laser. A change in the temperature of the diamond can also lead to a shift in the

energy levels of the NV center [ 109 ]. However, this effect is distinguishable from the effective

static magnetic field induced by the PSD because the induced temperature oscillation is

independent of the polarization of the beam while the PSD-induced effect depend on the

degree of ellipticity of the beam as shown in Fig.  3.4 (c). The results in Figs.  3.4 (c) and

 3.4 (d) do not show any significant temperature oscillations in the sample.

3.3 Effective Static Magnetic Field in Optical Waveguides

We now discuss how this universal photonic spin density-induced effective static magnetic

fields can be used in future generation of on-chip spin QED applications. We note that

evanescent waves are a ubiquitous resource available on a scalable nanophotonic platform.

These evanescent waves possess an intrinsic universal spin that can exert effective static

magnetic fields on spin qubits with a subwavelength resolution. This effective magnetic field

is only manifested on interaction of PSD with NV centers and is a synthetic magnetic field.

PSD-induced effective static magnetic fields can produce giant spatial gradients on the order

of 10T/m with an ultrafast temporal response [ 110 ]. This allows for on-chip and targeted
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Figure 3.5. Effective static magnetic field sensed by an NV center near optical
waveguides. Our rigorous simulations are performed using full wave analysis
of the optical fields along with the light-matter interaction theory of Sec. 1.
A plasmonic waveguide (a), a ridge waveguide (b), and an optical fiber (c) all
producing transverse effective static magnetic fields due to the PSD of their
evanescent fields. The direction of the effective static magnetic field is shown
with black arrows and its amplitude with the colormap. The mode of the ridge
waveguide is transverse electric (TE) and the mode of the optical fiber is x̂
polarized HE11.

nanoscale addressing of spin qubits. Figure  3.5 shows the effective static magnetic field in

the near-field region of a plasmonic waveguide, a ridge waveguide, and an optical fiber. This

effective static magnetic field originates solely from the PSD of the evanescent waves in the

vicinity of the waveguides. The direction of the field is in the x − y plane and is shown

with black arrows. All three cases show short-range effective static magnetic field suitable

for addressing single NV centers on chip or deposited on the surface of an optical fiber. This

phenomenon opens the door to dense integration of single spin qubits for on-chip spin QED

applications.

3.4 Conclusion

In this chapter, we have demonstrated a room-temperature quantum probe for nanoscale

spinning light fields. The spinning optical beam induces a magnetic field in the spin qubit

causing a qubit rotation on the Bloch sphere (phase accumulation). The ultra-subwavelength

behavior of spin angular momentum possess unique challenges for direct observation which we

overcome using state of the art quantum sensing approaches. Our measurement reveals that
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the NV center’s room-temperature excited-state energy levels display striking agreement with

those found in low-temperature measurements. This is in contrast to direct measurements on

the excited state where its full features cannot be revealed due to time averaging [ 111 ], [ 112 ].

Our work can lead to new spin-dependent topological phases of light and also presents a

way to exploit the universal resource of spinning evanescent waves available on an integrated

photonics platform.
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4. OPTICALLY INDUCED STATIC MAGNETIC FIELD IN

ENSEMBLE OF NITROGEN-VACANCY CENTERS IN

DIAMOND

Nitrogen-vacancy (NV) centers in diamond have emerged as a promising nanoscale mag-

netometer for probing condensed matter phenomena [ 33 ], [ 113 ]–[ 116 ]. However, their ap-

plication has been mostly focused on phenomena arising from electronic and nuclear spin

excitations such as probing Johnson noise and magnetic skyrmions [ 34 ], [  35 ]. In the previous

chapter we demonstrated room-temperature probing of photonic spin density (PSD) with

a single NV center [ 117 ]. This demonstration opens a new avenue in quantum sensing of

properties of optical fields. The recent studies of the subwavelength properties of optical

fields have led to the discovery of exotic phenomena such as photonic skyrmions and spin-

momentum locking of light [  21 ], [ 25 ], [ 26 ], [ 95 ], [ 96 ], [ 118 ]. The advent of the NV center as

a quantum sensors for the PSD can accelerate the experimental research in this field.

4.1 Outline of the Problem

In this chapter we demonstrate room-temperature probing of PSD with an ensemble of

NV centers. We use this platform to show that the PSD induced static magnetic field is a

broadband effect in the far-off-resonant regime. We study its wavelength dependence and

the scaling of the field with the beam’s polarization ellipticity and optical power. The results

of this chapter will help pave the way for enhancements in the effective static magnetic field,

with the goal of expanding its range of applications to on-chip spin quantum electrodynamics

and all-optical qubit control.

Fig.  4.1 shows the schematics of the experiment. An elliptically polarized beam is focused

onto a diamond sample with an ensemble of NV centers. The beam possesses PSD related

to the ellipticity of its polarization [ 19 ], [  117 ], [  119 ]. The electric PSD is defined as S⃗obs
E =

(ϵ/4ω0)Im(ϵE⃗∗ × E⃗) where ϵ is the permittivity of the medium and E⃗∗ denotes the complex

conjugate of the complex electric field. The interaction of the beam with NV centers induces

a rotation in the spin vector of the NV centers. This rotation is proportional to the PSD
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Figure 4.1. Interaction of the PSD of an optical beam with the electronic spin
of NV centers. (a) Schematic of the measurements where a focused beam with
elliptical polarization interacts with an ensemble of NV centers. (b) The Bloch
sphere representation of the NV centers’ electronic spin showing an induced
rotation caused by the optical beam. The amount of this induced rotation
depends on the PSD of the beam. The direction of the PSD and the bias
magnetic field are aligned such that the induced rotation is equal for all NV
centers in the ensemble.

of the beam and we define an effective static magnetic field to describe the strength of

this interaction (see [ 117 ]). The NV centers are randomly scattered in the bulk of a single

crystalline diamond, with their four different orientations determined by the (100) growth

plane. A bias magnetic field is placed normal to the surface of the sample and is aligned

to have the same projection along all NV center orientations. The PSD of the elliptically

polarized beam is parallel to the direction of propagation and is also normal to the surface of

the sample. This use of symmetries in the system ensures that the PSD induced rotation is

the same over all of the NV centers. Moreover, the spot size of the PSD beam is designed to

be larger than the spot size of the excitation laser to ensure that all excited NV centers are

illuminated uniformly with the PSD beam. Figures  4.1 (b) and  4.1 (c) illustrate the rotation

of the spin vector on the Bloch sphere. These two figures show the rotations induced by

RCP and LCP incident beams. The two different polarizations induce rotations in opposite

directions due to their different PSD. We measure this induced rotation by performing ac

magnetometry using Hahn echo technique.
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4.2 Coherence Time and Sensitivity

Figure  4.2 shows the pulse sequence used for the ac magnetometry measurements and our

approach to optimizing the sensitivity of the measurement. The sensitivity is proportional

to η ∝ 1√
T2

[ 54 ]. Here η has units of nT/
√
Hz and T2 is the NV centers’ coherence time.

Therefore, to optimize the sensitivity we maximize the coherence time. The top panel in

Fig.  4.2 (a) shows the pulse sequence used for measuring Rabi oscillations. The outcome of

this measurement is shown in Fig.  4.2 (b) and its inset. The red curve in this figure shows

a fit to the envelope of the oscillations. The decay of this curve shows the coherence time

T ∗
2 of the spin qubits. This coherence time is limited by inhomogeneous broadening of the

ensemble resonance. This broadening is a result of the background magnetic noise generated

by carbon-13 atoms in the diamond crystal. To reduce the effect of this noise we use Hahn

echo pulse sequence shown in Fig.  4.2 (b) [  54 ], [ 58 ]. This pulse sequence takes advantage of

the slowly varying nature of the background noise to lower its effect on the spin qubits. The

outcome of this measurement is shown in Fig.  4.2 (c). Noise cancellation causes the initial

decay of the signal (blue dashed line) to be slower than the decay of the Rabi oscillations.

Moreover, there are revivals in the signal due to the periodic motion of nuclear spins also

under the influence of the applied bias magnetic field [ 120 ]. The envelope of the periodic

revivals (dotted green line) shows the slowest decay in the coherence signal. We use the

second revival (τ ≈ 42µs) for our measurements to achieve a long interaction time and the

best sensitivity.

The pulse sequences for measuring the effective static magnetic field are shown in Fig.  4.3 (a).

The two sequences shown in this figure take advantage of the phase of an ac signal. If the

PSD pulse is sent in the first half of the Hahn echo sequence (top panel) it induces a positive

phase in the spin qubit and if it is sent in the second half (bottom panel) the induced phase

will have the opposite sign. Therefore, we perform two measurements as shown in Fig.  4.3 (a)

and subtract the outcome of the two measurements to calculate the effective static magnetic

field induced by the PSD signal. This technique helps with eliminating possible systematic

errors in the read out process as well.
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Figure 4.2. Optimizing the coherence time of NV center ensemble. (a) The
pulse sequence used for measuring Rabi oscillations and inhomogeneous broad-
ening T ∗

2 for the ensemble. (b) The Hahn echo pulse sequence for measuring
spin echo and coherence time T2. (c) Measurement results for the pulse se-
quences shown in (a) (blue dots) and (b) (purple circles). The Rabi oscillations
show the shortest timescale, T ∗

2 . The inset shows the detail of this measure-
ment. The red line is the envelope of the red curve from the the inset. The
Hahn echo shows a slower decay due to elimination of inhomogeneous broad-
ening and periodic revivals in the signal. The fits to the decay and revivals
are shown with dashed blue and dotted green lines, respectively. The revivals
are due to the periodic motion of the carbon-13 nuclear spins under the bias
magnetic field. We use the second revival point (τ = 42µs) for the effective
static magnetic field measurements.
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Figure 4.3. Incorporation of the PSD signal with the Hahn echo pulse se-
quence. (a) The PSD signal is added to the Hahn echo pulse sequence. Since
this pulse sequence is only sensitive to ac magnetic fields, we add the PSD
signal to one half of the sequence. Adding the PSD pulse to the first or second
half induces rotations in opposite directions in the spin of the NV center which
is similar to ac magnetic field with π phase difference. We extract the ampli-
tude of the effective static magnetic field by subtracting the outcome of the
two measurements. (b) Pulse sequence designed to measure the decoherence
caused by the off-resonant absorption of the PSD signal. Here we add the PSD
signal to both halves of the Hahn echo sequence to avoid spin rotations due to
the effective static magnetic field. By increasing the pulse length τ we increase
the probability of off-resonant absorption events in one measurement and ob-
serve the trend of the loss of the coherence signal. (c) The decoherence induced
by the PSD signal for different PSD laser powers measured for λ = 705nm.
In the case of complete decoherence the signal reaches half of the maximum
contrast which is the average for the |0⟩ and | ± 1⟩ states.
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Illuminating NV centers with the PSD laser can affect their coherence through off-

resonant absorption. To capture this effect we use the pulse sequence shown in Fig.  4.3 (b).

In this pulse sequence the rotations induced by the two PSD pulses cancel each other and

we only see decoherence caused by the addition of the PSD laser. By increasing the pulse

length τ we can study this effect. Fig.  4.3 (c) shows the decoherence effect from off-resonant

absorption for different laser powers. The four sets of data show how different laser powers

affect the measurement outcome for λ = 705nm. The x-axis shows the length of each of

the PSD pulses. As the pulse length increases the probability of off-resonant absorption also

increases. The results of this measurement helps us determine the maximum laser power

which does not cause significant decoherence to the NV centers. It should be mentioned that

we do not observe any decoherence for wavelengths λ = 785nm and λ = 818nm with laser

powers reaching P = 20mW . As the wavelength of the PSD laser gets closer to the optical

resonance of the NV center at λ = 637nm off-resonant absorption becomes stronger. The

decoherence caused by this effect is noticeable for λ = 730nm and becomes significant for

λ = 705nm as shown in Fig.  4.3 (c).

4.3 Optically Induced Magnetic Field for an Ensemble of NV Centers

Figure  4.4 depicts the outcome of the effective static magnetic field measurements. The

effective static magnetic field is proportional to the PSD of the optical beam. We can tune

the PSD of the optical beam by controlling its power and its polarization. The PSD of the

optical beam is linearly proportional to the optical power. Fig.  4.4 (a)-(c) shows how the

effective field depends on optical power of the PSD beam for three different wavelengths.

The dashed lines show linear fits to the data for each wavelength. The linear dependence of

the effective field on the optical power matches the expected behavior for PSD.

Figure  4.4 (d)-(f) shows the dependence of the effective static magnetic field on the polar-

ization of the PSD beam for three different wavelengths. The beam polarization is controlled

with a QWP. The PSD of the beam has a S⃗obs
E ∝ sin(2θ)ẑ dependence on the rotation angle

of the QWP (θ) where ẑ is the direction of propagation of the beam. The dashed lines show
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Figure 4.4. Scaling of the effective static magnetic field with beam power
and polarization ellipticity. (a)-(c) Scaling of the effective field with the op-
tical power of the PSD beam for different wavelengths. We observe linear
dependence independent of the wavelength. (d)-(f) The dependence of the
effective field on the ellipticity of polarization for different wavelengths. The
ellipticity is controlled by rotating a QWP by an angle θ where θ = 0◦, 90◦

correspond to linear polarization and θ = ±45◦, 135◦ correspond to circular
polarization. The fits to the curves are y = sin(2θ) which is the expected
dependence of PSD to QWP angle θ. We observe good agreement between
theory and experiment for all wavelengths.

a fit of sin(2θ) to the data for each wavelength. Fig.  4.4 shows that the measured effective

static magnetic field is indeed proportional to the PSD for different wavelengths.

4.4 Wavelength Dependence of the Optically Induced Magnetic Field

The main goal of this chapter is to determine the wavelength dependence of the effective

static magnetic field in the far off-resonant limit. This result is shown in Fig.  4.5 . The

measurements are performed for four different wavelengths. The main factor that affects the

strength of the effective static magnetic field is the detuning between the laser wavelength and
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Figure 4.5. The dependence of the effective static magnetic field strength
on the wavelength of the PSD beam. The rapid increase of field strength as
the wavelength decreases shows a promising route for enhancing the effective
static magnetic field. The inset in the top right corner shows the data in log
scale along with the optical transition of the NV center at λ = 637nm. As
the detuning decreases, the off-resonant absorption by the NV centers affects
their coherence and the error bars become larger. To measure the data point
at λ = 705nm the sample is cooled to 30◦ below room temperature to lower
the off-resonant absorption.

the optical transition of the NV centers. As the detuning is decreased the probability of off-

resonant absorption by the NV centers increases. This absorption leads to decoherence of the

NV centers and loss of sensitivity in the measurement (Fig.  4.3 (c)). In these measurements

the off-resonant absorption is noticeable for λ = 730nm and becomes a dominant factor at

λ = 705nm. In order to measure the effective static magnetic field for λ = 705nm we have

cooled down the sample using a thermoelectric cooler by 30◦ below room temperature.

The purple line in Fig.  4.5 shows a fit to the data. We have considered a fit that depends

only on the wavelength λ and the detuning ∆. The fit is y = C/λ∆ where C is a constant

and shows a good agreement with the data. The insets show the data on a log-scale and the

pulse sequence for the measurements. The optical transition of the NV centers at λ = 637nm

is also shown in the inset. The fast growing nature of the effective static magnetic field for

smaller detunings is captured in the inset. However, due to the off-resonant absorption,
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it is not possible to probe the system for wavelengths smaller than λ = 700nm at room

temperature. Unraveling the scaling of the effective static magnetic field for near-resonant

wavelengths requires rigorous studies at cryogenic temperatures.

4.5 Conclusion

In summary, we have demonstrated the optical induced static magnetic field for an en-

semble of NV centers at room temperature. We show that this effective static magnetic field

is proportional to the PSD of the off-resonant excitation. The decoherence induced by the

off-resonant optical beam is studied for different wavelengths. Using this platform, we have

characterized the wavelength dependence of the optically induced static magnetic field in the

far-off-resonant regime. The results of this study can pave the way to utilize this effective

magnetic field for on-chip applications and all-optical control of qubits.
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5. CONCLUSIONS

In this thesis we have studied the properties of photonic spin density (PSD) in the near-field

regime and demonstrated a platform for coherent light-spin-qubit interaction based on PSD.

We have shown that nitrogen-vacancy (NV) centers in diamond can coherently interact with

an optical beam where the interaction strength is determined by PSD in the nanoscale. We

have characterized this interaction and used it to probe the PSD of an optical beam.

The first chapter provided an introduction to the field of near-field photonic spin. We

presented an overview to the new findings in this field that has emerged over the past decade.

Then the achievements of this field were summarized to show the need for a platform to utilize

the near-field properties of PSD in quantum technologies. We then introduced NV centers

in diamond as a promising tool for this purpose. Lastly, the properties and capabilities of

NV centers were discussed before presenting the contributions of this thesis.

Chapter  2 focused on exploring the near-field properties of optical fields. We discussed the

spin-momentum locking phenomenon for evanescent electromagnetic waves and established

a connection between this phenomenon and the recent observations related to directional

coupling of emission and scattering from particles into optical waveguides. We then studied

the optical forces arising from this universal phenomenon and showed that the fundamental

origin of recently reported non-trivial optical chiral forces is spin-momentum locking in

evanescent optical fields.

In Chapter  3 we proposed and demonstrated that NV centers can be used as a quantum

sensor for detecting the PSD. This demonstration includes the probing of PSD of an inci-

dent beam on a single NV center and showing that the scaling of the interaction strength

with optical power and polarization of the incident beam matches that of the PSD of the

beam. We also presented a rigorous theoretical analysis of this interaction. We showed that

this interaction induces an effective magnetic field that affects the NV center’s quantum

state. To probe this optically-induced magnetic field we perform ac magnetometry at room

temperature. The NV center is capable of nanometer-resolution sensing which enables deep-

subwavelength probing of PSD. Furthermore, we showed that optical waveguides intrinsically

carry PSD which makes this platform compatible with integrated photonic circuits. These
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achievements pave the way toward quantum sensing of exotic phases of photons as well as

building on-chip interfaces between optical beams and spin-qubits based on PSD.

Chapter  4 demonstrated the optically induced magnetic field for an ensemble of NV

centers. The goal of this chapter is to explore the possible routes for enhancing the induced

static magnetic field. We studied the effect of off-resonant absorption of the excitation beam

on the coherence of the spin-qubits which limits the sensitivity of the measurements. We

furthermore studied the effect of the wavelength of the excitation beam on the strength of

the effective static magnetic field and the off-resonant absorption. The results of this chapter

provides necessary information for further explorations of this effect.
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[13] I. Söllner, S. Mahmoodian, S. L. Hansen, et al., “Deterministic photon–emitter coupling
in chiral photonic circuits,” Nature Nanotechnology, vol. 10, no. 9, pp. 775–778, Sep. 2015.

[14] T. Zhang, M. R. C. Mahdy, Y. Liu, et al., “All-Optical Chirality-Sensitive Sorting via
Reversible Lateral Forces in Interference Fields,” ACS Nano, vol. 11, no. 4, pp. 4292–4300,
Apr. 2017.

[15] S. Pendharker, F. Kalhor, T. V. Mechelen, et al., “Spin photonic forces in non-reciprocal
waveguides,” Optics Express, vol. 26, no. 18, pp. 23 898–23 910, Sep. 2018.

[16] L.-P. Yang, F. Khosravi, and Z. Jacob, “Quantum spin operator of the photon,” arXiv
preprint arXiv:2004.03771, 2020.

[17] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms-Introduction
to Quantum Electrodynamics. Wiley-VCH, 1997.

[18] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in
evanescent waves,” Nature Communications, vol. 5, Mar. 2014.

[19] M. V. Berry, “Optical currents,” Journal of Optics A: Pure and Applied Optics, vol. 11,
no. 9, p. 094 001, 2009.

[20] M. F. Picardi, K. Y. Bliokh, F. J. Rodŕıguez-Fortuño, F. Alpeggiani, and F. Nori,
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A. OPTICAL FORCE EQUATIONS

A.1 Electric and Magnetic Stokes Parameters

We define the fourth electric and magnetic Stokes parameters as [ 79 ], [  121 ], [  122 ]:

V⃗ e = 1
2

√
ϵ0

µ0
Im(E⃗∗ × E⃗) = ωcS⃗obs

E (A.1)

V⃗ m = 1
2

√
µ0

ϵ0
Im(H⃗∗ × H⃗) = ωcS⃗obs

M (A.2)

where the total fourth Stokes parameter is V⃗ = V⃗ e + V⃗ m. This expression gives the same

value as the conventional Stokes parameters for a plane wave.

A.2 Optical Force on a Chiral Particle

The optical force on chiral particle given by Wang and Chan [ 3 ] can be written in the

form,

⟨F⃗ ⟩ = ⟨F⃗gr⟩ + ⟨F⃗op⟩ + ⟨F⃗sr⟩, (A.3)

where ⟨F⃗gr⟩ = ∇U is the gradient force and,

U = 1/4(Re[αee]|E⃗|2 +Re[αmm]|H⃗|2 − 2Re[αem]Im[H⃗ · E⃗∗]) (A.4)

⟨F⃗op⟩ is optical pressure force defined as:

⟨F⃗op⟩ =k0

c
(Im[αee]

ϵ0
+ Im[αmm]

µ0
)⟨N⃗⟩

− Im[αem]∇ × ⟨N⃗⟩

− ck0

2 (Im[αee]
ϵ0

∇ × S⃗obs
E + Im[αmm]

µ0
∇ × S⃗obs

M )

+ ω2Im[αem](S⃗obs
E + S⃗obs

M )

(A.5)

where k0 = ω/c.
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⟨F⃗sr⟩ is scattering recoil force defined as:

⟨F⃗sr⟩ = −ck4
0

6π

{
(Re[αeeα

∗
mm] + |αem|2)⟨N⃗⟩

+
√
µ0

ϵ0
Re[αeeα

∗
em]V⃗ e +

√
ϵ0

µ0
Re[αmmα

∗
em]V⃗ m

− 1
2Im[αeeα

∗
mm]Im[E⃗ × H⃗∗]

}
.

(A.6)

A.3 Polarizability of the Chiral Particle

The polarizability of the particle is an approximate value for a spherical particle of a

volume V = 100nm3 [ 123 ]. For such a particle the polarizability matrix is,

 αee iαem

−iαme αmm

 =

1.2 + i0.1 i0.01

−i0.01 0.0002

× 10−24 (A.7)

The relative permittivity of the particle is assumed to be ϵr = 3 + i 0.28 and the electric-

electric polarizability factor αee is calculated using the formula [ 123 ] αee = 3V (ϵr − ϵm)/(ϵr +

2ϵm), where ϵm = 1 is the relative permittivity of the vacuum. The chirality factor is

calculated using the parameters of Hexahelicene molecule [ 5 ], [ 124 ] at wavelength λ = 5µm.

The density of the particle is approximated with that of water.

The magnetic polarizability αmm is chosen such to satisfy the condition [ 125 ] αeeαmm ≥

αemαme. For a helical particle αeeαmm = αemαme.
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B. CALCULATIONS FOR PHOTONIC SPIN

DENSITY-INDUCED EFFECTIVE STATIC MAGNETIC

FIELD

We now show how to calculate the effective static magnetic field induced by far off-resonant

electric dipole transitions. Virtual electric dipole transitions will induce energy shifts in the

ground states, which can be described by an effective Hamiltonian Hshift = ∑
i δi|i⟩⟨i| with

the shift [ 100 ], [  107 ],

δi = 1
4h̄2

∑
f

∣∣∣⟨f |d⃗|i⟩ · E⃗(r⃗, t)
∣∣∣2

∆if + Γ2
f/4∆if

. (B.1)

Here, |i⟩ and |f⟩ are the initial and final states of the possible transitions in an NV center

as shown in Fig.  B.1 , ∆ij is the difference between the center frequency of the off-resonant

excitation (ω0) and the resonance frequency of the transition (ωij), Γf is the spontaneous

decay rate of the final state, and E⃗(r⃗, t) is the electric field of the excitation at the position

of the NV (r⃗). We choose the detuning to be much larger than the spontaneous decay

rate. Thus, the Γ2
f term will be neglected. We show that the energy difference in the states

{|0⟩, | ± 1⟩} induced by the off-resonance light functions as an effective static magnetic field

for the NV ground-state spin.

B.1 Energy Structure of NV Center

To calculate this effective static magnetic field, we first give the eigenenergy spectrum

and the possible transitions in the NV center. We only consider the six triplet excited states

and neglect the other singlet states [ 105 ], [ 106 ], as the electric dipole transitions do not

change spin states. For convenience, we choose a basis set, which is both spin- and orbital

angular momentum resolved:

|EL⟩ = 1√
2

(|Ey⟩ − i |Ex⟩) = i
2 [|a1⟩ |e+⟩ − |e+⟩ |a1⟩] ⊗ (|↑↓⟩ + | ↓↑⟩) , (B.2)

|ER⟩ = 1√
2

(|Ey⟩ + i |Ex⟩) = i
2 [|a1⟩ |e−⟩ − |e−⟩ |a1⟩] ⊗ (|↑↓⟩ + | ↓↑⟩) , (B.3)
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|E↓⟩ = 1√
2

(|E2⟩ + |E1⟩) = 1√
2

(|a1⟩ |e−⟩ − |e−⟩ |a1⟩) ⊗ |↓↓⟩ , (B.4)

|E↑⟩ = 1√
2

(|E2⟩ − |E1⟩) = 1√
2

(|a1⟩ |e+⟩ − |e+⟩ |a1⟩) ⊗ |↑↑⟩ , (B.5)

|A↑⟩ = 1√
2

(|A2⟩ + |A1⟩) = 1√
2

(|a1⟩ |e−⟩ − |e−⟩ |a1⟩) ⊗ |↑↑⟩ , (B.6)

|A↓⟩ = 1√
2

(|A2⟩ − |A1⟩) = 1√
2

(|a1⟩ |e+⟩ − |e+⟩ |a1⟩) ⊗ |↓↓⟩ , (B.7)

where |a1⟩, |ex⟩, and |ey⟩ are the orbital states of the NV center and |e±⟩ = ∓ (|ex⟩ ± i |ey⟩) /
√

2.

The ground states are given by,

|−1⟩ = 1√
2

(|exey⟩ − |eyex⟩) ⊗ |↓↓⟩ , (B.8)

|0⟩ = 1
2 (|exey⟩ − |eyex⟩) ⊗ (|↑↓⟩ + |↓↑⟩) , (B.9)

|+1⟩ = 1√
2

(|exey⟩ − |eyex⟩) ⊗ |↑↑⟩ . (B.10)

We note that this normalization is different from Refs. [ 105 ], [ 106 ]. The possible electric

dipole transition are shown in Fig.  B.1 .

The effective excited-state Hamiltonian of the NV center is given by Eq. ( 3.1 ). The

optical gap h̄ωge ≈ 1.945 eV (637 nm) between the ground states and the excited states (see

Fig.  B.1 ) has not been shown in HES. The off-diagonal coupling between these six excited

states does not change this virtual transition-induced effective static magnetic field. Thus,

we have omitted those off-diagonal coupling terms and the excited-state Hamiltonian is of

diagonal form HES = Ej|j⟩⟨j| where |j⟩ ∈ {|A↑⟩ , |A↓⟩ , |ER⟩ , |EL⟩ , |E↑⟩ , |E↓⟩}.

B.2 Energy Shifts and Effective Magnetic Field for the Ground-state Spin

We now also give the transition elements of the electric dipole transitions in the NV

center. As the upper basis is based on the two-hole picture, the electric dipole operator of

the NV is given by

d⃗ = e(r⃗1 + r⃗2), (B.11)
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Figure B.1. Schematic of energy levels of the NV center. Here, there are
no external magnetic field and strain. Left and right panels show the possible
transitions induced by left circularly polarized (LCP) and right circularly po-
larized (RCP) lights.

Table B.1. Selection rules for optical transitions between the triplet ground
states and the triplet excited states. We note that any transition connected
with circularly polarized light can also be stimulated with linearly polarized
lights. But the corresponding transition strength will be smaller.

Polarization |A↑⟩ |A↓⟩ |ER⟩ |EL⟩ |E↑⟩ |E↓⟩
|−1⟩ LCP RCP
|0⟩ RCP LCP

|+1⟩ RCP LCP

where r⃗1 and r⃗2 are the position operator of the two holes. According to the symmetry of

the orbits shown in [ 106 ], the nonzero elements of the dipolar transitions are

e ⟨ex| rx |ex⟩ = −e ⟨ey| ry |ey⟩ = e ⟨ey| ry |ex⟩ ≠ 0. (B.12)

and

e ⟨a1| rx |ex⟩ = e ⟨a1| ry |ey⟩ ≡ d0 ̸= 0. (B.13)
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The possible transitions and the corresponding transition strength can be easily obtained

by the transition element. The nonzero transition elements are follows:

⟨EL| d⃗ |0⟩ = d0⃗eR, ⟨ER| d⃗ |0⟩ = d0⃗eL, (B.14)

⟨A↑| d⃗ |+1⟩ = id0⃗eL, ⟨E↑| d⃗ |+1⟩ = id0⃗eR (B.15)

⟨A↓| d⃗ |−1⟩ = id0⃗eR, ⟨E↓| d⃗ |−1⟩ = id0⃗eL, (B.16)

where we have defined the unit vectors

e⃗L = (⃗ex + i⃗ey)/
√

2, e⃗R = (⃗ex − i⃗ey)/
√

2. (B.17)

Using the identities of the unit vectors e⃗R · e⃗∗
R = e⃗R · e⃗L = 1 and e⃗R · e⃗R = e⃗L · e⃗L = 0, one

can easily obtain the selection rules in Table  B.1 .

The value of the transition element can be obtained from the life times of the triplet

excited states:

τNV = 1
γNV

≈
(

ω3
egd

2
0

3πh̄ε0c3

)−1

. (B.18)

In this work, the lifetime of the NV center is taken as τNV = 15 ns. Then, we have d0 ≈

2.485 × 10−29 C · m.

For simplicity, we first consider the case where the NV center axis is aligned with the

propagating direction of the off-resonant excitation (+ẑ). The energy shifts in the ground

states sub-levels under a LCP or RCP excitation field are given by

δ−1,L = 1
4h̄2

d2
0∆−1,A↓

∆2
−1,A↓

+ Γ2/4 |E⃗(r⃗)|2, δ−1,R = 1
4h̄2

d2
0∆−1,E↓

∆2
−1,E↓

+ Γ2/4 |E⃗(r⃗)|2, (B.19)

δ0,L = 1
4h̄2

d2
0∆0,EL

∆2
0,EL

+ Γ2/4 |E⃗(r⃗)|2, δ0,R = 1
4h̄2

d2
0∆0,ER

∆2
0,ER

+ Γ2/4 |E⃗(r⃗)|2, (B.20)

δ+1,L = 1
4h̄2

d2
0∆+1,E↑

∆2
+1,E↑

+ Γ2/4 |E⃗(r⃗)|2, δ+1,R = 1
4h̄2

d2
0∆+1,A↑

∆2
+1,A↑

+ Γ2/4 |E⃗(r⃗)|2. (B.21)
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where the detunings are given by

∆−1,j = ω0 − (ωge + Ej + γNVB), (B.22)

∆0,j = ω0 − (ωge + Ej + ∆GS), (B.23)

∆+1,j = ω0 − (ωge + Ej − γNVB). (B.24)
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C. EFFECTIVE STATIC MAGNETIC FIELD FOR PROBE

QUBITS

In the experiment, we choose two ground state sub-levels to form a qubit to detect the

relative energy shift between them. The effective static magnetic fields for the three possible

qubits are defined as

B01,L = δ+1,L − δ0,L

γNV

, B01,R = δ+1,R − δ0,R

γNV

, (C.1)

B−10,L = δ0,L − δ−1,L

γNV

, B−10,R = δ0,R − δ−1,R

γNV

(C.2)

B−11,L = δ+1,L − δ−1,L

2γNV

, B−11,R = δ+1,R − δ−1,R

2γNV

. (C.3)

We note that the amplitude of the effective static magnetic field is linearly proportional

to the off-resonant laser power. We can also tune the effective magnetic field via changing

the polarization of the laser. The polarization unit vector of an arbitrary polarized light can

be expanded as

e⃗ = e⃗L cos
(
θ − π

4

)
+ e⃗R sin

(
θ − π

4

)
, (C.4)

where the angle θ ∈ [0, 2π) is the rotation angle of a QWP. In addition, in the experiment the

NV center axis makes an angle ϕ with the propagating direction of the off-resonant beam.

6

&
'

(
(′

'′

8

!!. = !!

!#. = !# cos8 − !' sin8

!'. = !' cos8 + !' sin8

Figure C.1. Transformation between the NV center coordinate frame and
the off-resonant beam coordinate frame.
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We need to transform the LCP and RCP unit vectors in the NV center coordinate frame

(x′y′z′) into the excitation beam coordinate frame (xyz) as shown in Fig.  C.1 ,

e⃗′
L = 1

2e⃗L(cosϕ+ 1) + 1
2e⃗R(cosϕ− 1) + 1√

2
e⃗z sinϕ, (C.5)

e⃗′
R = 1

2e⃗R(cosϕ+ 1) + 1
2e⃗L(cosϕ− 1) + 1√

2
e⃗z sinϕ. (C.6)

In this case, the three effective magnetic fields are given by

B01 = B01,L|⃗e · e⃗′∗
L |2 +B01,R |⃗e · e⃗′∗

R|2, (C.7)

B−10 = B−10,L |⃗e · e⃗′∗
L |2 +B−10,R |⃗e · e⃗′∗

R|2, (C.8)

B−11 = B−11,L |⃗e · e⃗′∗
L |2 +B−11,R |⃗e · e⃗′∗

R|2. (C.9)

Using the fact that δ−1,L = δ+1,R and δ−1,R = δ+1,L, we can rewrite B−11 as

B−11 = δ+1,L − δ+1,R

2γNV |E⃗(r⃗)|2
{−i[E⃗∗(r⃗) × E⃗(r⃗)] · ⃗̂n} (C.10)

= ω0(δ+1,L − δ+1,R)
ϵγNV |E⃗(r⃗)|2

{S⃗ · ⃗̂n} (C.11)

≈ − ω0d
2
0λz

h̄2ϵγNV ∆+1,A↑∆+1,E↑

{S⃗ · ⃗̂n}. (C.12)

Here ϵ is the permittivity of diamond, S⃗ = −(iϵ/4ω0)[E⃗∗ × E⃗+ H⃗∗ × H⃗] = −(iϵ/2ω0)E⃗∗ × E⃗

is the photonic spin density in the single-frequency limit, and n̂ is the direction of the NV

center. We have also used the relation,

e⃗∗ × e⃗ = i
[
cos2

(
θ − π

4

)
− sin2

(
θ − π

4

)]
e⃗z = i sin(2θ)⃗ez. (C.13)

In the far off-resonant case ∆+1,A↑ ≈ ∆+1,E↑ = ∆. In this case the denominator is only

determined by the frequency of the off-resonant beam and the spin-orbit coupling factor in

the excited state. Beff can be written in the following form,

Beff = B−11 = − ω0d
2
0λz

h̄2ϵγNV ∆2 (S⃗E · ⃗̂n) = C(S⃗E · ⃗̂n) (C.14)
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Figure C.2. (a) The effective static magnetic field Beff experienced by the
qubit formed by | − 1⟩ and | + 1⟩ as a function of spin-spin-induced zero-field
splitting ζ ′ and ζ ′′. (b) The effective static magnetic field Beff as a function of
the external magnetic field B and the strain η1. Here, the other parameters
are taken as λz/2π = 5.5 GHz, ∆es/2π = 1.42/3 GHz, the center wavelength
of the right-handed circularly polarized excitation is λ0 = 800 with laser power
1mW.

where C is a constant.

C.1 Influence of Coupling between NV Center’s Excited-state Sublevels on the
Effective Static Magnetic Field

In this subsection, we show that the off-diagonal coupling in the excited-state sublevels

will not affect the effective static magnetic field. The full Hamiltonian for the excited state

of the NV center in the set of basis {|A↑⟩ , |A↓⟩ , |ER⟩ , |EL⟩ , |E↑⟩ , |E↓⟩} is given by [ 106 ],

HES =



γNVB+∆es+λz ζ ′ 0 0 −(η1 + iη2) 0

ζ ′ −γNVB+∆es+λz 0 0 0 −(η1 − iη2)

0 0 −2∆es −(η1 + iη2) 0 −ζ ′′

0 0 −(η1 − iη2) −2∆es ζ ′′ 0

−(η1 − iη2) 0 0 ζ ′′ γNVB+∆es−λz 0

0 −(η1 + iη2) −ζ ′′ 0 0 −γNVB+∆es−λz


,

(C.15)
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where ζ ′ and ζ ′′ are the spin-spin-induced off-diagonal zero-field splitting (ZFS). In an exper-

iment, we can easily tune the Zeeman splitting with an external magnetic field. The strain

η1, η2 can also be tuned by adding an electric field. These off-diagonal terms have been

neglected in Eq. ( 3.1 ) because they do not change the effective static magnetic field induced

by PSD as we show in this subsection.

For a given set of parameters, we can diagonalize the Hamiltonian ( C.15 ) to obtain the

eigenstates and the corresponding eigenvalues:

HES |m⟩ = Em |m⟩ ,m = 1, . . . , 6. (C.16)

Here, we only take the effective static magnetic field induced by an RCP light as an example.

The energy shifts in the ground-state sublevels are given by

δ−1,R = d2
0

4h̄2
∑
m

⟨E↓|m⟩⟨m |E↓⟩ ∆−1,m

∆2
−1,m + Γ2/4 |E⃗(r⃗)|2, (C.17)

δ0,R = d2
0

4h̄2
∑
m

⟨ER|m⟩⟨m |ER⟩ ∆0,m

∆2
0,m + Γ2/4 |E⃗(r⃗)|2, (C.18)

δ+1,R = d2
0

4h̄2
∑
m

⟨A↑|m⟩⟨m |A↑⟩ ∆+1,m

∆2
+1,m + Γ2/4 |E⃗(r⃗)|2, (C.19)

where

∆−1,m = ω0 − (ωge + Em + γNVB), (C.20)

∆0,m = ω0 − (ωge + Em + ∆GS), (C.21)

∆+1,m = ω0 − (ωge + Em − γNVB). (C.22)

The effective static magnetic field can be defined via Eqs. ( C.1 )-( C.3 ).

In the case of applying a far off-resonant beam with center wavelength λ0 = 800 nm,

an NV center is not pumped to the excited state. As shown in Fig.  C.2 (a), the effective

static magnetic field Beff induced by a circularly polarized light is almost independent of the

amplitude of the off-diagonal ZFS terms, ζ ′′ and ζ ′′, which mix the excited-state sublevels.
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In Fig.  C.2 (b), we show that in the far off-resonant case, the effective static magnetic field

Beff is also independent of the external magnetic field and strain η.

In this subsection we showed numerically that coupling between the excited-state sub-

levels does not change the energy shift experienced by the ground-state energy levels due to

a far off-resonant excitation. A similar argument also applies to the dynamic Jahn-Teller

effect in the NV center’s electronic excited states [ 126 ]. Therefore, it is possible to measured

a PSD dependent effective static magnetic field while resolving NV center’s excited-state

energy levels at room temperature is not possible.
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D. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig.  D.1 (a). The setup comprises an NV

center and three main beam paths. The NV center [Fig.  D.1 (b)] is on an AFM tip and is

implanted 10nm deep into the surface of the tip. The tip is purchased from QZabre LLC.

The second-order correlation measurement for the single NV center is shown in Fig.  D.1 (b).

A magnet breaks the degeneracy of |±1⟩ states by applying a magnetic field Bbias ≈ 1.1mT .

An antenna made of a 15µm-thick tungsten wire delivers a MW signal to the NV center to

induce Rabi oscillations [Fig.  D.1 (c)]. Figure  D.2 shows the instrument response function

(IRF) for the detection system. IRF is measured for two wavelengths spanning the PL

spectrum of NV centers. For each wavelength the IRF is smaller than 40ps. However, the

Figure D.1. Schematic of the experimental setup. (a) Schematic of the setup
showing the beam paths and filters. (b) Second-order correlation measurement
showing that the AFM tip contains a single NV center. (c) Rabi oscillations
showing the interaction of the microwave beam (MW) with the NV center. LP,
linear polarizer; DM, dichroic mirror; BPF, band-pass filter; LPF, long-pass
filter; SPF, short-pass filter; QWP, quarter-wave plate.
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chromatic dispersion of a fiber coupler used to deliver the PL signal to SPADs causes a 37ps

relative delay between the detection peaks for the two wavelengths. The total width of the

IRF including this dispersion delay is WIRF ≈ 75ps± 5.

A 532nm laser is used for excitation and readout of the state of the NV center. The beam

is chopped with an AOM for pulsed measurements. After the linear polarizer the beam is

coupled to a polarization maintaining (PM) fiber. The output of the fiber is collimated and

filtered with a band-pass filter (BPF) (Thorlabs FLH532-10).

The target laser is a TTL controlled laser diode module (Power Technology Inc. PMT150).

The beam is coupled into a PM fiber after a linear polarizer. The output of the fiber is colli-

mated and goes through a quarter-wave plate before being filtered with a BPF (FBH800-10).

Due to reflection from a dichroic mirror, the polarization of the beam has an ellipticity of

ε = 1.08 before entering the objective lens when the QWP is at its optimal angle.

The photoluminescence signal from the NV center is filtered with a long-pass filter (Sem-

rock BLP02-561-R), a short-pass filter (Semrock SP01-785RU), and a BPF (Semrock FF01-

709/167). Three dichroic mirrors (DM) combine and separate the beams; DM1, Thorlabs

DMLP550R; DM2, Semrock FF750-SDi02; DM3, Semrock FF520-Di02. The PL signal is

detected by a Micro Photon Devices SPAD. For measuring g(2) the signal is coupled to a

fiber optic beam splitter and is detected with two SPADs.

95



Figure D.2. Instrument response function of the detection system. (a)-(b)
Pictures of the experimental setup showing the key components. (c)-(d) The
response function of the detection system for two different wavelengths covering
the PL spectrum of NV center. The excitation signal is a femtosecond pulsed
laser. (e)-(f) The spectra for the excitation signals used in panels (c) and (d)
to measure the instrument response function.
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E. PULSE SEQUENCE

Here we will explain how the measurement is performed in details. Depending on which

transition the MW field is resonant to (|0⟩ to | + 1⟩ or |0⟩ to | − 1⟩) we choose those two

states as a two-level system. The pulse sequence shown in Fig.  3.3 starts with initializing

the NV center in |0⟩ state. Then a series of π and π/2 pulses manipulate the state of the NV

center to prepare the NV center for interaction and readout and to increase the coherence

time. The state after each pulse is calculated using the following rotation matrices,

Rx(θ) =

 cos θ
2 −isin θ

2

−isin θ
2 cos θ

2



and Ry(θ) =

cos θ
2 −sin θ

2

sin θ
2 cos θ

2

 ,
where θ = π/2 (θ = π) for π/2 pulse (π pulse).

We show the calculations for |0⟩ to | + 1⟩ transition here. The sequence starts with

initializing the NV center into |0⟩ state. Then a π/2 pulse rotates the spin into a superposition

state and a series of π pulses perform the dynamical decoupling while the target beam affects

the state of the NV center. The effect of each pulse of the target beam is captured by an

added phase, ϕ. We are assuming that the MW pulses are very short and off-resonant to

the NV center by ω − ω0 = δω. This adds a phase Θ = δωτ/2 during each free procession

period of length τ/2. In our experiment we omit the first and last half target pulses in

measurement 1 and omit the last target pulse in measurement 2 for simplicity. Therefore,

each measurement contains total of 4N − 1 target pulses, where N is the number of XY8

pulses.

After sending N nember of XY8 pulses, a total of 8N π pulses have been sent. The state

of the NV center before the last π/2 pulse is

|ψ(Nτ)⟩ =
√

2
2 (e−i(4N−1)ϕ|0⟩ − iei(4N−1)ϕ| + 1⟩),
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We set the last π/2 pulse in the −ŷ direction. The state of the NV center after this pulse

is

|ψ(Nτ)⟩ = e−iπ/4(cos(π/4 − Φ)|0⟩ − i sin(π/4 − Φ)| + 1⟩), (E.1)

where Φ = (4N − 1)ϕ is the total phase induced by the target beam. Measured contrast for

this state, C1, is

C1 = Cmax |⟨±1|ψ⟩|2 = sin2(π/4 − Φ)Cmax, (E.2)

where Cmax is the contrast measured for | ± 1⟩ states.

The outcome of Measurement 2 similarly will be

C2 = sin2(π/4 + Φ)Cmax, (E.3)

where the difference in the sign of Φ is due to the target pulses being sent in the opposite

time slots. We calculate the phase Φ by subtracting the outcome of the two measurements,

C = C1 − C2 = Cmax

2 (cos(π/2 + 2Φ) − cos(π/2 − 2Φ)) = −sin(2Φ)Cmax. (E.4)

In this approach, any undesired effect caused by adding the target beam (e.g., change of

temperature and coherence) will be eliminated in the subtraction.

To measure Cmax, we employ the following procedure to ensure all the effects decreasing

the coherence of the quantum states are accounted for. First we calculate the contrast

Cave for the state |ψ⟩ = e−iπ/4(|0⟩ − i| + 1⟩)/
√

2. Based on the measurements performed,

Cave = (C1 + C2)/2. Then we measure the contrast C+1 for the state |ψ⟩ = −i| + 1⟩. This

measurement is performed with a pulse sequence similar to Measurements 1 and 2 with the

difference that the last π/2 pulse is in x̂ direction. Moreover, the target pulses are sent

during both time slots to cancel out the effect of each other. The length of the pulses are

set to halve of the pulses in Measurements 1 and 2 to keep the average power reaching the
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NV center same as measurements 1 and 2. This way any decoherence added to the system

due to presence of the target beam is accounted for in measuring C+1. Then we have,

Cmax = 2(C+1 − Cave). (E.5)

If instead of the target pulses a magnetic field B parallel to the axis of the NV center

was applied, then the measured contrast would have been,

C = sin(2Φ)Cmax = −sin((8N − 2)ϕ)Cmax, (E.6)

where ϕ = γBτ
′
/2. In this equation γ is the gyromagnetic ratio for the NV center, and τ

′

is the length of the target pulses. Therefore, we define an effective magnetic field equivalent

to the effect caused by the target beam,

Beff = −1
(4N − 1)γτ ′ sin−1

(
C

Cmax

)
,

≈ −C
(4N − 1)γτ ′Cmax

(E.7)

In our experiments, shown in Fig. 3 (main text), τ ′ = 1µs and N = 4 is the number

of XY8 pulses. For Fig. 3(c) Cmax is measured for the two measurements as, Cmax
|0⟩→|−1⟩ =

20.3% ± 0.6 and Cmax
|0⟩→|+1⟩ = 19.2% ± 0.9. For Fig. 3(d) Cmax is measured for the two

measurements as, Cmax
|0⟩→|−1⟩ = 20.2% ± 0.8 and Cmax

|0⟩→|+1⟩ = 19.1% ± 0.6.
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F. FULL-WAVE ANALYSIS OF PROPAGATION OF LIGHT IN

AFM TIP

Numerical simulations presented in Fig.  3.4 (c) and Fig.  3.5 are performed with CST Studio

Suite. The detail of the simulation results shown in Fig.  3.4 (c) is explained here. Fig-

ure  F.1 (a) shows the normalized amplitude of the electric field in the structure. The struc-

ture is an AFM tip on a substrate both made of diamond. The dimensions of the tip are

estimates provided by QZabre company for the AFM tip we purchased. The excitation is

a beam with wavelength λ0 = 800nm and Numerical aperture NA = 0.65 which resembles

the target beam in our experiment [ 127 ]. Similarly to the experimental setup, the beam is

x-polarized before going through a QWP and travels through the fast axis of the wave plate

when the wave plate angle (θ) is zero. Due to reflection of the target beam from a dichroic

mirror in the experiment, the polarization of the beam has an ellipticity of ε = 1.08 before

entering the objective lens when the QWP is at its optimal angle. However, this ellipticity

is neglected in the simulations. The power of the beam is P = 4mW before the objective

lens which has a measured transmission of T = 78% at this wavelength. The power of the

incident beam in the simulation is set to match this transmitted power in the experiment.

The beam travels in +ẑ direction and is focused at a distance z0 = 1.8µm if the medium

was vacuum. The parameter z0 is chosen such to qualitatively match the simulation results

to the amplitude of the measured effective field.

Figure  F.1 (b) shows the transverse effective field in the AFM tip in a plane 10nm away

from the end of the tip. This plane coincides with the depth of the implanted NV center. The

black circle shows the circumference of the diamond tip in this plane. The colorbar shows

the amplitude of the transverse field and the black arrows show its direction. This transverse

field gives rise to the dc offset in the experimental result [Fig.  3.4 (c)]. If the NV center is

placed off-axes to the AFM tip there would be a nonzero transverse spin component at its

location. This transverse component behaves differently from the longitudinal component of

the photonic spin density when changing the QWP angle, giving rise to a dc offset.

To illustrate the effect of transverse spin, we show the effective magnetic field for an

NV center in n̂ = (x̂ + ŷ − ẑ)/
√

3 direction (same as the direction of the NV center in our
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experiment) placed at different locations on the transverse plane. Figure  F.1 (c) shows the

effective magnetic field along the direction of this NV center. Each curve corresponds to a

different location for the NV center marked with white dots on Fig.  F.1 (b). The dots have

a relative distance of d = −10nmx̂ + 10nmŷ to each other. This figure clearly shows the

development of the dc offset as the distance to the center of the tip increases. The Curve

shown is Fig.  3.4 (c) is the same as curve 7 in Fig.  F.1 (c).
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Figure F.1. Numerical simulations for the effective field amplitude in an AFM
tip. (a) Amplitude of the electric field in an AFM tip made of diamond. (b)
Amplitude and direction of the transverse component of the effective field in
the plane of the NV center. (c) The effective field seen by an NV center with
direction n̂ = (x̂ + ŷ − ẑ)/

√
3 placed at various locations shown in panel (b)

with white dots.
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