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Abstract

Since the development of the fluctuation dissipation theorem for electromagnetics

in 1956 by Landau, Lipschitz and Rytov, field correlations have gradually come

to be understood as a consistent framework for treating all optical aspects of lin-

ear response. In turn, the theory of electromagnetic correlations acts as a central

unifying thread running through a diverse collection of optical phenomena: rang-

ing from the definition of a medium’s relative permittivity and rate of spontaneous

emission to its electromagnetic entropy, extractable energy density and thermal ra-

diation characteristics. With the maturation of the field of nanophotonics, an array

of techniques have recently emerged for controlling these correlations via resonant

wavelength scale structuring and polaritonic excitations. These results challenge

long held views of the equivalence between high temperature and incoherence, and

through the discovery of modified scaling laws open a new landscape of possibilities

for heat energy harvesting devices.

This dissertation brings together our original results examining the role that per-

mittivity properties play in shaping these correlations; addressing open problems in

far-field radiative engineering, near-field energy harvesting, and the theory of hyper-

bolic media. Background on the field and motivation of our approach is provided

in Chapter One. Chapters Two and Three are then dedicated to the control of

radiative thermal emission for energy harvesting applications. Here, we begin by

presenting a new perspective for understanding the far-field thermal radiation aris-

ing from any nanostructure through the use of effective medium parameters. This

metamaterial approach to radiative emission control is then used to originate two
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classes of selective emitter designs to meet the engineering challenges of capturing

latent heat energy. As a functional example, we conceive and demonstrate a re-

fractory metamaterial using simple multilayer nanostructuring to regulate thermal

emission in the near infrared. Mastery of thermal radiation in this spectral range

is crucial to thermophotovoltaic energy harvesting technologies, and we analyze the

usefulness of metamaterial concepts for this application in detail. In Chapter Four,

we reveal the influence of electronic characteristics on near-field electromagnetic en-

ergy transfer. Approaching relative permittivity as a black box response function,

subject only to the requirements of causality and bandgap absorption, we derive the

ideal response characteristics for maximizing the magnitude and efficiency of electro-

magnetic energy transfer in the near-field. This analysis reveals that the traditional

bulk semiconductors, considered in previous near-field thermophotovoltaic work, are

ill-suited for this type of energy capture. Moreover, it also shows that the presence

of van Hove singularities, seen in any semiconductor with a quantum-confined di-

mension, offer a clear path for improving future near-field devices. Chapter Five

then develops a definitive, and first numerically predictive, framework for regular-

izing electromagnetic field fluctuations inside natural hyperbolic media based on

the presence of previously overlooked charge oscillations. These media have long

been considered one of the most promising directions for nanophotonics, but long

standing divergence issues have left their fundamental electromagnetic correlation

characteristics undefined. Our theory overcomes this hurdle, and places definite up-

per bounds on the enhancement features and thermal energy density of these exotic

media. To showcase the flexibility of our results, concrete, experimentally verifiable,

predictions of the enhancement properties of the naturally hyperbolic materials bis-

muth selenide and hexagonal boron nitride are given. Finally, in Chapter Six, we

summarize our results, and provide a brief outlook of the field.
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Chapter 1

Background and Motivation

In this first chapter, we motivate the general study of thermal electromagnetic field

correlations, provide concise presentations of the fluctuation-dissipation theorem and

Rytovian electrodynamics, and detail the structure of this thesis.

In the standard physics curriculum, the relation between thermodynamics and elec-

tromagnetism typically begins and ends with Planck’s blackbody distribution; a

result that beautifully explains both the specific and universal characteristics of the

electromagnetic field generated by almost any finite temperature object that can be

observed in the far-field1. The generality and impressiveness of this theory naturally

begets a sense that it provides a complete description of thermal electromagnetics,

more or less appreciable to any system one may wish to study. However, this senti-

ment is simply false.

First, there are many important subtleties that limit the domain of applicability

of the blackbody spectrum. For instance, it is derived from high level thermody-

namic arguments that rely on the object in question being much larger than any

of the wavelengths considered, while simultaneously having no fine structural fea-

tures on the length scale of the electromagnetic radiation that it describes. Second,

it is a strictly macroscopic picture that provides no description of how thermal

electromagnetic magnetic fields are generated. Therefore, when the validity of the

approximations of which the blackbody distribution is based begin to breakdown

there is no indication of how the theory should be continued.

1Field characteristics are actually determined by Kirchhoff law of thermal radiation. This result
states that the far-field electromagnetic radiation of any object, under certain approximations that
will be discussed later in this thesis, is the product of two factors: the absorptivity of the object,
the fraction of light of incident light that is neither transmitted or reflected, and the blackbody
distribution.
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In order to extend the historically crucial notions of heat energy and thermal electro-

magnetics to micro and nano length scales it is clear that another concept is needed.

It for this reason that we turn to the idea of electromagnetic field correlations.

The notion of a correlation is central to the study of any stochastic system. To

quantify dynamic behavior we inherently require a quantity that is meaningful on

the time scale of individual events. To extract information from noise we inherently

require many measurements. Fundamentally, there is no simpler way to simultane-

ously satisfy these criteria than by examining the differences and similarities between

successive events; and in essence, a correlation is nothing more than a mathematical

definition of this concept.

That such a simple idea provides the means to generally bridge hierarchies of macro-

scopic and microscopic description is perhaps one of the deepest results of 20th cen-

tury physics. It is naturally intuitive to think that by considering averages we can

move to increasingly coarse pictures. However, in taking averages it is not apparent

that the microscopic characteristics will persist in any sort of universal way. That

such a universal relation does indeed exist in the fluctuation-dissipation theorem

is unquestionably startling2. That moreover the relation is simple and powerful

enough to use a basis for quantitative calculations is astonishing.

The fluctuation-dissipation theorem holds that the non-equilibrium linear response

of an average quantity is determined by the correlation profile of this same quantity

in equilibrium. That is, there is a general relation between how average macroscopic

quantities will respond to external stimuli, and the finer correlation statistics char-

acterizing their microscopic behavior in equilibrium. Crucially, if one of these two

quantities is modified, then so is the other. It is this connection between microscale

features and macroscopic behavior that lies at the heart of the contemporary un-

derstanding of thermal electromagnetic field correlations.

The current realization of this link, in the field of photonics, began to form in late

1980’s with two seminal papers on inhibited spontaneous emission [1], and local-

ization [2] in solid-state systems. Although the idea that physical structures could

be used to alter electromagnetic field correlations, and in turn modify spontaneous

emission, was already well established3, the effect had been discussed predominately

2We have included a brief history of the fluctuation-dissipation theorem for electromagnetic
correlations in the appendix Historical Perspective. A derivation of the theorem is given in the next
section.

3The first clear result in this direction was given by Purcell in 1946 [3].
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for quantum systems4,5. The preceding contributions marked an important shift in

perspective. Namely, it was shown not only that correlation characteristics could

be controlled in solid state settings, but that structures to achieve this control were

within the reach of current fabrication techniques6.

Yet, while in retrospect these works contained nearly all the essential kernels, im-

plications for controlling thermal properties of the electromagnetic field were not

immediately explored. Perhaps surprisingly, these ramifications waited until turn of

the century; beginning in 1999 with Pendry’s discussion of radiative heat exchange

between nanostructures [12]78, and the works of Le Gall, Olivier, and Greffet [16],

and later Carminati, Greffet [17] and Shchegrov [18] on near field thermal coher-

ence9. Nevertheless, following these papers it was soon generally realized that:

(1) The effects nanoscale structures were known to induce on the photonic density

of states10 [20–23], extended nearly without modification to the thermal electromag-

netic field.

(2) In the presence of nanoscale structures both the magnitude and spectral content

of thermal electromagnetic field correlations could be vastly different than expecta-

tions based on the blackbody distribution.

From this vista, over the next decade a rich picture of the influence of nanoscale

features on thermal electromagnetic correlations emerged. Shortly following the

above time-frame, experimental results confirmed the ability of mircoscale struc-

turing to alter far-field thermal properties. In quick succession, it was shown that

the presence of a photonic bandgap produced broadband thermal radiation suppres-

sion [24–26]11, and that consequently these media could potentially act as narrow-

4In particular see the works of Milonni [4], Bykov [5], Cohen-Tannoudji and Reynaud [6], Klepp-
ner [7, 8], and Goy [9], Gross, and Haroche.

5However, this is not to say that macroscopic system had not been discussed. See for instance
Agarwal’s 1975 paper [10].

6These papers are exemplary illustrations of the spirit of Feynman’s There’s plenty of room at
the bottom [11].

7Again, the fact that radiative heat exchange on the nanoscale is a much stronger phenomena
than at larger length scales was already established [13,14]. For more details see the accompanying
appendix: Historical Perspective.

8Formula for thermal correlations near other simple nanoscale structures were rapidly published
by Volokitin and Persson [15].

9Note that Greffet had begun pursuing these ideas in the mid nineties [19]
10The definition of the photonic density of states is nearly identical to the definition of thermal

electromagnetic correlations. Distinctions and precise definitions are provided in the appendix
Additional Results for Natural Hyperbolic Media.

11The first paper cited here generated considerable attention for simultaneously, mistakenly, re-
porting far-field emissivity greater than the blackbody limit. Within a year, it was determined that
the findings were in error [27–29].
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Figure 1.1: General relations for thermal electromagnetic field correlations
of nanophotonic structures.
The figure shows a schematic illustration of the perspective of thermal electromag-
netic field correlations that we will develop in Chapters Two, Three, and Four.
Namely, that by investigating the permittivity of a nanostructure, either directly or
through effective medium theory, many characteristics of its thermal electromagnetic
field correlations can be analytically understood and numerically predicted. Near
nanophotonic structures these thermal electromagnetic field correlations may dis-
play high degrees of both spectral and spatial coherence, and are commonly orders
of magnitude stronger than expectations based on the blackbody distribution.

band thermal emitters [30,31] in the near infrared. (These results were immediately

recognized as strong motivation for reevaluating the potential of thermophotovoltaic

energy harvesting [32–35].) Over this same period, diffractive grating structures,

coupling typically dark plasmon polariton modes12 to the far-field, were experimen-

tally verified to have resonant, highly angular emission properties, showcasing that

both the spectral content and spatial coherence of thermal radiation could be engi-

neered [36,37]. Furthermore, in complement with these far-field results, substantial

advancements were also made in confirming the validity of the theory in the near-

field. These experiments [38, 39], commencing with the thermal scanning tunneling

results of Kittel et al. in 2005 [40], cemented that enhanced heat transfer does in fact

occur, reestablishing the validity of proximity effects first observed in the late 60’s13.

In recognition of this remarkable consistency between theory and experiment, over

the past decade interest in applied topics has greatly expanded. Following the

12The word polariton describes any optically active material mode. That is, a mode of a material
that necessarily generates an average polarization.

13These results were seriously doubted following a negative result, contradicting the Rytovian
electrodynamics, published by Xu et. al. in 1994 [41].
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initial work done on photonic crystals [42, 43], an ever wider variety of potential

micro and nanostructures have been considered for controlling far-field thermal radi-

ation, including bullseye’s [44], metasurfaces [45,46], metamaterials [47–49], inverse

opals [50,51], defect structures [52,53], wavelength scale resonant structures [54,55],

and self-assembled systems [56]. Experiments measuring the enhancement of near-

field energy transfer have pushed to new domains of precision [57–63], and are cur-

rently nearing the limits of classical description [64, 65]. Similarly, a broad range

of previously unexamined conceptual areas have been pursed; including the exten-

sion of electromagnetic correlation theory to novel media [66–68], effects for many

bodies [69–71], simplifying theoretical reformulations [72–74], general upper bounds

of enhancement [75–77], effects of spatial non-locality [78, 79] and more efficient

computational approaches [80–83].

1.1 Thesis structure and motivation

It is in this context of rapidly proliferating systems and approaches to controlling

the thermal electromagnetic field that the work undertaken in this thesis has been

pursued. Specifically, as highlighted by the recent push for inverse design meth-

ods [84–86], although the past decade has seen incredible advancement, reliable

design principles for intuitively understanding the general thermal correlation fea-

tures that will result from a particular structure have yet to emerge. It is clear

that light-matter resonances can be used to enhance thermal field correlation; and

that contrastingly an absence of photonic modes can be used to induce suppression.

However, beyond these characterizations, where significant progress has been made,

there is little to clarify what types of structures should be used, and what other

general features of a given system impact performance.

Our approach to treating this problem has been to work from the “middle” level of

description of captured by relative permittivity, ε (ω, T )14. As this function is itself

a catch-all for describing average light-matter interactions [88,89], its position offers

certain natural advantages. Looking up, for a given frequency it directly provides

a single number that captures many of the most salient macroscopic characteristics

of a medium. Looking down, it provides a relatively straightforward connection to

microscopic electronic features, connecting thermal field correlations with electronic

band structure and quasi particle material descriptions.

The thesis is structured as follows. To finish our introduction of the topic, the

remainder of the introduction is given to a concise presentation of the fluctuation-

14As opposed to the wavelength scale structuring, or recent atomistic investigations [76,87].
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dissipation theorem and Rytovian electrodynamics. Following these preliminary

sections, topics are presented in the order below.

Chapters Two and Three investigate the control and analysis of radiative ther-

mal emission from the perspective of metamaterials. We begin by breaking with

previous wavelength scale resonant design approaches; initiating the study of how

deeply sub wavelength (nano) structures generally alter a system’s far-field radiative

properties. From this analysis we introduce two classes of thermal optical response

characteristics, epsilon-near-zero (ENZ) and epsilon-near-pole (ENP), that classify

all metamaterial (effective medium) selective emitters.

This view is then explored as tool for radiative engineering in the near infrared.

Command over thermal radiation between 1 and 3 microns is crucial to thermo

photovoltaic energy harvesting technologies, and has far reaching implications for

mitigating heat losses in energy production15. To face this engineering challenge,

we conceive both ENP and ENZ metamaterial emitter designs that can be used as

part of a thermophotovolatic device (operating at 1500 K) to surpass the full con-

centration Shockley-Queisser limit conversion efficiency of 41 %.

To verify these theoretical ideas, we next model and fabricate a refractory meta-

material using simple multilayer nanostructuring to regulate thermal emission in

the near infrared (Chapter 2). This structure successfully demonstrate the design

principles of Chapter 1, and is shown to be thermally stable up to nearly 1300 K.

Notable milestones of this first area of research include:

• Complete classification of the spectrally selective radiative thermal emission

properties that can be achieved with metamaterials (any nano structure op-

erating in the effective medium limit) into epsilon-near-zero and epsilon-near-

pole archetypes. (Prior to our work, neither type of response had been con-

sidered in the context of radiative thermal emission.)

• Introduction of thermally stable (lossy) metals supporting high temperature

plasmons as a useful constituent material for metamaterial designs. (Previous

work had not considered metamaterial applications above 600 K, and hence

was focused entirely on low loss metals, primarily gold and silver.)

• The first experimental demonstration of metamaterial design principles at high

temperature (1000 oC).

In Chapter Four, we reveal the influence of electronic characteristics (band structure)

on near-field electromagnetic energy transfer. Approaching the relative permittivity

15Over 50 % of energy produced globally is lost as waste heat [90].
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as a black box response function, subject only to the requirements of causality and

bandgap absorption, we derive the ideal characteristics of a near-field photovoltaic

cell. This analysis uncovers both that traditional bulk (three dimensional) semi-

conductors are ill-suited for near-field energy capture, and that media with van Hove

singularities, seen in any semiconductor with a quantum confined dimension, allow

for vastly improved performance. As a exemplary implementation of these results,

we show how a hypothetical carbon nanotube near-field thermophotovoltaic system

operating at 1300 K can be designed so that 73 % of the heat energy captured would

be converted to electronic modes above the bandgap. These results have advanced

this potentially transformative field of study by providing:

• Formulation of extremely near-field photonic heat transfer in terms of the

joint density of electronic states, connecting electronic band structure with

electromagnetic heat transfer.

• Delineation of a practical method for improving near-field electromagnetic

energy harvesting: the switch from bulk to low dimensional semiconductors.

Chapter Five then moves to a reworking of the theory of electromagnetic field fluc-

tuations inside natural hyperbolic media. In this chapter, we construct a method for

eliminating the divergences encountered in all previous calculations of these quan-

tities based on the presence of hitherto overlooked charge oscillations. Natural hy-

perbolic media have long been heralded as a key platform for future nanophotonic

devices, but these issues in defining the fundamental electromagnetic correlation

characteristics have left many important optical properties undefined. By solving

this issue, our theory provides the first precise quantitative estimates for the en-

hancement features and thermal energy density of these media (a definitive upper

bounds). For hexagonal boron nitride and bismuth selenide, two of the most promis-

ing naturally occurring candidate materials for future hyperbolic applications, we

predict that electromagnetic fluctuations are enhanced over 120 times (and over 800

times larger along specific angular directions). These findings conclusively resolve

the following previously open problems:

• Determination of the formal electromagnetic enhancement characteristics of

hyperbolic media. (Definitive proof of non-trivial quantum optical sum rules.)

• Revelation of a mathematically rigorous microscopic theory of volume polari-

ton excitations inside hyperbolic media. (These excitations had only been

qualitatively described in previous work.)

Finally, in Chapter Six we briefly summarize this thesis and provide an outlook of

the field of electromagnetic field correlations going forward.
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1.2 Linear response and the fluctuation dissipation the-

orem

As stated in the initial introduction, Planck’s blackbody distribution is not directly

applicable to objects on the micro or nanoscale. To proceed, a new theory required.

In this section and the next, we present the Rytovian formulation of electrodynam-

ics, thermal electromagentics based on the fluctuation dissipation theorem. To give

a broader view of how general these results are, we first begin by deriving the fluc-

tuation dissipation theorem in the context of arbitrary linear response. In the next

section, these findings are applied to electromagentics. The theoretical results pre-

sented in these two sections act as a starting point for all of our original contributions.

Beginning with zero temperature quantum mechanics, to first order the change in

the expectation value of a physical observable under the influence of a perturbation

is given by the expression [91]

δ
〈
Ô (r, t)

〉
= − i

~

t∫
to

dt′
〈

Ψo|
[
ÔHo (r, t) , ĤHo

(
t′
)]
|Ψo

〉
(1.1)

where Ho is the Hamiltonian of the system in equilibrium, Ψo its Heisenberg ground

state, [. , .] the commutator, to the time that the perturbation is turned on, ĤHo (t′)

the Hamiltonian of the perturbation (Ĥtot (t) = Ĥo (t) + Ĥ (t)), Ô (r, t) the operator

of interest, and the Ho subscript denotes the Heisenberg picture for an operator in

the equilibrium system. If the perturbation is the product of an external, classical,

field and an observable of the system ĤHo (t′) =
∫
Vr
dr ÂHo (r, t′)φ (r, t′), where

φ (r, t′) the external field and ÂHo (r, t′) is the observable then the above becomes

δ
〈
Ô (r, t)

〉
= − i

~

t∫
to

∫
V ′r

dt′ dr′
〈

Ψo|
[
ÔHo (r, t) , ÂHo

(
r′, t′

)]
|Ψo

〉
φ
(
r′, t′

)
. (1.2)

Interestingly, this expression is already a type of correlation, with the wavefunction

Ψo playing the role of the stochastic variable. The analogy is strengthened by the

fact that as individual terms either piece of the commutator may be complex. Since

δ
〈
Ô (r, t)

〉
must be real, both pieces are required.

Moreover, by definition, the expression is also a statement about the linear response

of the system, defining the retarded Green function

GOA
(
r, t ; r′, t′

)
= − iθ (t− t′)

~

〈
Ψo|

[
ÔHo (r, t) , ÂHo

(
r′, t′

)]
|Ψo

〉
, (1.3)
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with θ (t− t′) denoting the Heaviside step function. Using this relation the two

quantities are identified by the relation

GOA
(
r, t ; r′, t′

)
=

2

~
Im
{〈

Ψo|ÔHo (r, t) , ÂHo
(
r′, t′

)
|Ψo

〉}
, (1.4)

showing that even without explicitly introducing temperature the linear response of

system is still a sort of statement about its correlations.

Moving to finite temperature this relation becomes exact. Working in the grand

canonical ensemble, the change to an observable to first order becomes

δ
〈
Ô (r, t)

〉
= − i

~

t∫
to

dt′ Tr
{
ρ̂G

[
ÔHo (r, t) , ÂHo

(
r′, t′

)]}
φ
(
r′, t′

)
, (1.5)

where Tr {. . .} denotes the sum over all variable number quantum states, and ρ̂G is

the statistical operator, or density matrix,

ρ̂G = eβ(Ω−K̂), (1.6)

with β = 1/ (kBT ), Ω the thermodynamic potential, and K̂ = Ĥo−µN̂ the thermo-

dynamic Hamiltonian, with µ denoting the chemical potential and N̂ the number

operator. Letting

χOA
(
r, t ; r′, t′

)
= Tr

{
ρ̂G

[
ÔHo (r, t) , ÂHo

(
r′, t′

)]}
, (1.7)

the second term in the commutator may be expanded as

Tr
{
ρ̂GÂHo

(
r′, t′

)
ÔHo (r, t)

}
= (1.8)

eβΩTr
{
e−βK̂eit

′/~ĤoÂS

(
r′
)
e−i(t

′−t)/~ĤoÔS (r) e−it/~Ĥo
}

=

±Tr
{
ρ̂GÔHo (r, t+ iβ/~) ÂHo

(
r′, t′

)}
,

where in the third line the commutativity of the number operator and the cyclic

property of the trace have been used. (Here, ± occurs depending on whether the

wave function obeys Fermi or Bose statistics.) Assuming that the original system

described by Ĥo is stationary, so that only relative time t− t′ differences are mean-

ingful, using (1.8), the Fourier transform of (1.7) shows that

χOA
(
r, r′, ω

)
=
(

1± e−βω
)
SOA

(
r, r′, ω

)
, (1.9)
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where SOA (r, r′, ω), the structure factor, is defined in terms of the correlations of

the system as

SOA
(
r, r′, t

)
= Tr

{
ρ̂GδÔHo (r, t) δÂHo

(
r′, 0

)}
, (1.10)

with δÔHo (r, t) = ÔHo (r, t)− Tr
{
ρ̂GÔHo

}
.

In accompaniment, χOA (r, t ; r′, t′) is also related to the Green function as

GOA
(
r, r′, t

)
=
−iθ (t)

~
χOA

(
r, r′, t

)
, (1.11)

so that the Fourier components obey the identity

2~Im
{
GOA

(
r, r′, ω

)}
= χOA

(
r, r′, ω

)
. (1.12)

Equating these two expressions, the dissipative properties of the system,

Im {GOA (r, r′, ω)}, are related to its fluctuation properties as

2~
1± e−βω

Im
{
GOA

(
r, r′, ω

)}
= SOA

(
r, r′, ω

)
. (1.13)

The assumptions leading to this result are surprisingly mild. All that is required

is that the original system should be stationary, and Ô and Â be observables. As

such, the idea can be used effectively in an amazing variety of physical models and

provides a generalized equivalence for both determining and engineering the response

of a system in terms of its microscopic properties.

1.3 Electromagnetic field correlations

1.3.1 The classical fluctuation dissipation theorem

In view of the the classical systems that are considered in later chapters, it useful

to see how the fluctuation dissipation theorem emerges outside the framework of

quantum mechanics. From classical statistical mechanics, the probability of the

system being in a certain state at thermal equilibrium is given by the expression

peq (S) = Z−1e−βHo(S), (1.14)

with Z the canonical partition function, and S some parameterization of the degree

of freedom of the system. From this definition the statistical expectation value of
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an observable, taking as a specific example the current density javg (r, t), is

javg (r, t) =

∫
dS peq (S) j (S, r, t) , (1.15)

where j (S, r, t) is the current density at the position r under the conditions S.

Letting Htot = Ho +H be the classical Hamiltonian of the system perturbed by an

external electromagnetic electric field with

H (S) =

∫
dV ′j

(
S, r′, t

)
A
(
r′, t
)
, (1.16)

to first order the change in the statistical average of the current density is

javg
Htot

(r, t) =

∫
dS e−β(Ho(S)+H(S))j (S, r, t)∫

dS e−β(Ho(S)+H(S))
≈ (1.17)

∫
dS peq (S) (1− βH (S)) j (S, r, t)∫

dS peq (S) (1− βH (S))
≈ (javg (r, t)− β 〈H j (r, t)〉) (1 + β 〈H〉) .

With H as above, and δjavg (r, t) = javg
Htot

(r, t) − javg (r, t), this relation then deter-

mines the change in the dipole moment to be

δjavg (r, t) = −β
∫
dV ′

〈
δj (r, t) δj

(
r′, t
)〉

A
(
r′, t
)
. (1.18)

However, just as in the previous section, to first order this same situation must be

equally well describe in terms of a linear response function ãlm (r− r′, t− t′) which,

assuming the system to be stationary and homogeneous, takes the form

δjavgl (r, t) =

∫
dV ′

∫ ∞
−∞

dt′ ãlm
(
r− r′, t− t′

)
Em

(
r′, t′

)
, (1.19)

where the letter subscripts are used to denote vector components. Now, if the system

in the presence of the additional external electric field can be smoothly related to

the initial equilibrium system (which is simply a restatement of the validity of a

perturbative approach) then it can be freely assumed that t→ −∞⇒ A (r′, t)→ 0.

If this is the case, then the perturbation of the Hamiltonian can then be rewritten

as

H =

∫
dV ′ j

(
S, r′, t

)
A
(
r′, t
)

=

∫
dV ′

∞∫
−∞

dt′ Θ
(
t− t′

) d

dt′
(
j
(
S, r′, t′

)
A
(
r′, t′

))
.

(1.20)

11



Sticking to linear order, Maxwell’s equations allows us to identify this expression as

H = −
∫
dV ′

∞∫
−∞

dt′ Θ
(
t− t′

)
j
(
S, r′, t′

)
E
(
r′, t′

)
. (1.21)

so that (1.18) becomes

δjavg (r, t) = β

∫
dV ′

∞∫
−∞

dt′ Θ
(
t− t′

) 〈
δj (r, t) δj

(
r′, t′

)〉
E
(
r′, t′

)
.

Equating (1.19) and (1.18) then shows that

ãlm
(
r− r′, t− t′

)
= β Θ

(
t− t′

) 〈
δjl (r, t) δjm

(
r′, t′

)〉
; (1.22)

so that again, the first order fluctuations of the system are found to determine its

linear response function.

Taking the Fourier transforms of the above, making use of the Wiener-Khintchine

theorem, then produces the results

2

β

〈
δĵl (r, ω) δĵ∗m

(
r′, ω′

)〉
= −δ

(
ω − ω′

) (
ãlm

(
r− r′, ω

)
+ ã∗ml

(
r− r′, ω

))
(1.23)

2

β

〈
δĵl (k, ω) δĵ∗m

(
k′, ω′

)〉
= −δ

(
k− k′

)
δ
(
ω − ω′

)
(ãlm (k, ω) + ã∗ml (k, ω)) (1.24)

The primary difference between (1.22) and (1.23) and (1.13) lies mainly in difference

in the expected average energy per mode. Making the substitution

β → ~ω
eβ~ω ± 1

+ ~ω (1.25)

the two results become identical, up to the way in which the averages are computed,

showing again that the formalism of linear response is truly one of the most ver-

satile theoretical pictures. (A derivation of the steps connecting these two energy

distribution is included as an appendix16.)

Inversely, the same steps can be taken assuming that an external current density is

introduce to the equilibrium system, rather than a external vector potential. Ex-

16Note that every result stated in this section can be developed analogously if magnetic, rather
than electric, dipoles are considered. However, the magnetic response function of the materials we
will consider in later chapters are generally featureless, and so we have not shown these results.
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amining the change in the potential field, fixing the scalar potential to be zero,

δAavgl (r, t) = β

∫
dV ′

∫ ∞
−∞

dt′ g̃lm
(
r− r′, t− t′

)
jm
(
r′, t′

)
. (1.26)

then yields

2

β

〈
δÂl (r, ω) δÂ∗m

(
r′, ω′

)〉
=
δ (ω − ω′)

ω

(
g̃lm

(
r− r′, ω

)
− g̃∗ml

(
r− r′, ω

))
(1.27)

2

β

〈
δÂl (k, ω) δÂ∗m

(
k′, ω′

)〉
= δ

(
k− k′

) δ (ω − ω′)
ω

(g̃lm (k, ω)− g̃∗ml (k, ω)) (1.28)

Consistency demands that (1.22) and (1.27) must agree so long as the assumptions

stated above are valid. The two formulations, referred to respectively as the fluctu-

ation theorem of the first and second kind [92], clarify that related linear response

parameters are not independent.

1.3.2 Stochastic Maxwell equations

So long as the characteristic length scale of charge fluctuations are much smaller

than the particular wavelength of interest, i.e. that dipole approximation is valid,

(1.23) and (1.27) can applied directly to the macroscopic Maxwell equations to

determine thermal field characteristics17. Written in the standard SI convention,

these equations are

∇×E (r, t) =
∂B (r, t)

∂t
, (1.29)

c2∇×H (r, t) =
∂D (r, t)

∂t
+ jf (r, t) /εo. (1.30)

Here, the f subscript denotes that the quantity is free (distinct from the underlying

charge and current densities responsible for the magnetic and electric polarizations),

and D and H are the electric and magnetic displacement fields, related to the electric

and magnetic fields E and B by the constitutive relations

D (r, t) =

∫
dV ′

∫ ∞
−∞

dt′ ε̄
(
r− r′, t− t′

)
E
(
r′, t′

)
, (1.31)

B (r, t) =

∫
dV ′

∫ ∞
−∞

dt′ µ̄
(
r− r′, t− t′

)
H
(
r′, t′

)
, (1.32)

where ε̄ (r− r′, t− t′) and µ̄ (r− r′, t− t′) are the relative permittivity and perme-

ability tensors of the medium, and j (r, t) is the current density. Taking Fourier

17If the dipole approximation is not valid, then macroscopic charge fluctuations will appear and
the form of the perturbation of consider above should properly include the scalar potential.
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transforms in space and time, these equations are equivalently written as

k×E (k, ω) = ω B (k, ω) (6c)

ic2k×B (k, ω) = −iω D (k, ω) + jf (k, ω) /ε0 (1.33)

with

D (k, ω) = ε̄ (k, ω) E (k, ω) (1.34)

B (k, ω) = µ̄ (k, ω) H (k, ω) . (1.35)

Combining these two relations, the electric field and current are related by the

expression

jf (k, ω) =
ε0c

2

iω

(
k2
(
Ī − k̂⊗ k̂

)
− k2

0
ε̄ (k, ω)

)
E (k, ω) =

(iω)−1 Ḡ−1 (k, ω) E (k, ω)

(1.36)

where G (k, ω) stands for the Green function as it is usually defined in electromag-

netics, and the overline superscript is used to denote a matrix. Substituting this

result into (1.24) and (1.28) produces tractable expressions for the correlations of

both the current and electric field〈
δĵl (k, ω) δĵ∗m

(
k′, ω′

)〉
= βεoω δ

(
k− k′

)
δ
(
ω − ω′

)
Im {εlm (k, ω)} (1.37)

〈
δÊl (k, ω) δÊ∗m

(
k′, ω′

)〉
= β δ

(
k− k′

) δ (ω − ω′)
ω

Im {Glm (k, ω)} . (1.38)

These central results, giving statistical expectation values without the need for sta-

tistical computation, form the basis for nearly all of the results presented in later

chapters.

1.3.3 Energy and heat transfer from field correlations

The Rytovian formulation of field correlations shown in the previous section reveals

surprising physical behavior, particularly in the near-field. The simplest example of

this exists in considering the thermal electromagnetic power transfer between two

half spaces separated by a thin, lossless, dielectric film. Denoting this quantity as

Sz, the component of the Poynting vector just inside the cooler half space is

〈Sz (ω)〉 = Re
{〈
Ex ×H∗y − Ey ×H∗x

〉}
, (1.39)
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where the z subscript denotes the direction perpendicular to the surface of the two

plates, and the x and y subscripts the two parallel direction. Using the Green

function formalism, (1.39) becomes

〈Sz (ω)〉 =

Re

{〈
ω2

∫
dV ′ Gxl

(
r, r′, ω

)
jl
(
r′, ω

) ∫
dV ′′ ∇× G∗ym

(
r, r′′, ω

)
j∗m
(
r′′, ω

)〉}
−Re

{〈
ω2

∫
dV ′ Gyl

(
r, r′, ω

)
jl
(
r′, ω

) ∫
dV ′′ ∇× G∗xm

(
r, r′′, ω

)
j∗m
(
r′′, ω

)〉}
,

(1.40)

where the l and m subscripts stand for free Cartesian components, summed over

in the Einstein convention. Freely interchanging averaging and integration, noting

that the permittivity tensor is diagonal, (1.37) can be applied directly to give

〈Sz (ω)〉 = εoω
3 H (ω, T )

Re

{〈∫
dV ′ Gxl

(
r, r′, ω

)
Im
{
εll
(
r′, ω

)} (
G∗ly
(
r′, r, ω

)
×∇

)〉}
−Re

{〈∫
dV ′ Gyl

(
r, r′, ω

)
Im
{
εll
(
r′, ω

)} (
G∗lx
(
r′, r, ω

)
×∇

)〉}
,

(1.41)

where . . . × ∇ denotes that the curl is applied to the second (column) index of

G∗lx (r′, r, ω). Following the steps outlined in the associated appendix, this thermal

power flow is

〈Sz (ω)〉 =
∑
n

(
H (ω, T1)−H (ω, T3)

2π

)( ko
√
ε2∫

0

dkρ

(
1−

∣∣r21
n

∣∣2)(1−
∣∣r23
n

∣∣2)
|1− r21

n r
23
n e

2ikz2L|2
kρ

+4

∞∫
ko
√
ε2

dkρ
Im
{
r21
n

}
Im
{
r23
n

}
|1− r21

n r
23
n e

2ikz2L|2
e−2Im{kz2}L kρ

)
,

(1.42)

where kρ and kz are the cylindrical coordinates of the reciprocal vector k, H (ω, T )

is energy distribution

H (ω, T ) =
~ω

1− e−β~ω
, (1.43)

rσφn stands for one of two Fresnel reflection coefficients of the electric field between

the media σ, and φ, with polarization n, Fig. 1.2,

rσφp =
εφ (k, ω, T ) kzσ − εσ (k, ω, T ) kzφ
εφ (k, ω, T ) kzσ + εσ (k, ω, T ) kzφ

rσφs =
kzσ − kzφ
kzσ + kzφ

, (1.44)
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with

kzσ =
√
k2o εσ (k, ω, T )− k2ρ, (1.45)

L is the thickness of the thin lossless dielectric film, and ko = ω/c. Note that the

dependence of rσφn on k, ω, and T is suppressed in these and all following equations

to help increase readability. Similarly, explicit inclusion of the temperature depen-

dencies in the absorptivity and thermal power flow are also suppressed.

kz
k

r    (k  , ˜ , T)23
n

r    (k  , ˜ , T)21
n

L
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Figure 1.2: Half space thermal electromagnetic power transfer.
The figure displays a schematic of the thermal electromagnetic power transfer de-
scribed by (1.42). When the distance L is smaller than the wavelength, the thermal
power transfered per cross sectional area scales as 1/L2. As such, on the micro
or nanoscale this phenomena may be orders of magnitude larger than expectations
based on Kirchhoff’s law of thermal radiation. Note that this scaling provides a
mechanism by which in the L → 0 the heat energy transferred between two bodies
can approach material thermal conductivity.

The first bracketed term in (1.42) is the wave theory version of Kirchhoff’s classical

theory of thermal radiation. To recover this results, we begin by setting ε3 (ω, T )

and ε2 (ω, T ) equal to vacuum, ε (ω, T ) = 1. For the second integral, ko < kp, and so

kz2 = i
√
k2ρ − k2o on the entire domain on integration. As a result, the exponential

term in this integral becomes Exp
(
−2

√
k2ρ − k2o L

)
. If L is much larger than λ,

then the exponent becomes a large negative number and the contribution of this

second term in the far-field is vanishingly small.

Returning to the first integral, keeping ε3 (ω, T ) = ε2 (ω, T ) = 1 we find

〈Sz (ω)〉 =
∑
n

(
H (ω, T1)−H (ω, T3)

4π

) ko∫

0

dkρ

(
1− |r21s |2

2
+

1− |r21p |2

2

)
kρ

(1.46)
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As kp < ko this integral can equally be converted to a polar integral,

〈Sz (ω)〉 =
ω2

c2

(
H (ω, T1)−H (ω, T3)

4π

) π∫
0

dθ

(
1− |r21

s (θ) |2

2
+

1− |r21
p (θ) |2

2

)
c (θ) ;

(1.47)

where the factor c (θ) = cos (θ) shows that only the component of the integrand

perpendicular to the surface, z direction, is counted. Identifying
(
1− |r21

s |2
)
/2 +(

1− |r21
p |2
)
/2 as the absorptivity of an optically thick medium,

α (ω, θ) =
1− |r21

s (θ) |2

2
+

1− |r21
p (θ) |2

2
, (1.48)

we then have

〈Sz (ω)〉 =
ω2

c2

(
H (ω, T1)−H (ω, T3)

4π

) π∫
0

dθ α (ω, θ) c (θ) . (1.49)

The integrand of this expression doubles as the definition of emissivity originally

given be Kirchhoff. As such, we see that in the limit of geometric optics the amount

of thermal radiation emitted by an object as derived by Rytovian electrodynamics

agrees exactly with Kirchhoff’s law of thermal radiation.

Building from the understanding imparted by this simplification, the meaning of

the first integral as originally written can now be interpreted as the product of two

phenomena. Kirchhoff law of thermal radiation requires the presence of each factor

like 1−|r12
n |2, and these terms dominate in the domain of geometric optics. Likewise,

the additional phase information that appears as a denominator for these factors is

a consequence of the wave nature of electromagnetics. It must be present to allow

for interference.

Compared to this first term, which fits fairly well with the traditional nineteenth

century view of far-field thermal radiation, the second term is astonishing. Assuming

that for large kρ
Im
{
r21
n

}
Im
{
r23
n

}
|1− r21

n r
23
n e

2ikz2L|2
≈ C, (1.50)

and that L is small enough so that this approximation can be made for the majority

of the domain of integration, the scaling of this additional thermal electromagnetic
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power transfer, (1.42), with separation distance L is found to be

∞∫
ko

dk||
Im
{
r21
n

}
Im
{
r23
n

}
|1− r21

n r
23
n e

2ikz2L|2
e−2Im{kz2}L k|| ∝

4π2C

λ2

(
e−4πL/λ

(4πL/λ)2 +
e−4πL/λ

4πL/λ

)
,

(1.51)

where ε2 (k, ω, T ) has been set to vacuum ε2 (k, ω, T ) = 1. Crucially as the size of

the gap is reduced, the amount of thermal energy transferred scales approximately

as 1/L2. This result directly shows that at nanoscale distances the transport of heat

energy by thermal radiation may be orders of magnitude larger than what is observed

in the far-field, nearing bulk thermal heat conductivity in the limit L→ 0 [76,93].

The implication of this model calculation, originally produced by Polder and Van

Hove [13, 94], are remarkable. Principally, the energy spectrum of thermal radia-

tion need not resemble a Planckian distribution. It may generally be tailored by

controlling the linear response parameter ε (k, ω, T ), and in the near-field can even

display resonant characteristics if
∣∣1− r21

n r
23
n e

2ikz2L
∣∣2 → 0. These coherence prop-

erties [12, 95, 96] stand in sharp contrast to the usual picture of thermal radiation

as a near perfect example of uncorrelated randomness, and serves as a our primary

motivation for reevaluating the application potential of thermal electromagnetic ra-

diation.
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Chapter 2

Designing Thermal Emission

with Metamaterials

In this chapter, we theoretically propose general methods by which metamaterial con-

cepts can be used to control radiative thermal characteristics.

In the early 2000’s Cornelius and Dowling [24], (followed shortly by Hinzel et al. [30]

and Lin et al. [25]) showed that photonic bandgaps could be used to induced broad-

band thermal radiation suppression beneficial for photonic energy harvesting. Since

the publication of this result, the use of micro / nanoscale structuring to control

far-field radiative emission characteristics has been considered one, if not the, most

important practical applications of thermal electromagnetic engineering1.

Yet, in spite of the multitude of designs that has been considered in the inter-

vening years to provide this control, and the progress that has been made [42, 56],

relatively few unifying themes have emerged. Explicitly these themes are:

(1) That interference effects, capable of both enhancing and suppressing thermal

emission, will occur if structuring introduces a characteristic size similar to the

wavelength [97,98].

(2) That the creation of a photonic bandgap can be used to effectively suppress

thermal emission [99,100].

(3) That by coupling to polariton modes, the thermal emission of a structure can be

1In particular photonic crystal structures have received a great deal of attention since this idea
was first introduced [26, 31, 33, 35]. However, as listed in the first chapter, almost every popular
micro/nanophotonic structure has been considered as a platform for controlling far-field thermal
radiation to some extent.
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enhanced [101, 102]. Beyond these rules, the specifics of how a given structure will

perform, and how it should actually be designed, are commonly not known until it

is numerically simulated and recursively optimized.

As a response to this shortcoming, here, we provide a general theory of radiative

thermal emission applicable to any deeply sub wavelength (nano) structure: thermal

emission from the perspective of metamaterials (effective medium response). Our

analysis simultaneously classifies all spectrally selective thermal emission character-

istics that can be achieved with metamaterials, and proposes two novel methods for

engineering far-field radiative thermal emission by creating epsilon-near-zero, and

epsilon-near-pole type responses.

In addition, we also propose the extension of constituent materials for optical meta-

materials to include any that support high temperature plasmonics. Although the

figure of merit of these metals is typically far below that of conventional metama-

terial building blocks, we show that nevertheless strong radiative selectivity can be

achieved (without sacrificing thermal stability).

Using our approach, the angular distribution, spectral position, and band width

of thermal emission and optical absorption can be both analytically determined and

finely tuned in the near infrared. This spectral range is critical to thermophoto-

voltaic energy harvesting technologies, and we analyze the application of metama-

terial emitters for these devices in detail. In particular, we show that metamaterial

emitters near 1500 K can be used as part of thermophotovoltaic devices to surpass

the full concentration Shockley-Queisser limit of 41 %.

2.1 Introduction

High temperature energy conversion processes, such as combustion, are accompanied

by thermal losses which often outstrip usable produced power [90]. As an example,

for average oil and coal based energy conversion, thermal losses account for roughly

50 % to 60 % of the total produced power [103,104]. For small internal combustion

engines this number may climb as high as 75 % [105]. These losses can be substan-

tially mitigated by utilizing the waste thermal energy as a heat resource. An ideal

set up would convert waste thermal energy directly into usable power.

Thermal losses are also significant for photovoltaic cells. Due to the large spec-

tral range that must be captured, over 60% of incident solar power is lost as thermal

energy [106]. Regardless of the material bandgap’s spectral position, radiation above
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the bandgap loses a portion of its energy to thermalization within the cell. Radia-

tion with energy below the bandgap is essentially unused. These effects are intrinsic

and place an upper limit on energy conversion for a single junction semiconductor

cell [107]. While proposals of multi-junction cells offer a potential workaround, they

also require a shift to expensive materials and structures.

An alternative solution exists in the application of the thermophotovoltaic (TPV)

method [108]. In this approach, any combination of conductive, convective or ra-

diated waste energy is concentrated to heat a structure with a spectral emission

tailored to match the bandgap of a specific photovoltaic cell. Once the structure

is heated, the source energy is converted to electromagnetic radiation which can be

transformed into electric power with high efficiency. The method of maintaining the

heated source is flexible giving the TPV approach applicability beyond that of large

scale solar or solar thermal approaches. For example, TPV methods can be used to

create to compact devices for cogeneration of heat and electricity.

TPV devices can easily be integrated as efficiency increasing components of larger

systems, or function as primary solid state energy converters [109]. Unfortunately,

the operational temperatures needed for sufficient power generation and efficient

energy conversion [110] as well as our limited ability to tune the thermal radia-

tion spectrum made previous TPV approaches largely impractical. While excellent

progress has been made towards designing emitters for far-field TPVs through sur-

face structuring [44,49,111,111–115], planar Fabry-Perot based structures [116–118]

and photonic crystals [26, 35, 119], a dominant, broadly applicable set of tools for

controlling thermally induced radiation has yet to emerge.

In this chapter, we introduce a class of thermal effects in metamaterials for ther-

mophotovoltaic applications. Our approach rests on engineering the poles and zeros

of the dielectric constant which allow for an array of unique optical responses. We

show that epsilon-near-zero (ENZ) metamaterials can behave as spectrally tunable,

highly selective ultra-thin thermal emitters and introduce a class of artificial media

defined by a Lorentzian polarization response, epsilon-near-pole (ENP) metamateri-

als. This class of ENP media are ideally suited as thermal emitters in a thermopho-

tovoltaic system where the main requirements are:

• omnidirectional thermal emission

• narrow band and high emissivity

• polarization insensitivity

We also address one of the major limitations of conventional metamaterials for ther-
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mal applications (high temperature operation) by switching to plasmonic materials

with high melting points. Finally, we analyze the performance of these emitters

within a practical thermophotovoltaic device and show that the energy conversion

efficiency can exceed the Shockley Queisser limit of single junction cells. Note that

the ENZ and ENP thermal emitters introduced in this chapter can function as ideal

narrow band ultra-thin absorbers as well.

2.2 Epsilon-near-zero (ENZ) and epsilon-near-pole (ENP)

narrow band absorbers and emitters

2.2.1 Tailored emission and optical absorption

Making use of Kirchhoff’s law of thermal radiation for a body in thermodynamic

equilibrium [120], the engineering of thermal emission can be formulated in terms

of optical absorptivity

ζ (λ, θ, φ) = α (λ, θ, φ) , (2.1)

with α (λ, θ, φ) denoting the structure’s absorptivity as function of wavelength2, az-

imuthal angle, and polar angle, and ζ the structure’s emissivity. It follows directly

that spectrally narrow regions of high optical absorption also create spectrally nar-

row regions of high thermal emission. Consequently, the use of optical resonances

provides a natural starting point for designing thin structures to control thermally

excited electromagnetic radiation. We introduce the concept of thermal engineering

using ENZ and ENP resonances and show how the fundamentally distinct natures of

these two bulk material resonances can create a range of thermally induced effects.

The proposed approach can be used for a variety of applications and in particular

for TPVs, where the main constraints on the emitter are narrow band and omnidi-

rectional emissivity [106].

2.2.2 ENZ and ENP absorption

ENZ

Lossless or near lossless epsilon-near-zero resonances have recently been a topic of

broad research interest, and have been shown as a plausible mechanism for creating

high performance optical devices ranging from nonlinear optical switches to tailored

radiation phase patterns [121, 122]. We show here that ENZ resonances have im-

portant applications in general control of thermally induced radiation (explored in

Section 2.3). However, the traditional Re {ε} → 0 and Im {ε} → 0 ENZ regime is

2Note that the wavelength used in this and all subsequent definitions is the free space wavelength,
and not the wavelength inside emitter. Inside the anisotropic media we will consider, the wavelength

is effectively scaled by a factor of
√

cos(θ)
ε||

+ sin(θ)
ε⊥

, (2.4), where θ is the angle from the ⊥ axis.
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not suited to the requirements of a TPV emitter.

P-polarized radiation incident on an ENZ slab shows increased absorption (non-

normal incidence). This resonance arises due to the presence of a field enhancing

mechanism that relies on the displacement field boundary condition: ε1E1⊥ = ε2E2⊥,

where the ⊥ denotes the direction perpendicular to the slab, and either medium can

be assumed to have ENZ behavior (if ε2 → 0 then E2⊥ → ∞). Kirchoff’s law

immediately reveals that such an ENZ slab, given its enhanced absorption charac-

teristics, should possess a high emissivity. However, s-polarized light which does

not have a component of the field perpendicular to the slab does not show this field

enhancement or the ENZ resonance. By this constraint, no s-polarized light can

be thermally excited, and p-polarized radiation cannot be efficiently emitted at low

polar angles. Since the emission of an ideal blackbody shows no angular or polar-

ization preference, the maximal averaged emitted spectral power in an ENZ region

is less than half of what can be achieved theoretically.

Nevertheless, polarization averaged emissivity near that of a blackbody can still

be attained if the Im {ε} → 0 condition is relaxed. In moving away from true ENZ

behavior by the addition of extra loss, two separate, but connected, absorption im-

proving effects occur. First, in the Re {ε} → 0 region, the high impedance mismatch

between an ENZ material and free space is greatly reduced as the added loss acts to

decrease the impedance of the material. Since this also dictates a general relaxation

of ENZ resonance characteristics, polarization sensitivity is greatly diminished. Sec-

ond, at wavelengths shorter than the Re {ε} → 0 crossing where material impedance

is similar to that of free space (Re {ε} ≈ 1), the addition of material losses begins

to allow for significant absorptivity even if the material film is thin3. Both effects

push this pseudo ENZ resonance towards unity near omnidirectional absorptivity of

both electromagnetic polarizations, and at higher losses combine to create a single

highly absorptive spectral region (Fig. 2.1(A)).

Yet, improving absorptivity in this manner comes at the cost of an increased spec-

tral width. Due to the natural dispersion limitations of a region where Re {ε} → 0,

the spectral width over which the additional loss achieves impedance matching is

comparatively broad. As a direct result, high emissivity occurs over a much wider

range than that ideal for high efficiency TPVs. The onset of this behavior is depicted

in Fig. 2.1(A), where the emissivity of a 100 nm thick film moving away from the

true ENZ characteristics, following a Drude model, on a perfectly reflecting backing

3Note that if Im {ε} is much greater than 1 it not possible to match the impedance of the
material with that of free space. In this case, emission from an ENZ medium will be suppressed.
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is calculated using (2.1) and the Poynting vector relation ~S = 1
2
~E × ~H∗. Again, as

will be discussed in Section 2.5, while broader emissivity may be useful for certain

TPV applications, it does not match the ideal narrow band criterion. In light of

these results, we introduce the concept of ENP resonances for achieving the thermal

emission characteristics necessary for high efficiency TPVs. Note that both the ENZ

and ENP resonances can be engineered using nanostructured metamaterials.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9

1.0

1.1

1.2

W
av

el
en

gt
h 

(μ
m

)

Observation Angle
0 20 40 60 80

Observation Angle
0 20 40 60 80

(A) (B)

0.9 1.0 1.1 1.2

−4
−2

0
2
4

Wavelength (μm)

−0.4
−0.2

0.0
0.2
0.4Re(ε)

Im(ε)

ENZ

0.9 1.0 1.1 1.2
Wavelength (μm)

 

 

Re(ε)

Im(ε)

ENP

0.5
1.0
1.5
2.0
2.5

0.25
0.50
0.75
1.00
1.25

ENZ ENP

Figure 2.1: Emission characteristics of ENZ and ENP type resonances.
(A) Polarization averaged emissivity of a 100 nm thick film of ENZ material, fol-
lowing a Drude model, on a perfectly reflecting backing. The spectrally narrow
peak is the ENZ resonance. The broad blur at shorter wavelengths is the onset of
impedance matching in the Re {ε} ≈ 1 range. As loss is increased, these regions
blend together and the magnitude of the emissivity tends towards unity in a broad
spectral range. The inset shows the relative dielectric constant used. (B) Polariza-
tion averaged emissivity of a 100 nm thick material film in the ENP regime, based
on a Lorentz model, on a perfectly reflecting backing. The component loss consid-
ered is identical to that used in panel (A): γA = γB. Again, the inset shows the
relative dielectric constants used to calculate the polarization averaged emissivity.
The spectrally sharp behavior shown here makes ENP type resonances a promising
candidate for TPV applications.

ENP

The primary advantage of operating at an ENP resonance is the extremely disper-

sive nature of these regions. This characteristic allows for tight spectral control

even with moderate material losses. Yet, beyond this most important feature, sev-

eral other benefits for TPV type emitters and absorbers exist. At an ideal pole of the

dielectric constant we have, Re {ε} → (±)∞. The addition of losses regularizes the

singularity, reduces impedance mismatch and leads to enhanced absorption (high

emissivity) in a narrow spectral region (Fig. 2.1 (B)). The ENP resonance associ-

ated with such a pole shows no polarization sensitivity and achieves omnidirectional
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high emissivity in isotropic media.

We now compare the critical role of losses in the ENZ and ENP resonance. In

contrast to the fixed Re {ε} → 0 condition of an ENZ resonance, which forces any

impedance matching to be accomplished through the addition of loss or effective

permeability µ, the behavior of Re {ε} itself in an ENP region is highly loss de-

pendent. When loss is added, the real part of the dielectric function can no longer

achieve large absolute values, opening the possibility of impedance matching even

with relatively lower losses as compared to the ENZ resonance. This leads to a

narrower spectral window of high emission and absorption than the previously men-

tioned ENZ approach. A comparative visualization of the characteristic spectral

emissivity of a 100 nm thick material film in the ENP regime with moderate losses,

based on a Lorentz model, on a perfectly reflecting backing is shown in Fig. 2.1(B).

Noting that ENP type resonances match all the requirements of a high efficiency

TPV emitter, we now focus on practical realizations of ENZ and ENP materials.

2.3 Practical ENZ and ENP with metamaterials

2.3.1 Natural ENZ and ENP resonances

In natural materials, ENZ regions occur at bulk plasmon as well as longitudinal

optical phonon resonances, LO subscript, while ENP characteristics occur with the

excitation transverse optical phonons, TO subscript, or strong molecular absorp-

tion. Yet, despite the ubiquity of these features in optical responses, few materials

exhibit ENZ or ENP characteristics in the 0.5 eV to 1.0 eV range, crucial for TPV

devices. The bulk plasmon energy, proportional to ωp ∝ (N/me)
1/2, is generally

pushed to much higher energies due to the small effective electron mass, me, and

the high electron concentration, N ≈ 1022 cm−3, of typical metals [123]. The energy

of material phonon resonances, proportional to ωLO ∝ ωTO ∝ (1/M)1/2, occurs at

significantly lower energies due to the relatively large reduced ionic mass, M [123].

The prospect of natural ENP or ENZ near infrared emitters (in the energy range

specified above) is thus limited to a small collection of highly lossy materials such

as osmium or molybdenum which are not capable of creating the spectrally narrow

emission comparable to wavelength scale structuring approaches.

To engineer ENP and ENZ responses we consider two approaches based on metama-

terial crystals. The following subsections show how ENP and ENZ features beyond

those found naturally can be created and tuned through the use of either planar

material stacks or embedded nanowires. Schematics of the multilayer and nanowire

structures are depicted in Fig. 2.2.
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Figure 2.2: Metamaterial implementations of ENZ and ENP behaviour.
(A) Schematic of a multilayer metamaterial created by interlacing layers of optical
metal and dielectric. (B) Schematic of a nanowire metamaterial created by embed-
ding metallic nanowires in a host dielectric matrix. Both structures can be created
with current fabrication techniques [121,124].

2.3.2 One-dimensional multilayer structure

The simplest structure for creating the ENZ/ENP metamaterials consists of alter-

nating layers of metal and dielectric forming a multilayer structure (Fig. 2.2(A)).

The effective medium parameters are given by

ε|| = εM ρ+ εD (1− ρ) ε⊥ =
εM εD

εM (1− ρ) + εD ρ
, (2.2)

where the M subscript is used to denote the metal, the D subscript the dielectric and

ρ the relative fill factor of metal in the unit cell. The parallel (||) and perpendicular

(⊥) subscripts show the direction convention that will be used in the remainder of

the chapter.

The physical characteristics of these effective parameters can be understood in terms

of the restrictions placed on the material’s electrons. Since the motion of electrons

is nearly free within each metal plane (Fig. 2.2(A)) the parallel effective medium

parameter follows the frequency dispersion relation of an effective metal. In turn,

this creates ENZ behavior at the effective plasmon resonance of the parallel direc-

tion. Conversely, in the perpendicular direction nearly free electrons are confined to

the thickness of their particular metal plane. On account of this confinement, the

frequency dispersion of the perpendicular permittivity mirrors that of an effective

Lorentz model dielectric with an accompanying effective ENP resonance. The perfor-

mance of these effective medium parameters, for calculating emissivity, is compared

with the exact theoretical transfer matrix technique for a model tantalum/titanium
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dioxide system in Fig. 2.3. Note that throughout the chapter, we verify the pre-

dictions of effective medium theory (EMT) using numerical simulations taking into

account the finite size of the unit cell, absorption in the constituent materials, dis-

persion as well as the changes to the electromagnetic field inside the emitter induced

by reflections from the substrate.
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Figure 2.3: Radiative spectral control of a ENZ metamaterial.
(A) Effective medium theory calculation of the emissivity of a planar multilayer
structure. The metamaterial is composed of twenty unit cells of 5 nm thick tantalum
(modeled by a Drude relation) and 45 nm of titanium dioxide (ε = 7.5) on optically
thick tantalum. Both materials can be deposited by atomic layer deposition [125].
The inset shows the effective medium parameters as functions of wavelength. The
ENP resonance is located outside of the plotted area and has little effect due to the
spectral power distribution of a blackbody. (B) Transfer matrix calculation of the
multilayer structure which shows excellent agreement with EMT. The inset shows
the relative emission strength of an ideal blackbody as function of wavelength. The
arrows denote the cutoffs of the emissivity plots.

Taking the dispersion characteristics into account, the limitations of the planar

structure for thermal applications become apparent. As ENP behavior occurs along

the optic axis, its interaction with light is limited to the p-polarization. For re-

alistic materials, this limited domain of interaction leads only to a small lobe of

enhanced emissivity at high polar angles. In the parallel direction, the ENZ res-

onance displays the same characteristics as an isotropic ENZ material. Since the

parallel optical response parameter interacts strongly with both polarizations, ENZ

behavior dominates the overall emissivity features of the multilayer structure. Cor-

respondingly, the same broad emissivity that earlier caused us to turn toward ENP

behavior is also a general feature of the multilayer structure. A visualization of

the emissivity of a realizable multilayer system using model tantalum and titanium

dioxide is shown in Fig. 2.3. Possible application of this structure as an emitter for

27



TPVs will be explored in the Section 2.5.

2.3.3 Two-dimensional nanowire structure

Seeking spectral emissivity control beyond what can be accomplished using the

multilayer structure, we switch to the nanowire metamaterial system (Fig. 2.2(B))

[124,126]. In contrast to the multilayer structure, embedded nanowires allow nearly

free electron propagation along the perpendicular direction (the optic axis), but not

in the parallel plane. As the confinement of electrons is flipped from the multilayer

structure, so too is the functional frequency dispersion. The perpendicular direction

now follows the frequency dispersion characteristics of a metal, while the parallel

mimics that of an effective Lorentz model dielectric. Employing the same generalized

Maxwell-Garnett approach used for the planar metamaterial, the effective medium

parameters for metallic nanowires with a square lattice embedded in a dielectric

matrix [127] are defined as

ε|| = εD

[
εM (1 + ρ) + εD (1− ρ)

εM (1− ρ) + εD (1 + ρ)

]
ε⊥ = ρ εM + (1− ρ) εD, (2.3)

where we have used the same convention earlier introduced for the multilayer struc-

ture. Following the general dispersion relations of the effective medium parameters,

shown in the inset of Fig. 2.4(B), the ENP and ENZ conditions are now properly

aligned for TPV applications. The ENP resonance which results in high narrowband

emissivity is located along the parallel direction where it interacts with both s- and

p-polarized light. As such, the general emissivity pattern of the nanowire structure

is very similar to that of an isotropic ENP material, and nearly ideal for creating

a TPV emitter. This is shown in Fig. 2.4, where titanium nitride nanowires em-

bedded in silicon have been used to create a spectrally narrow emissivity spike at

a wavelength just below the bandgap of a gallium antimonide (GaSb) photovoltaic

cell. The spectral location of GaSb’s bandgap, 1.75 µm, makes it well suited for use

in a TPV device at realistic operating temperatures (inset Fig. 2.3(B)).

2.3.4 Metamaterial thermal antenna

We now show how the ENZ region of the nanowire array can lead to highly directional

thermal emission. Primarily, this occurs as the optical dispersion relation, relating

the energy and momentum of an electromagnetic wave in a medium, is altered from

the isotropic form of k2
⊥+k2

|| = εω2/c2 (where we have used the previously mentioned

direction convention, k denotes the spatial frequency of the wave and ω its frequency)

to the anisotropic form of:

k2
⊥
ε||

+
k2
||

ε⊥
=
ω2

c2
. (2.4)
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Figure 2.4: Radiative spectral control of a ENP metamaterial.
(A) Comparison of the polarization averaged emissivity of a 280 nm thick meta-
material emitter making use of a host matrix of silicon (assumed to be a constant
dielectric) and 20 nm diameter titanium nitride nanowires in a 120 nm square unit
cell on an optically thick tantalum backing. The two curves compare emissivity as
calculated by effective medium theory and finite difference time domain simulation
(Lumerical) at normal incidence5. The insets show the same comparison for s- and
p-polarized emissivity over a compressed wavelength range of 1.5 to 2.1 µm at a
polar angle of 50 degrees. Note the excellent agreement between EMT and the full
numerical simulation. (B) Polarization averaged emissivity of the nanowire system
described in (A) calculated using EMT. Emission peaks occurring below the designed
emission are known to be part of the Bragg scattering regime [128]. These peaks
have little effect in application due to low emitted power at wavelengths shorter than
800 nm for bodies cooler than 3000 K. The inset shows the effective medium pa-
rameters as functions of wavelength. The spectrally narrow, omnidirectional nature
of the ENP emissivity peak is nearly ideal for use as an emitter in a TPV device.

If ε⊥ �= ε||, Re {ε⊥} > 0 and Re
{
ε||
}
> 0 the isofrequency surface (generated by

fixing ω and allowing k⊥ and k|| to vary) forms an ellipsoid. If either Re {ε⊥} < 0 or

Re
{
ε||
}
< 0, with the real part of the other dielectric component > 0, the dispersion

relation forms a hyperboloid.

As the perpendicular direction nears low loss ENZ behavior, the isofrequency surface

of the anisotropic crystal generated from (2.4), with Re
{
ε||
}
> 0 becomes very nar-

row, Fig. 2.5. Accordingly, very small changes in incident angle k|| result in extreme

variation of the material impedance. For instance, an electromagnetic mode at non-

normal incidence quickly develops a substantially different relation between its wave

vector k and frequency ω leading to high reflections [129]. This effect produces a

small angular region (for p-polarized light) over which the free space modes can pen-

etrate the medium and be absorbed, Fig.2.5. Therefore, a metamaterial with these

permittivity features will have high emissivity only over this narrow angular region
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Figure 2.5: Metamaterial thermal antenna.
The figure shows a cross-sectional view of the narrow isofrequency surfaces of the
metamaterial in the ENZ regime. The spherical isofrequency surface corresponds
to vacuum. (A) As the perpendicular permittivity nears zero from the negative
side, the dispersion relation inside the metamaterial becomes a narrow hyperboloid.
(B) Ellipsoidal isofrequency surface as the perpendicular effective medium constant
approaches ENZ from the positive side. Note that only waves at near normal in-
cidence from vacuum penetrate the metamaterial which are immediately absorbed
due to the ENZ resonance. Furthermore, the large impedance mismatch at higher
angles leads to high reflections. This results in highly directional emissivity pat-
terns. (C) P-polarized emissivity plot for a 450 nm thick metamaterial emitter
consisting of a host matrix of aluminum oxide (Al2O3) embedded with 15 nm di-
ameter silver nanowires in a 115 nm square unit cell using the effective medium
approach. The angularly sharp emission near normal incidence around 1.075 µm
is usable for applications requiring coherent thermal radiation. The inset shows a
polar plot of the emissivity along the 1.075 µm line. The secondary bands of high
emissivity around the ENZ region is due to the impedance matching behavior in the
ellispoidal/hyperboloidal isofrequency regime which moves to higher angles as the
|Re {ε} → 0| condition is relaxed.

at the ENZ wavelength. Concurrently, the closer Re {ε⊥} is to 0, the narrower this

region becomes, eventually forming a angularly sharp peak. Since spatial coherence

is directly connected to the angular spread of an electromagnetic wave, the heat-

ing of such an anisotropic crystal near a perpendicular ENZ resonance presents a

grating-free method of thermally exciting angularly coherent radiation. The angular

and spectral location of this behavior is tunable based on the fraction of metal, ρ,

filling the underlying unit cell.
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Material Melting Point (K) −ε′/ε′′ (1→ 2µm; 300 K)

Au 1337 14→ 8 [130]
Ag 1235 98→ 29 [130]
AZO ≈ 2200 [131] −15→ 4 [132]
TiN 3250 [133] 1→ 2 [134]

Table 2.1: Optical quality and melting point of infrared plasmonic media.
The table displays the range of the optical quality defined as −ε′ (ω) /ε

′′
(ω) of

common low melting point plasmonic metals, Au gold, and Ag silver and alternative
high melting point plasmonic metals, AZO aluminum zinc oxide and TiN titanium
nitride, in the infrared region of 1→ 2 µm crucial for thermophotovoltaics.

2.4 High temperature plasmonic metamaterials

To this present time, optical / near infrared metamaterial applications have been

confined to temperatures near or significantly below 300 K. Yet, many of the most

interesting applications of thermal engineering require temperatures in the vicinity

of 1500 K. It follows directly that the scope of traditional optical metamaterials

for thermal engineering applications is quite restricted. However, this limitation is

strictly material based. In this section, we show that by switching away from the

conventional low melting point metals, such as silver and gold, optical metamaterial

design principles can be employed for high temperature thermal engineering.

From the results of Tab. 2.1 we observe that several thermally robust materials

display weakly metallic optical characteristics and relatively low loss (Fig. 2.6(A))

through the 1 to 2 µm spectral range. These characteristics prove crucial for

thermal engineering. Building on the results of inset Fig. 2.3(B), energy based

applications of thermal engineering are most likely in the approximate temperature

range of 1500 K. At significantly cooler temperatures, the spectrally broad and rel-

atively small power density emitted by a blackbody (see Section 2.5) strongly limits

the energy conversion performance of any possible far-field TPV device. Returning

to the inset of Fig. 2.3(B), since the bulk of the emitted power for a blackbody in

this temperature range is positioned at wavelengths slightly longer than 1 µm, this

becomes the most important spectral region for emissivity control.

According to the effective medium theory presented in previous sections, both ENP

and ENZ resonances require the metallic and dielectric components of the unit cell

to have |Re {ε} | of the same order. As Re {ε} is at most on the order of 10 for a

dielectric in the near infrared spectral region, metamaterial based ENP and ENZ

behavior in this region of high spectral power density is only possible if the metallic

permittivity component satisfies −10 ≤ Re {ε} ≤ −1. This condition makes the
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replacement of silver or gold with more thermally robust interstitial nitrides such as

titanium nitride [134], transition metals such as tantalum, or transparent conductive

oxide semiconductors such as aluminum zinc oxide [132], all the more important for

metamaterial thermal engineering. Fine-tuning of the ENP resonance using high

temperature plasmonic materials is shown in Fig. 2.6(B).
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Figure 2.6: Alternative plasmonic materials and ENP tunning.
(A) Drude models of the optical properties of TiN and AZO based on the data pre-
sented in [132,134]. (B) Fine-tuning of the ENP metamaterial resonance by altering
the fill fraction of metal in the unit cell. In this plot the titanium nitride/silicon
metamaterial system described in Fig. 2.4 is used. Both AZO and TiN achieve
thermally stable plasmonic behavior in the near infrared (Table Section 2.4).

2.5 Energy conversion efficiency of TPV devices

2.5.1 Characteristics of ENZ and ENP emitters for TPVs

We now turn our attention to characterizing the performance of the metamaterial

emitters made of high temperature plasmonic materials for TPV systems. We fol-

low the theoretical energy conversion argument developed by Shockley and Queisser

[107]. For completeness, we provide a detailed comparison with a blackbody emitter

of the various efficiencies that need to be accounted for in a practical device.

The model begins with the primary assumption that the photovoltaic cell, of the

larger TPV device, operates with unity quantum efficiency perfectly cutoff at the

bandgap energy. Under this assumption, photons with energy greater than the ma-

terial bandgap create an electron hole carrier pair with energy equal to that of the

bandgap, and any additional energy is lost to thermalization within the cell. Pho-

tons with energy below the bandgap of the photovoltaic cell are lost to free space.

This perfect cutoff model defines an ultimate performance limitation on the TPV
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device following the usable power created by the emitter

ηult (λgap, T ) =

∫ π/2
0 dθ cos (θ) sin (θ)

∫ λg
0 dλ λ

λg
ζE (λ, θ) IBB (λ, T )∫ π/2

0 dθ cos (θ) sin (θ)
∫∞

0 dλ ζE (λ, θ) IBB (λ, T )
, (2.5)

IBB (λ, T ) =
8πhc

λ5

(
e

hc
λkBT − 1

) , (2.6)

where ζE (λ, θ) is emissivity of the emitter, λg the wavelength of the material

bandgap, T the emitter temperature, and IBB (λ, T ) the spectral radiance of an

ideal blackbody. Here, we have assumed the emitter to be planar with no azimuthal

angular dependence, and that the emissivity characteristics are temperature invari-

ant following the considerations of [135,136].

To understand the consequences of this relation, the efficiencies ηult resulting from

the angularly averaged emissivity profiles of an ideal blackbody and the titanium

nitride/silicon nanowire system, described in Fig. 2.4, are plotted for a gallium an-

timonide photovoltaic cell with temperatures varying from 500 to 2500 K in Fig.

2.7(A). Gallium antimonide is chosen as the photovoltaic cell as its material bandgap,

0.71 eV , is well matched to the spectral power distribution of the blackbody near

1500 K. At low temperatures, since the blackbody spectral power distribution is

broad and flat, the power emitted near the photovoltaic cell bandgap is not an ap-

preciable percentage of the total emitted power. As the temperature increases, the

blackbody spectral radiance (2.6) increases and shifts towards shorter wavelengths.

This leads to higher percentages of the emitted radiation being usable by the photo-

voltaic cell and, consequently, increased ultimate efficiency. This effect peaks as the

efficiency gained by shifting a larger portion of the spectral power density to lower

wavelengths is countered by mounting thermal losses due to the cell only producing

electron hole pairs at the bandgap energy. A visualization of the spectral power

distributions of an ideal black body, the titanium nitride nanowire design, and the

emitter offering peak device efficiency for a gallium antimonide photovoltaic cell are

shown in Fig. 2.7(B) at a temperature of 1500 K.

2.5.2 Shockley-Queisser efficiency analysis

To determine the total efficiency of our emitter designs as part of a TPV device,

the physical characteristics of the photovoltaic cell must be considered. Assuming

standard pn-junction photon conversion, two extra efficiency terms must be intro-

duced. First, we must take into account the additional ways in which charge carriers

may be removed from the cell. Second, we must include the specific current voltage
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Figure 2.7: Metamaterial emitter for thermophotovoltaics.
(A) Comparison of the ultimate efficiency of a titanium nitride metamaterial emitter
(Fig. 2.4) to that of a blackbody for a 0.71 eV material bandgap, corresponding
to GaSb. Based on bulk material parameters, the metamaterial emitter will be
thermally stable up to 1650 K. (B) Comparison of the angularly averaged spectral
emission characteristics between the titanium nitride metamaterial design, an ideal
blackbody, and an emitter which maximizes the efficiency of energy conversion at
1500 K. The large lobe of the metamaterial ENP resonance closely matches the
position and magnitude of the emitter producing the highest TPV device efficiency.

relations of a pn-junction.

In addition to the desired external current, both radiative and nonradiative re-

combinations reduce the total number of charge carriers within a photovoltaic cell.

The characteristics of these recombination mechanisms can be understood through

the equilibrium condition of the photovoltaic cell with and without the presence of

emitter photons. With no emitter contribution, and the cell in thermodynamic equi-

librium, the net number of carriers within the cell is constant, and can be described

by

QBB (λg, TC)−Rrad (TC) +Gother (TC)−Rother (TC) = 0, (2.7)

where QBB (λg, TC) is the number of carriers generated by photons incident on the

photocell from its surroundings,

QBB (λg, TC) = 2

∫ 2π

0
dφ

∫ π/2

0
dθ cos (θ) sin (θ)

∫ λg

0
dλ

λ

λg
IBB (λ, TC) , (2.8)

Rrad (TC) the number lost by radiative recombination, Gother (TC) any other carrier

generation, and Rother (TC) any other carrier recombination. As this equilibrium also

requires that energy entering the cell is equal to that exiting, we can immediately

34



conclude that

Rrad (TC) = QBB (λg, TC) Rother (TC) = Gother (TC) . (2.9)

We now examine the cell with an external incident flux from an emitter source, and

an external load through which carriers may exit. Following the standard statistical

mechanics model, we assume that the additional carriers perturb the recombination

rates within the cell as eV/VC . Here, V is the difference between the quasi-Fermi

levels, and VC = kBTC/e. As such,

QE (λg, TE)−QBB (λg, TC) e
V
VC +Gother (TC)−Gother (TC) e

V
Vc − I

q
= 0, (2.10)

QE (λg, TE) =

∫ 2π

0
dφ

∫ π/2

0
dθ cos (θ) sin (θ)

∫ λg

0
dλ

λ

λg
ζE (λ, θ) IBB (λ, TE) ,

(2.11)

as we assume the emitter photons fall on only one side of the photovoltaic cell. Note

that we now also assume that the finite volume between the emitter and photovoltaic

cell does not contribute to the incident radiation, and that any electromagnetic

energy radiated by the solar cell is not reused for energy conversion. Introducing

frec as the percentage of recombinations which are radiative
(

QBB(λg ,TC)
QBB(λg ,TC)+Gother(TC)

)
and solving for the open circuit voltage we find

VOC = VC ln

(
frec
2

QE (λg, TE)

QBB (λg, TC)
− frec + 1

)
, (2.12)

which, when functioning within the quasi-static limit of this approximation, is

smaller than the initial material bandgap Vg. This consideration leads us to the

efficiency factor:

ηrec (λg, TE , TC) =
VOC
Vg

. (2.13)

Returning to (2.10), we can see that a final efficiency reduction arises due to the

interrelation of current and voltage in the pn-junction cell. As current is allowed to

flow the number of free carriers within the cell drops, reducing the voltage from its

open circuit value. As current must be drawn to create usable power, an efficiency

factor relating the operational voltage, VP , to the open circuit voltage, VOC , must

be included by finding the maximal power-point (VP I(VP )) of the photovoltaic cell.

Using (2.10) we find

ηpow =
VP I (VP )

VOC ISC
=

v2
pp

(vpp + ln (1 + vpp)) (1 + vpp − e−vpp)
, (2.14)
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where vPP is defined as the ratio of the operating cell voltage at the maximum

power-point to the background cell voltage, VP
VC

, and is determined via the relation

VOC = VP + VC ln

(
1 +

VP
VC

)
. (2.15)

The product of these two results, ηrec ηpow, shows the efficiency with which an

idealized pn-junction photovoltaic cell converts photons at its material bandgap

into usable power. Using the three efficiency parameters computed, we can now

determine the overall efficiency of our metamaterial emitter designs functioning as

part of a TPV system.

2.5.3 Energy conversion results

From the ultimate efficiency (2.5) and Fig. 2.7 we can begin to see that the prin-

cipal characteristic of a good emitter for TPVs is the suppression of subbandgap

photons. Near unity ultimate efficiency, ηult, requires the spectral emissivity of the

emitter, ζE (λ, θ), to become narrow band at a wavelength slightly shorter than that

of the material bandgap. Yet, this ultra-sharp spectral behavior is pragmatically

undesirable. As the spectral range of emission is narrowed, the power produced at a

fixed temperature is decreased. This reduction not only limits the amount of power

that can be extracted from the TPV device, but also acts to reduce the total energy

conversion efficiency. Reviewing (2.13), if the number of carriers in the pn-junction

is near the unilluminated thermal equilibrium amount, a large percentage of the in-

cident emitter energy will be either reradiated or lost within the cell. Consequently,

the efficiency of converting the power radiating from the emitter will also be reduced.

Since the temperature of the emitter, and thus the amount of usable power it can

produce, is intrinsically limited by the materials used, whether a spectrally wider or

narrower emission is preferable depends on the particular application. At low tem-

peratures, broader emitters are more efficient and provide greater power densities;

however, as temperature is increased their efficiency falls below that of the narrow

emitter.

Clearly, this tradeoff has direct consequence for our TPV emitter designs. For

applications in which it is not possible to reach emitter temperatures of ≈ 1000 K,

broad ENZ type emitters will create better TPV devices. Above this approximate

temperature, spectrally thinner ENP type absorption peaks will provide superior

net efficiency. Here, even lower emitted power begins to become a benefit of the

spectrally thin design. As the emitter is in thermodynamic equilibrium, all emitted

energy must be replaced. This becomes increasingly difficult with a spectrally broad

emitter at high temperatures. As an alternative view, given a fixed input power,
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Figure 2.8: Efficiency of metamaterial thermophotovoltaic systems.
(A) Theoretical efficiency of three TPV devices taking into account all discussed
effects. The cell parameters of the Ta/T iO2 multilayer and T iN/Si nanowire sys-
tems are the same as in Fig. 2.3 and Fig. 2.4. The third system utilizes 250 nm
long, 20 nm diameter AZO rods in a 125 nm square Al2O3 matrix, set on an op-
tically thick tantalum backing, and an InGaAs photovoltaic cell with bandgap set
at 2100 nm. In these plots the efficiency of heating the source is not included.
However, due to the tantalum backing included in all designs, the performance of
these devices should not be greatly altered by the characteristics of the heat source.
(B) Final output power density of the systems described in (A). Due to the lower
energy bandgap of the InGaAs photovoltaic cell, the AZO based metamaterial sys-
tem produces relatively higher power density at lower temperatures. Following the
discussion of Section 2.5.1, the opposite is seen at higher temperatures. The high
performance metrics of these model systems indicate the potential of TPV systems
using metamaterials.

a spectrally thinner emitter will operate at a higher temperature and thus higher

efficiency (Fig. 2.8(B)).

Taking all three efficiency considerations into account, the theoretical metrics for

TPV devices using metamaterial emitters, neglecting any loss associated with an

absorber stage, are shown in Fig. 2.8. The full concentration limit for solar based

single junction photovoltaics, following the assumptions of Shockley and Queisser,

is surpassed for emitter temperatures near 1500 K in the AZO nanowire system.

The overall performance of these designs show either greater high temperature ef-

ficiency [35, 112], tighter spectral emissivity, or similar efficiency behavior with a

higher emitter power [118] to other contemporary designs.
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2.6 Summary

In this chapter we have developed a general means of exerting control over ther-

mally excited far-field electromagnetic radiation through the use of ENP and ENZ

resonances. Thermal radiation control through the use of these generalized bulk

material resonances shows great potential for creating a new class of realizable ther-

mal devices. In particular, we have shown specific metamaterial implementations

for creating emitters for TPVs and coherent thermal sources in the near infrared

range crucial for energy applications. We have also introduced the concept of meta-

materials based on high temperature plasmonic materials. This switch away from

typical plasmonic materials is crucial for many far-field thermal applications and

more generally for furthering the scope of optical metamaterial designs. This work

paves the way for future use of metamaterials for the control of thermally excited

radiation.
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Chapter 3

Controlling Thermal Emission

with Refractory

Epsilon-near-zero Metamaterials

via Topological Transitions

In this chapter, we present experimental validation of the thermal design principles

developed in Chapter 2.

As we have examined in the analysis of the previous chapter, control of thermal ra-

diation at high temperatures in the near infrared is vital for waste heat recovery and

for high-efficiency thermophotovoltaic (TPV) conversion. Building on these ideas,

in this chapter we demonstrate a refractory W −HfO2 metamaterial, which selec-

tively enhances and suppresses thermal emission through an engineered dielectric

response function. This design stands in contrast to previously reported structural

resonances techniques such as gratings, thin film resonances, metasurfaces and pho-

tonic crystals as it is based on effective material properties and not wavelength scale

interference effects or coupling. Importantly, our emitter is fabricated without any

surface structuring, and provides near omni-directional spectrally selective radiative

emission.

The functionality of our emitter is based on the creation of an epsilon-near-zero

frequency and connected optical topological transition (OTT) in the isofrequency

surface of a refractory multi-layer metamaterial, Fig. 3.1. We verify that such meta-

material design principles are thermally stable up to the thermal degradation limits

of the metamaterial structure, here over 1000 oC.
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Optical topological transition

Spherical isofrequncy Hyperbolic isofrequncy

Figure 3.1: Thermal emission across an optical topological transition.
The figure schematically depicts how an optical topological transition induces selec-
tive thermal emission. At energies where the isofrequency relation of the emitter is
ellipsoidal, the momenta of its thermally excited electromagnetic modes are similar
to those of free space, leading to high emission. However, if the isofrequency is hyper-
bolic, the momentum of an electromagnetic mode inside the emitter is much greater
than a free space mode with same energy. This mismatch leads to a strong suppres-
sion of far-field thermal radiation. By engineering a optical topological transition
the emitter can transition between these two isofrequency relation over a narrow
frequency band, leading to a high degree of control over the spectral content of its
thermal radiation.
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3.1 Introduction

In natural media, the photonic isofrequency surface is a fixed relation between the

momentum and energy of photonic modes which dictates the material’s linear optical

response specified by Maxwell’s equations [137]1. In metamaterials, it is a property

that can be engineered in order to produce desired optical characteristics [138]. As

opposed to the regular spherical and ellipsoidal shapes seen in natural dielectrics,

a wide variety of surfaces and related optical response are possible; including the

point-like vanishing surfaces of epsilon-near-zero (ENZ) media [139] and open sur-

faces of hyperbolic media [140].

In this chapter, our goal is to demonstrate that this control of optical response

through the shape of the isofrequency surface works equally well at high tempera-

tures. This is accomplished by fabricating a metamaterial with wavelength selec-

tive thermal emission arising from an optical topological transition (OTT) [138] in

its photonic isofrequency surface. The design marks an important departure from

well established routes of thermal emission control using two dimensional and three

dimensional photonic crystals [42, 56, 141–147], thin film resonances [99, 148–150],

gratings and metasurfaces [44, 49, 112, 122, 151, 152]. Instead of altering thermal

emission through wavelength scale interference effects or coupling, here, we use an

intrinsic material property (the ENZ frequency) to manipulate the bulk thermal

energy density and consequently selectively excite and suppress the photonic modes

that contribute to far-field thermal emission. (This metamaterial design principle

is experimentally confirmed by the spectral content of far-field thermal radiation in

the vicinity of the topological transition of the isofrequency surface.)

The metamaterial is designed based on a subwavelength super-lattice structure

of tungsten and hafnium oxide. This choice of constituent materials stands in

stark contrast to previous ENZ and hyperbolic media which have utilized either

noble metals with low thermal stability [153], phonon-polaritonic materials [154],

graphene [155, 156], or highly doped semiconductors [157]. Specifically, these ma-

terials are chosen primarily for their exceptional thermal stability, and secondarily

for the relatively low optical absorption and ease of fabrication. Using this design,

we conclusively show the high temperature stability of the optical absorption and

thermal emission resulting from effective ENZ response at temperatures of up to

1000 oC. The associated OTT is carefully designed to lie in the crucial near infrared

window of 1−3 µm, paving the way for metamaterial designs compatible with low

bandgap photovoltaic (PV) cells [158–161] (0.3 − 0.6 eV ).

1For additional comments on isofrequency surfaces and optical topological transitions please see
the first section of Appendix F Additional Results for Natural Hyperbolic Media.
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In exchange for improved conversion efficiency and application flexibility the im-

plementation of the TPV concept places stringent requirements on the emissivity

characteristics and thermal stability of the selective thermal emitter, Fig. 3.2 (A).

Thermodynamic conservation arguments require the radiative thermal emissivity of

any object to be less than that of a blackbody at the same temperature. Conse-

quently, to achieve sufficient output radiative power density in the range of contem-

porary low bandgap photovoltaic receivers [158] with bandgaps of typically 0.55 eV

operational temperatures surpassing 1000 oC are required. The emitter should also

possess the highly selective emissivity characteristics required to suppress the emis-

sion of long-wavelength photons and, at the same time, should provide near unity

emissivity at energies above the bandgap of the PV cell, Fig. 3.2 (A). Short wave-

length selectivity of the emitter is not required since the blackbody limit at 1000 oC

represents a natural boundary due to the BoseEinstein occupation quickly decreas-

ing for shorter wavelengths. Our design has low angular dependence and is tunable

within the entire near infrared spectrum. We also reveal the mechanisms leading

to thermal degradation of the optical performance through spectral analysis and

energy dispersive X-ray spectroscopy (EDS) techniques. Our measurements of the

optical absorption and thermal emission at high temperature (1,000 oC) serve as

a direct validity of Kirchhoffs laws [120] for bulk effective medium parameters and

pave the way for refractory thermal metamaterials. The OTT is obtained in the

vicinity of natural material excitations such as plasmons and optical phonons. How-

ever, utilizing natural material resonances for thermal emission engineering poses

severe challenges as outlined in Fig. 3.2 (B). Conventional plasmonic materials suf-

fer from low melting points and from too high plasma frequencies [162, 163], while

phonon-polaritonic materials [154] have resonances in the mid infrared range that

cannot be moved easily to higher energies in the 2 - 4 µm wavelength region crucial

for high temperature nanophotonic applications such as TPV. Thus metamaterials

are required to shift OTT to the required spectral range.

3.2 Results

3.2.1 Metamaterial design

Our aim is to engineer an OTT in the near infrared spectral window with refractory

building blocks to control thermal emission. The OTT is a change in the isofre-

quency surface of a metamaterial which changes from a closed ellipsoid to an open

hyperboloid and affects fundamental properties such as the photonic density of states

and bulk thermal energy density [164,165]. In our case the hyperbolic isofrequency

surface does not provide modes that can be coupled out of the metamaterial to the
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Figure 3.2: Overlap of the spectral irradiance of a blackbody half-space
with natural optical resonances.
(A) The blackbody emission at 1000 oC (1273 K) normalized to its maximum and
the emission of a selective TPV emitter at the same temperature normalized to the
maximum of the blackbody emitter are presented. The selective emitter suppresses
thermal emission throughout the infrared and simultaneously provides near black-
body emission at energies above the bandgap of the PV cell. The band-edge of a PV
cell with 0.55 eV is presented by the dashed line indicating λPV . (B) Overlap of the
spectral irradiance of a blackbody half-space with natural optical resonances. The
blackbody spectrum for increasing temperatures between 750 and 1500 K shows
the peak lying in the near infrared region for high temperatures (1500 K) which is
the spectral range for contemporary low bandgap photovoltaics (blue shaded area).
Note, these temperatures are necessary for high-efficiency energy conversion but are
beyond the reach of conventional plasmonic building blocks for metamaterials be-
cause of their low melting point. On the other hand, thermal engineering approaches
based on optical phonons are restricted to the mid infrared spectrum and are diffi-
cult to move to the near infrared range. Metamaterial principles extend the spectral
range of bulk optical material resonances throughout the infrared.

far-field and thus the emission at longer wavelengths is naturally suppressed. The

OTT is a material approach to achieve either enabling or suppression of the thermal
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emission since the two isofrequency surfaces lead to very different optical reflectivi-

ties. According to Kirchhoffs law the radiative absorptivity and thermal emissivity

of a object are identical. Thus, we consider calculated and measured absorptivity

and emissivity as equal throughout the chapter. As a consequence the sharp change

in reflectivity which affects the optical absorption spectrum also dictates the thermal

emission spectrum of the metamaterial.

The simplest realization of a metamaterial with a controllable topological transition

consists of alternating subwavelength layers of metal and dielectric, as displayed

schematically in Fig. 3.3 (C). Figure 3.3 (D) is the scanning electron microscopic

(SEM) image of the fabricated structure. The effective medium response of this ba-

sic layered structure is given by the weighted arithmetic average along the material

planes, ε|| = (dM εM +dDεD)/(dM +dD) and the weighted harmonic average along the

optical axis, 1/ε⊥ = (dM /εM + dD/εD) / (dM + dD). Note that the effective medium

parameters, controlling the topological transition, are determined simply by the per-

mittivities of the individual layers, ε (ω), and their thicknesses, dM and dD , within

the unit cell. The D and M subscripts used here denote dielectric and metallic

materials. The metamaterial consists of refractory metal tungsten (20 nm layers)

and a transparent dielectric hafnium dioxide (100 nm layers) on a 100 nm tungsten

substrate as shown in Fig. 3.3 (C), and 3.2 (D). Our refractory material choices with

their high temperature stabilities are unique for multilayer metamaterials. Figure

3.3 (B) shows the excellent agreement between dielectric parameters extracted using

spectroscopic ellipsometry and an effective medium anisotropic model. It should be

noted that the OTT occurs at the ENZ wavelength (Re
{
ε|| (λOTT )

}
→ 0) when the

real part of the perpendicular dielectric constant changes sign from positive (dielec-

tric) to negative (metal). Furthermore, we emphasize the striking feature that the

OTT survives even in the presence of high losses present in tungsten.
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Figure 3.3: Concept and implementation of the tungsten/hafnium dioxide
refractory metamaterial.
(A) Calculated absorptivity characteristic of the metamaterial at normal incidence.
At vacuum wavelengths below the topological transition the medium supports radia-
tive modes resulting in high absorptivity. Beyond the transition the metamaterial
allows only modes with large tangential components of the wavevector which cannot
couple to optical modes propagating in vacuum. This leads to a strong suppression
of the structures absorptivity and thus of its emissivity. Because of the small unit cell
size excellent agreement is seen between the effective medium and rigorous transfer
matrix theory. (B) Comparison of the theoretically designed, based on permittivity
data provided by Roberts [166], and ellipsometrically extracted relative permittiv-
ity parameters for the metamaterial structure (see methods). In all simulations the
hafnium dioxide layers are assumed to be lossless and dispersionless with a rela-
tive permittivity of ε = 3.88. (C) Schematic image of the refractory metamaterial
design. The dashed box shows the metamaterial unit cell. (D) SEM image of the fab-
ricated refractory metamaterial. By choosing the thicknesses of the nano-structured
refractory metal and oxidic dielectric layers, topological transitions can be tuned
throughout the infrared.
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Figure 3.3 (A) shows the predicted emissivity of the tungsten/hafnium dioxide mul-

tilayer calculated using transfer matrix theory. We emphasize that the topological

transition is captured completely by an effective medium theory (EMT). EMT simu-

lations take into consideration the presence of the substrate and the topmost capping

layer to account for the finite number of layers forming the metamaterial. The cal-

culated absorptivity of the presented metamaterial with four periods shows < 1%

difference compared with the absorptivity of the same metamaterial with 20 periods.

Thus, the transmissivity T is negligible and the designed and fabricated number of

layers represents a satisfactory approach to determine the absorptivity and emissiv-

ity of an infinite metamaterial.

Figure 3.4 analyzes the angular dependence of the absorptivity of the metamaterial.

The angular-dependent emissivity of the structure is the power per area, thermally

radiated at a specific angle and wavelength interval divided by the same quantity

of an ideal blackbody. As seen in Fig. 3.4, the calculated large absorptivity thus

emissivity at a given wavelength between 1.0 and 1.5 µm is largely independent of

the angle of incidence or angle of observation up to angles of ≈ 70o. For larger an-

gles Fresnel reflectivity is increasing and the absorptivity and emissivity drop down

to zero. As photons at such large angles will not be emitted no effective heat loss

of the source takes place and thus the efficiency of an envisaged TPV-system will

not be altered by this fact. Along with spectral selectivity, this is an important

characteristic desired for practical TPV applications. In a TPV-system, an omnidi-

rectional emitter is clearly advantageous as it allows extracting and transmitting a

much larger radiative power. The dark regions correspond to low thermal emissivity

in a broad angular range beyond the OTT as predicted by our effective medium

approach whereas the white regions depict high thermal emissivity.

We now discuss the coupling of the thermally excited metamaterial modes with

vacuum, which determines the thermal radiation spectrum. The OTT between the

closed ellipsoidal and open hyperboloidal isofrequency surface occurs at the ENZ

frequency. At wavelengths below the topological transition, the wavevectors of ther-

mally excited modes lie on the surface of the ellipsoid and have tangential compo-

nents matched to that of vacuum modes. Thus the thermally excited modes can

efficiently couple to vacuum modes maximizing the power density of thermal emis-

sion (Fig. 3.3 (A)). Above the topological transition wavelength, the isofrequency

surface of the refractory metamaterial forms a type II hyperboloid, supporting only

extraordinary modes with very large wavevectors which cannot be matched to vac-

uum modes. Thus there is no coupling between the hyperbolic modes and the vac-

uum modes leading to a strong suppression of radiative infrared thermal emission.
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Figure 3.4: Absorptivity of the metamaterial versus incidence angle.
Simulated absorptivity of the tungsten/hafnium dioxide metamaterial described in
Fig. 3.3 as a function of wavelength of incident light and as a function of the angle
of incidence, taking into account both s- and p- polarizations. The simulation is per-
formed using the transfer matrix formalism assuming optical properties of tungsten
from Roberts [166], and that hafnium dioxide can be treated as a dispersionless di-
electric with a relative dielectric constant of 3.88. The figure shows that the designed
topological transition produces largely angularly independent thermal absorptivity
up to the blackbody limit (white region in the colour plot) over a narrow spectral
bandwidth suited to use with low bandgap photovoltaic cells [159–161,167]. Accord-
ing to Kirchhoffs law and since the transmission through the metamaterial stack is
negligible, the expected emissivity is considered identical to the calculated absorp-
tivity. Because of the low coupling of modes between vacuum and hyperbolic regime
of the metamaterial thermal radiation in the mid infrared is strongly suppressed.
Note that our approach is fundamentally different from structural resonances in
metasurfaces and bandgap effects in photonic crystals.

This suppression of thermal emission at low energies beyond the ENZ frequency

is critical to TPV-efficiency enhancement since these are sub bandgap photons not

absorbed by the cell. We emphasize that the tungsten/hafnium oxide layers are

deeply subwavelength and the super-lattice functions in the effective medium limit

for temperatures of 1000 oC since the relevant blackbody spectrum is in the near

infrared range.

3.2.2 Experimental verification

We first experimentally characterize the absorption spectrum of the ENZ metama-

terial at room temperature for unpolarized light with incident angles between 0 and

45 (Fig. 3.5). The figure shows that the structure possesses both near unity an-

gularly independent absorptivity at wavelengths around 800 nm up to the limit of

the blackbody emission (Fig. 3.2) along with a strong suppression of absorptivity
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throughout the mid infrared. Comparing with Figs. 3.2 (A), (B) and 3.3, these

observed characteristics are in complete agreement with the topological transition

of the metamaterial design and the effective medium interpretation of the emitter

structure. It should be noted that these characteristics are obtained by a route

fundamentally different from tungsten photonic crystals [143] which employ reso-

nances to provide selective thermal emission. An important question is whether

Figure 3.5: Measured absorptivity versus incidence angle.
The absorptivity spectrum is obtained as A(λ) = 1 − R(λ) − T (λ), where A(λ)
is the spectral absorptivity, R(λ) the reflectivity of the metamaterial, and T (λ) is
the transmissivity, which is negligible for the metamaterial with four periods. The
measured absorptivity is in complete agreement with the theoretically predicted
absorptivity presented in Fig. 3.4. Only reflectivity measurements are needed as
we use a 100 nm thick tungsten substrate underneath the metamaterial which is
intransparent over the measured wavelength range. The inset shows measured ab-
sorptivity of the tungsten/hafnium dioxide metamaterial at a 13o angle of incidence
from 0.5 to 10 µm. The observed long-wavelength absorptivity characteristics are
in complete agreement with the effective medium calculation.

the topological transition in the refractory metamaterial is thermally stable after

being subject to high temperatures. For this, we performed a series of increasingly

harsh high temperature annealing steps, each lasting multiple hours. Figure 3.6 (A)

compares the absorptivity spectra of the refractory metamaterial at room temper-

ature before and after heat cycling to temperatures between 800 and 1100 oC in

vacuum. As shown, the optical characteristics of the metamaterial were practically

unaffected by the high temperature treatments, up to 3 h at 1000 oC, demon-

strating the heat cycle stability of the designed topological transition. We pushed

the annealing temperatures beyond 1000 oC to explore the fundamental causes of

degradation of optical properties at high temperatures. Significant deviations in the

absorption spectrum were observed after annealing the emitter at 1100 oC for a pe-

riod of 3 h. To understand the irreversible degradation mechanism of the multilayer
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Figure 3.6: Thermal stability of refractory metamaterial.
(A) Measured absorptivity of the tungsten/hafnium dioxide metamaterial after an-
nealing for periods of three hours each. Temperatures are displayed in the legend.
(B −D) Cross-sectional SEM images of the metamaterial before annealing, after
annealing at 1000 oC for 3 h, and after annealing at 1100 oC for 3 h respectively.
Although the infrared absorptivity of the metamaterial is greatly altered after the
1100 oC annealing step, no structural degradation is observed.

structure, SEM images of the sample were recorded before annealing (Fig. 3.6 (B)),

after annealing at 1000 oC (Fig. 3.6 (C)) and after annealing at 1100 oC (Fig. 3.6

(D)). These images show no structural degradation; however, chemical alterations,

as shown below, indicating that higher temperature stability can be achieved with

other material choices.

As no structural alterations were observed, we conclude that the primary mech-

anism of degradation in the multilayer structure at 1100 oC and under vacuum

conditions was the diffusion of oxygen from the hafnium dioxide nanolayers and

following oxidation of the tungsten nanolayers. This claim is firmly supported by

EDS measurements. Figure 3.7 (B) demonstrates a clear increase in the oxygen con-

centration in the tungsten nanolayers after heat cycling, while Fig. 3.7 (A) shows

that the tungsten layers are indeed stable. Interestingly, in addition to the noted

interlayer diffusion, an overall gradient of oxygen from the vacuum side of the emit-

ter to the tungsten backing is also visible. The presence of this gradient, despite

the protective hafnium dioxide capping layer and the use of rough vacuum pressures

(2 10−2 mbar) during the annealing suggests that higher control of vacuum pressures
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(10−4 mbar) or an inert atmosphere are required for long-term thermal stability at

temperatures above ≈ 1000 oC. Finally, we directly observed the absorption and

Figure 3.7: Elemental analysis of thermal stability.
EDS linescans of (A) tungsten (W−L lines) and (B) oxygen (O−K lines) along cross-
sections, running from substrate to top layer, of the refractory tungsten−hafnium
dioxide metamaterial before annealing (brown), after heat cycling to 1000 oC (blue),
and after heat cycling to 1100 oC (green). The curves are artificially offset along
the y axis for clarity. The oxygen figure shows a clear interlayer diffusion as the
dips corresponding to tungsten layers are much weaker for the green data set. In
contrast, the tungsten figure shows no significant alterations, signaling that the
overall multilayer structure is stable beyond 1100 oC.

thermal emission spectrum at high temperatures to verify the spectrally selective

excitation of metamaterial modes and presence of the OTT. Kirchhoffs laws dic-
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tate that the two spectra have a direct correspondence under critical assumptions

of equilibrium. However, temperature dependence of metamaterial parameters is

an important issue beyond room temperature. Figure 3.8 shows the absorptivity

spectrum for the tungsten/hafnium dioxide metamaterial at temperatures of 23,

300, 500 and 600 oC as well as a direct measurement of the structures emissivity

at 1000 oC, see section 3.4 Experimental Methods. The observed spectra confirm

the existence of the high-temperature topological transition and show the spectral

location of the transition to be thermally robust. The only clear variation in the

absorptivity/emissivity measurements as the temperature is increased is a reduction

of infrared radiation suppression. This slight increase in measured infrared emission

is consistent with the increase of electron collision frequency leading to higher op-

tical losses observed in metals and semiconductors at high temperatures [168–171].

It is important to note that despite this increase in infrared emissivity the overall

roll-off remains evident, indicating that the engineered topological transition of the

refractory metamaterial persists until oxidation.

Figure 3.8: Absorptivity and emissivity at high temperature.
Experimental observation of the OTT at high temperatures through normal inci-
dence absorptivity measurements for the tungsten/hafnium dioxide metamaterial
emitter at temperatures of 23, 300, 500 and 600 oC. The black line represents the
experimental emissivity spectrum at normal incidence of the metamaterial emitter
at a temperature of 1000 oC. The expected slight increase of the electron collision
frequency at high temperatures leads to slightly increasing absorptivities and emis-
sivities in metals. The emission peak and the long-wavelength suppression show only
a small variation from room temperature up to 1000 oC, confirming that the topo-
logical transition of the metamaterial emitter is thermally robust, and highlighting
the potential of the emitter for TPV applications.
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3.3 Discussion

Single pn-junction photovoltaic conversion possesses two primary limitations which

restrict the efficiency of solar radiation conversion to the ShockleyQueisser limit

[107]. First, free carriers excited by radiation with energy greater than the bandgap

thermalize before they can be extracted, creating waste heat. Second, radiation with

energy lower than the bandgap is either absorbed as waste heat, or unused, and lost

to the casing of the photovoltaic cell, thus deteriorating the overall TPV-efficiency.

The motivation of high-efficiency TPV extends from the observation that both of

these dominant loss mechanisms are consequences of the spectral width of solar ra-

diation. Specifically, neither restriction occurs at energies slightly greater than the

bandgap. To take advantage of high conversion efficiencies in TPV one needs to con-

trol the radiative characteristics of the source. The usual solar spectrum is replaced

by thermal emission from an engineered selective emitter, suppressing the emission

of long-wavelength photons, Fig. 3.2 (A). The emission of photons with energies

much larger than the bandgap can be avoided by a proper choice of bandgap energy

and emitter temperature as the Bose-Einstein occupational factor quickly decays for

increasing photon energies.

This concept of TPV employing selective emitters also allows for an expanded range

of applications. As the way in which the emitter is heated plays no role in its

operation, electrical power can be extracted from any heat source of sufficient tem-

perature. We have calculated the efficiency of a potential TPV system with the

presented metamaterial emitter vs. a blackbody emitter. It is assumed that all

emitted photons with energies above the bandgap of the PV cell are absorbed and

provide electric energy equal to the bandgap energy. The ratio of the generated elec-

tric power to the emitted power is the efficiency (called ultimate efficiency [107]).

For an InGaAsSb cell [158] with a bandgap of 0.55 eV the efficiency at 1000 oC

increases from 19 % for a blackbody emitter to 34 % for our band-edge metama-

terial emitter. Calculations also indicate that the efficiency will further increase

above 34 % if the emitter temperature can be increased, making clear the need for

refractory metamaterials.

3.4 Experimental Methods

Metamaterial fabrication

All refractory metamaterial samples were fabricated by magnetron sputtering of the

constituent materials onto planar polished silicon substrates under ultrahigh-vacuum

conditions. Tungsten layers (20 nm thickness) were deposited by direct current at

rate of 0.08 nm s−1, while hafnium dioxide layers (100 nm thickness) were deposited
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by radio frequency sputtering at a rate of 0.21 nm s−1.

Effective medium parameters and ellipsometry measurements

The extracted effective media permittivities values shown were then determined by

fitting polarized multi-angle reflection data from a VASE (J.A. Woollam) ellipsome-

ter system. Using WVASE (J.A. Woollam) analysis software, permittivity values

for individual layers of tungsten and hafnium dioxide, separate samples, were deter-

mined. Using the three layer model (tungsten layer, metamaterial layer and hafnium

dioxide capping layer), this data was then assumed for the tungsten substrate and

hafnium dioxide capping layer, and the effective medium parameters of metamate-

rial were obtained from multi-angle reflection data of the complete structure. The

extraction technique used for determining optical parameters from the reflection

data of the complete emitter is described by Liberman et al. [172].

Reflection measurements

The specular reflection of the metamaterial between 0.3 and 2.5 µm was measured

using a UV/VIS spectrometer (Lambda 1050, Perkin Elmer). For wavelength be-

tween 2 and 10 µm a Fourier transform infrared (FTIR) spectrometer (Vertex 70,

Bruker) was used to compare the reflection of the sample against a gold mirror ref-

erence.

Annealing of metamaterial samples

In all annealing steps the metamaterial samples were kept under rough vacuum (≈
2 ×10−2 mbar) in a high temperature heating stage (TS1500, Linkam) and heated

at a rate of 10 oC min−1. Samples were maintained at the peak annealing temper-

ature for 3 h before cooling back to room temperature.

Characterization of absorption from 300 to 600 oC

The absorptivity spectra of the tungsten/hafnium dioxide metamaterial for temper-

atures from 300 to 600 oC were obtained by collecting reflection measurements using

a FTIR microscope (Bruker Hyperion 2000) with 15 times Schwarzschild objective

coupled to an FTIR spectrometer (Bruker Vertex 70). The objective operates ≈
16.7o off-normal to the surface of the sample and has a collection cone apex angle

of ± 7o. A gold mirror at room temperature was used as reference.

Specimen preparation, SEM-imaging and EDS-measurements

The imaging and EDS measurements of the metamaterials were performed on cross-

sections prepared by focused ion beam. To enhance the spatial resolution of the

EDS-measurements, the accelerating voltage of the SEM was lowered to 5 kV . This
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energy is sufficient to excite the low energy lines of the present elements (O − K
0.523 keV , Hf −M 1.644 keV , W −M 1.774 keV ).

Characterization of thermal emission at 1000 oC

Thermal emissivity of the metamaterial at 1000 oC was obtained using a high tem-

perature heating stage (TS1500, Linkam) installed at the focus of the FTIR mi-

croscope (Bruker, Hyperion 1000) described previously, Fig. 3.9. To calculate the

emissivity, it was necessary to divide the thermal emission spectrum by the black-

body spectrum at the same temperature. This step also simultaneously eliminated

any artifacts introduced by the setup from the emissivity measurement. As a ref-

erence, we replaced the sample with a glassy carbon SIGRADUR G substrate. At

elevated temperatures, the glassy carbon is expected to have a wavelength indepen-

dent emissivity varying between 0.87 and 0.9 in the infrared range.
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Signal to FTIR

FTIR microscope

Linkam chamber (heater)
containning sample

Electrical connections
for heater

Water cooling to maintain
case near room temperature Thermal emission from sample

Figure 3.9: Schematic of experimental setup for measuring metamaterial
thermal emission.
The figure depicts the experimental setup used to measure the thermal emissivity
of the metamaterial emitter. First, the emitter is mounted into a Linkam TS1500
vacuum heater stage. The stage acts both to control the temperature of the emit-
ter, and limits interaction with atmospheric gases and particles. The stage is then
installed at the focus of a Bruker Hyperion 1000 FTIR microscope, as described in
the main text, which passes the thermal emission of the metamaterial emitter into
an FTIR for analysis.
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3.5 Summary

In summary, we have provided the experimental evidence of OTTs in the thermal

radiation spectrum of an ENZ metamaterial. The wavelength dispersion of mate-

rial parameters changes the intrinsic thermal energy density and thermal radiation

spectrum that we ascertained through high temperature thermal emission and op-

tical absorption measurements. This spectrum can be of critical use in TPV where

the thermal suppression of sub bandgap photons and enabling of thermal emission

above the bandgap boosts the efficiency of energy conversion. Our demonstration

of a refractory metamaterial and OTT is in the critical near infrared range opening

the possibility of tuning it to the absorption of a low bandgap TPV cell. We demon-

strated high temperature stability in the optical/thermal performance till 1000 oC.

Our studies on high temperature annealing followed by EDS and spectral analysis

can pave the way for a systematic approach to analyzing high temperature stability

of optical metamaterials. These findings establish a clear path for exploring the

unique photonic thermal conductivity and thermal energy density resulting from

ENZ effects and hyperboloidal isofrequency surfaces at high temperature.
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Chapter 4

Ideal Near-field

Thermophotovoltaic Cells

In this chapter, we outline how permittivity influences near-field radiative heat trans-

fer, and examine how this idea can be used in near-field thermophotovoltiac systems.

One of the most remarkable aspects of near-field radiative heat transfer is the extent

to which coupled light-matter resonances can be used to modify both its magnitude

and spectral content. For instance, considering coupled surface plasmon polaritons

between silver plates, the resulting heat transfer can easily be hundreds of times

greater than the blackbody limit and near monochromatic. These characteristics

are exactly what is required to improve energy extraction using photovoltaics; and

since the early works of DiMatteo et al. [32] on enhanced photogeneration in the

near-field, and Chen and Narayanaswamy [34] on the use of surface modes for ther-

mophotovoltacis, the pursuit of new device designs incorporating these advantages

of operating in the near-field with a thermophotovoltaic system has stood as a cen-

tral motivation for studying electromagnetic field correlations.

Over the past decade, considerations based on the use on novel materials [173–175]

and coupled modes [176–178] have substantially advanced our understanding of the

capabilities that can be ultimately be expected from such devices, and the factors

that influence performance. However despite the variety of work that has been done

on this idea, prior to the results reproduced in this chapter, one element has re-

mained constant in every design proposal: the actual photovoltaic cell will be a

bulk semiconductor. Further, the role that this assumption plays in determining the

behavior of near-field radiative heat transfer for energy harvesting applications has

remained unexamined.
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Here, we bring these issues to light by asking the question: What are the ideal

characteristics of a near-field thermophotovoltaic cell? Our search leads us to a re-

formulation of near-field photonic heat transfer in terms of permittivity ε (ω) and its

underlying joint density of electronic states. This form reveals that the presence of

quantum confined van Hove singularities in the thermophotovoltaic cell boosts both

the magnitude and spectral selectivity of photonic heat transfer, dramatically im-

proving energy conversion efficiency. Additionally, we also provide the design of such

a model near-field thermophotovoltaic system by employing the one-dimensional van

Hove singularity present in carbon nanotubes. Detailed balance analysis shows that

the predicted spectrally selective heat transfer characteristics of this model imple-

mentation are fundamentally better than existing thermophotovoltaic designs.

4.1 Introduction

The thermophotovoltaic (TPV) method generalizes the concept of conventional pho-

tovoltaics by replacing the solar spectrum with the thermal emission of an engineered

selective emitter [108]. When heated, the emitter is designed to deliver photonic

power in a narrow spectral window which can be efficiently converted into electrical

power by a matched photovoltaic cell, assumed to be near room temperature. In this

way, electrical power can be extracted from any heat reservoir [179, 180]. In princi-

ple, the TPV approach avoids the two primary loss mechanisms of single-junction

solar photovoltaics: the generation of sub-bandgap photons, and the thermalization

of excitons with energy much greater than that of the bandgap [107]. For this rea-

son, the theoretical power conversion limitations of TPVs are near that of an ideal

heat engine [106,181].

However, in practice, implementation of the TPV idea is difficult. The spectral

irradiance of any emitter in the far-field is bounded by that of a blackbody with

equal temperature [120], see Fig. 4.1. For an emitter with temperature below ap-

proximately 1000 K, the fraction of emitted power in the range of contemporary

low bandgap photovoltaics (0.4 − 0.75 eV ) is negligible [182], making practical pho-

tovoltaic conversion problematic. To overcome this limitation, the emitter of the

current TPV systems must operate at a temperature between roughly 1200 and

1500 K, creating severe design requirements. Specifically, the emitter must be ther-

mally robust in this temperature range, suppress emission below the bandgap of the

photovoltaic cell, which constitutes the majority of the solar spectrum, and have

emissivity near the blackbody limit above the bandgap [100, 118]. Even without

considering temperature induced degradation of optical properties and structure,

current theoretical proposals still require emitter temperatures surpassing 1500 K
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to reach 40% conversion efficiency under the Shockley-Queisser analysis [43,142,163].
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Figure 4.1: Comparison of photonic heat transfer between the near-field
and far-field.
(A) The small solid far-field blackbody curve and dashed near-field curve are calcu-
lated assuming an emitter temperature of 750 K. The larger solid far-field black-
body curve is calculated assuming an emitter temperature of 2250 K. The near-field
system consists of two half-spaces of hypothetical Drude metal, one at 750 K, the
other at 0 K, with 0.08 eV loss parameter, 0.58 eV plasma frequency, and additional
static loss of 1 i, separated by a 16 nm gap, shown schematically as an inset in panel
(B). The vertical gray lines mark the approximate range of current single-junction
low bandgap photovoltaics. The enhancement of photonic heat transfer through
evanescent modes relaxes the necessity of maintaining the emitter at extremely high
temperature. (B) Comparison of the enhancement of photonic heat transfer beyond
the blackbody limit for half-spaces separated by a 16 nm gap, shown schematically
as an inset. The enhancement is temperature independent. The dashed curve is
found by assuming identical hypothetical Drude metals with 0.21 eV loss parame-
ter, 0.83 eV plasma frequency, a background permittivity of 6, and an additional
static loss of 2.5 i. The solid curve results when one of the metal half-spaces is
replaced by a gallium antimonide photovoltaic cell. The inclusion of the bulk pho-
tovoltaic cell greatly reduces the enhancement effects provided by operating in the
near-field

An intriguing prospect to partially alleviate the high emitter temperature require-

ment is to bring the matched emitter and absorber into the near-field; where the

presence of overlapping evanescent fields allows heat transfer to surpass the far-

field blackbody limit (near-field thermophotovoltaics, NFTPV [32,34,173]). Making

use of matched near-field resonances [69, 183], for example surface plasmon polari-

tons [184] as in Fig. 4.1, photonic heat transfer can be made spectrally sharp and

significantly greater than the far-field limit (Super-Planckian emission [66]).

Nevertheless, fundamental design issues persist even in theoretical consideration.
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Analysis of near-field photonic heat transfer has conventionally focused on the max-

imization of total transfered power, leading naturally to designs using coupled modes

of symmetric structures. However, to directly extract usable electrical power, one

half of the near-field resonant structure must function as a photovoltaic cell. And

when realistic bulk semiconductors are included as low temperature absorbers, pho-

tonic heat transfer is greatly reduced and spectrally broadened [185,186]. For exam-

ple, considering a 16 nm gap, and hypothetical Drude metals with surface plasmon

polariton resonances matched to the bandgap of gallium antimonide photovoltaic

cell [187], replacing the symmetric metal absorber with the photovoltaic cell reduces

photonic heat transfer by a factor of nearly 10, Fig. 4.1. Furthermore, although the

temperature difference between the emitter and the photovoltaic cell can be com-

paratively reduced, bringing the photovoltaic cell into the near-field increases its

operating temperature and thus reduces its conversion efficiency [188]. Resultantly,

much of the performance gain offered by moving to the near field is lost.
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Figure 4.2: Electronic density and energy harvesting.
The figure shows a schematic illustration of the central result of this article. Here,
EDOS stands for the joint density of electronic states. We will show that by matching
peaks in the joint density of electronic states of the emitter to peaks in the joint
density of electronic states of the photovoltaic cell the spectral selectivity of near-
field radiative heat transfer and efficiency of near-field thermophotovoltaics can be
greatly improved.

In this chapter, we take an alternative approach to this problem, focusing on the

photovoltaic cell instead of the emitter. Crucially, we show that the narrowband op-

tical absorption spectrum resulting from quantum confinement in low dimensional

semiconductors can be used to induce enhanced, spectrally selective near-field heat

transfer. We also uncover the fundamental cause of the poor performance of tradi-

tional bulk semiconductor photovoltaic cells in the near-field. We begin by recasting
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near-field photonic heat transfer in terms of the joint density of electronic states.

Combining this result with arguments from Shockley-Queisser analysis and funda-

mental Kramer-Kronig constraints on optical response, we then show that the pho-

tovoltaic impediment to efficient NFTVP devices can be eliminated using electronic

van Hove singularities in structures with quantum confined dimensions. Finally, we

provide an experimentally realizable near-field thermophotovaltic system based on

carbon nanotubes, and calculate its enhanced performance metrics. The predictions

of our analysis can be verified by near-field thermal emission spectroscopy, and pave

the way for the use quantum dots, carbon nanotubes, and two dimensional materials

as near-field thermophotovoltaic cells.

4.2 Energy considerations for maximal photonic heat

transfer

From the pioneering works of Rytov [94], and Polder and van Hove [13], the spectral

irradiance between two planar half spaces separated by a vacuum gap is given by

〈Q (T1, T2, ωo)〉 =
ω2
o |Θ (T1, ωo))−Θ (T2, ωo) |

4π2c2

∑
j=s,p

1∫
0

dkρ

(
1−

∣∣∣r j1 ∣∣∣2)(1−
∣∣∣r j2 ∣∣∣2)∣∣∣1− r j1 r j2 e−2i kv⊥d
∣∣∣2 kρ + 4

∞∫
1

dkρ
Im
[
r j1

]
Im
[
r j2

]
e−2Im[kv⊥d]∣∣∣1− r j1 r j2 e−2i kv⊥d

∣∣∣2 kρ.

(4.1)

Where c is the speed of light in vacuum, Θ (Ti, ωo) the mean energy expectation

value of the canonical harmonic oscillator at temperature Ti and angular frequency

ωo, d the vacuum gap separation normalized by the magnitude of the free space wave

vector at ωo, Ti the temperature of the ith half space, kρ the parallel component of

the wave vector, again normalized by the magnitude of the free space wave vector at

ωo, r
j
i the j-polarized reflection coefficient of the ith half space, kv⊥ the normalized

perpendicular component of the wave vector in the vacuum gap, and Im {...} the

imaginary part of the enclosed function.

Intuitively, radiative heat transfer between planar half spaces is maximized when

the structures are symmetric, and the vacuum gap is made vanishingly small, d→ 0.

In this limit the integrand of the spectral irradiance, H (T1, T2, ωo, kρ) from (4.1),

is dominated by the high momentum p-polarized evanescent contribution, kρ � 1,
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and is well approximated by the bound form

H (T1, T2, ωo, kρ) =
ω2
o |Θ (T1, ωo))−Θ (T2, ωo) |

4π2c2
(

1 + (ε′(ωo) /ε
′′(ωo))

2
)kρ; (4.2)

with ε (ωo) denoting the relative permittivity of both media, and the ′ and ′′ super-

scripts marking the real and imaginary parts of the function. To achieve the greatest

possible radiative heat transfer between identical media at given wave vector and

frequency, the so called upper bound of radiative heat transfer per channel [12], the

ratio

γ (ωo)=
ε
′
(ωo)

ε′′(ωo)
, (4.3)

must be made as small as possible. (This condition is antithetical to the plasmonic

field enhancement figure of merit where γ (ωo) is maximized.)

Applying the Kramers-Kronig relation [189] to the real part of the permittivity,

the γ (ωo) factor can be expressed entirely in terms of ε
′′
(ωo) as

γ (ωo) =
1

ε′′(ωo)
+

2

πε′′(ωo)
P
∞∫

0

dω
ω ε

′′
(ω)

ω2 − ω2
o

. (4.4)

For energy harvesting with semiconductor photovoltaic cells, Shockley-Queisser effi-

ciency analysis can be used to provide constraints to the material parameters which

minimize γ (ωo):

(1) No radiative heat transfer should occur below the bandgap frequency ωg because

it cannot be converted into useful electrical power. Mathematically this criterion

is stated as γ (ωo)→∞ for all ωo < ωg, equivalent to ε
′′
(ωo) → 0 for all ωo < ωg.

The dispersive part of γ (ωg) then provides an explicitly positive contribution, and

its minimization requires ε
′′
(ωo) → 0 for all ωo 6= ωg. This restriction on the global

absorption characteristics of the media, ε
′′
(ωo), can be immediately translated into

two statements concerning its polarization, ε
′
(ωo). First, ε

′
(ωg) > 0. Second, the

polarization of the media acts as a store for photonic power. From this store the

initially transferred power may either be converted into the internal degrees of free-

dom of the absorber or return to the emitter, limiting the total transferred power.

The larger the polarization of the medium is the smaller radiative heat transfer will

be.

(2) radiative heat transfer should be made as great as possible at the bandgap

frequency, ε
′′
(ωg) → ∞. This second requirement for achieving γ (ωg) → 0 is pro-
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vided by the fluctuation dissipation theorem. To maximize radiative heat transfer

at ωg, we require ε
′′
(ωg)→∞ to generate the largest possible thermal currents, the

first term of Eq.(4.4). The balance of these two conditions leads unequivocally to the

conclusion that to minimize γ (ωg), under the above Shockley-Queisser constraints,

ε
′′
(ωo) must be sharply resonant about ωg. Strictly, simultaneous minimization of

γ (ωg) and complete suppression of heat transfer for all sub-bandgap frequencies is

only possible if ε
′′
(ωo) is mathematically equivalent to the Dirac delta distribution,

ε
′′
(ωo)→ δ (ωg).

The implications of this result to near-field energy harvesting become immediate

by recalling the intimate connection between optical dissipation, and the joint den-

sity of electronic states, ρE (ω):

ε
′′
(ωo) =

e2

πm2
eω

2
o

∫
dSd

|ao · pji|2

|∇k Eji (k)|
, (4.5)

ρE (ω) ∝
∫

dSd

|∇k Eji (k)|
. (4.6)

In these expressions, ao denotes the polarization vector of the electromagnetic ex-

citation, pji the matrix element of the momentum operator, ωo the angular fre-

quency, Eji (k) the constant energy surface between filled and excited states such

that Eji (k) = ~ωo, dSd the infinitesimal constant energy surface element in d di-

mensions, and e and me the mass and charge of an electron. It is important to note

that suppression/enhancement of electronic states at a given frequency is the key

to decreasing/increasing optical absorption. However, the Kramers-Kronig relation

introduces dependence on the global frequency characteristics through the polariza-

tion of the medium. Both these factors have to be taken into account in order to

minimize the factor governing spectrally selective near-field heat transfer, γ(ωo).

As previously mentioned, the principal method for overcoming the Shockley-Queisser

limit in TPV devices is to spectrally tailor the photonic output of the emitter to

frequencies just above the bandgap of the photovoltaic cell. But, in the near-field

this frequency range also corresponds to the poorest absorption characteristics for a

typical bulk semiconductor. Applying (4.5) and (4.6) to model free particle semicon-

ductor we recover the well known energy scaling behavior ε
′′
(ωo)∝

√
~ωo − Eg (d=3)

ρE (ωo)∝
√

~ωo − Eg (d=3); so that near the bandgap the semiconductor has both

low absorption, ε
′′

(ωg), and large polarization. (The fact that the polarization is

large can be seen by the positive contribution of principal value part in the Kramers-

Kronig relationship, ε
′
(ω0) = 1 + 2

π P
∫∞

0 dω ω ε
′′
(ω)

ω2−ω2
o
.) These two factors lead to a

large γ (ωo) factor (detrimental to spectrally selective heat transfer) when ωo is near
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ωg, Fig. 4.1. In short, the usual properties of a three dimensional semiconductor are

in complete disagreement with those required for maximal radiative heat transfer as

given by (4.2).

In stark contrast, significant suppression of the γ(ωo) factor can be obtained if

the absorption, ε
′′

(ωo), of the semiconductor cell is strongly peaked at the operat-

ing (band gap) frequency. Such optical behavior is achieved when the joint density

of electronic states becomes similar to the ideal Dirac distribution at the bandgap.

Suppression of the electronic states below the operating frequency is necessary to de-

crease transfer of inefficient sub-bandgap photons, as dictated by Shockley-Queisser

analysis. The suppression of states above the bandgap is necessary to decrease the

polarization of the medium at the bandgap, as required by the Kramers-Kronig re-

lations.

A joint density of electronic states approaching this ideal dirac delta like distri-

bution is observed near the van Hove singularities1 that occur in the free particle

model of a semiconductor for low spatial dimensions. Returning to (4.5) and (4.6),

as d is reduced to from 3 to 2, and then 2 to 1, the scaling of both the joint density of

electronic states and optical dissipation is found to be
{
ε
′′

(ωo) ρE (ωo)
}
∝ C (d=2)

and
{
ε
′′

(ωo) ρE (ωo)
}
∝ 1/

√
~ωo − Eg (d=1). Physically, this relative increase of

the joint density of electronic states can be viewed as the result of two effects. First,

imagining a cubical volume, if either one or two of the lengths is reduced the energy

of the bandgap is increased, causing states with low wave vectors in the large direc-

tions effectively pile up. Second, as the reduction of any of the lengths reduces the

volume of each mode, inside the volume the probability density is increased2.

The corresponding evolution of γ (ωo) is shown in Fig. 4.3. The increase in near-field

photovoltaic performance depicted in this figure is characteristic of any semiconduc-

tor with quantum confined spatial dimensions, such as quantum dots, nanotubes,

and two dimensional materials. Based on the above analysis, these systems are well

suited for achieving spectrally selective radiative heat transfer and can function as

superior near-field thermophotovoltaic cells compared to traditional bulk semicon-

ductors.

1A van Hove singularity refers to any point in the Brillouin zone at which ∇k Eji (k) = 0.
2Note that these effects also occur with the transition from d = 1 to d = 0.
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Figure 4.3: Dimensional scaling of near-field energy transfer.
Base ten logarithm of the longitudinal γ (ωo) := ε

′′
(ωo) /ε

′′
(ωo) factor for one,

two, and three dimensional model free particle semiconductors. The inset shows
a schematic illustration of the evolution of the joint density of electronic states for
zero, one, and two quantum confined spatial dimensions characteristic of a semi-
conductor based on the work of Kümmel et al [190]. By introducing dimensional
constrains the dispersion of the joint density of electronic states can be altered
to produce spectrally selectivity super-Planckian photonic heat transfer near the
bandgap of a photovoltaic cell. This result illustrates both the primary drawback
of employing traditional bulk semiconductor photovoltaics for near-field photonic
energy conversion, and the usefulness of switching to photovoltaics with quantum
confined dimensions for this application.

4.3 Model thermophotovoltaic system

In the previous section, it was revealed that the magnitude and selectivity of near-

field photonic power transfer for energy conversion applications can be greatly en-

hanced by employing photovoltaics with spectrally narrow absorption resonances.

This type resonant optical behavior is one of the hallmarks of quantum confine-

ment; making photovoltaic cells utilizing low dimensional materials such as quan-

tum dots, quantum wells, graphene, two dimensional semiconducotrs, semiconductor

nanowires and carbon nanotubes [191–193] excellent candidates for future near-field

TPV devices. As a framework of such a device, here we consider an idealized NFTPV

system consisting of a emitter absorber pair utilizing carbon nanotubes [194] (CNTs)

and calculate the observable radiative heat transfer characteristics of this model.

Our CNT model device is analogous to the one-dimensional free particle semicon-

ductor example shown in Fig. 4.3. The one dimensional confinement of electrons

in CNTs leads to strong van Hove singularities [195], spectrally selective absorp-

tion, and semiconductor behavior for specific chiral vectors. Nevertheless, nearly
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identical performance would occur if the CNTs were exchanged for semiconductor

nanowires [196]. We have focused on this CNT design, despite current challenges

in fabrication and electron-hole pair collection [197], primarily because the thermal

robustness [185,198] and low bandgap features of CNTs seems ideally suited to TPV

applications.

Two versions of the CNT system have been created. The first is designed for a

1300 K emitter and 300 K absorber; and the second, for an 800 K emitter and

300 K absorber. In both cases, the absorber is composed of CNTs with chiral

vector (19, 0) embedded vertically in a matrix of zirconium dioxide on a tungsten

backing. This choice of chiral vector allows the CNTs to operate as semiconduc-

tors, with a bandgap of 0.58 eV . This behavior occurs as the Dirac point of the

band structure is avoided [199] due to the angular quantization. The exact current

voltage characteristics of the CNT photovoltaic cells have not been included, and

instead ideal p-n junction behavior has been assumed. This is in accordance with

the Shockley-Quiesser analysis for ideal performance limitations. (To create fully

functioning NFTPV cells the CNT on tungsten absorbers would be attached to ex-

ternal electronics and act as the photovoltaic elements [200–202].)

Both emitters are composed of free standing CNTs with the same chiral vector

as the CNTs considered for the absorber, and are set on a zirconium dioxide back-

ing. The absorber and emitter are separated from each other by a 16 nm vacuum

gap. In the high temperature case the fill fractions and thickness of the emitter and

absorber CNT layers are 65%−8 nm, and 65%−4 nm. For the low temperature case

these parameters are altered to 30%−8 nm, and 65%−16 nm in the same order. A

schematic of this setup is included as an inset in Fig. 4.5.

The effective perpendicular permittivities of the two considered designs are shown

in Fig. 4.4. The absorption spikes, ε
′′

(ωo), can be tuned by varying the chiral vec-

tor. The first principles calculation of these optical properties is based on the Kubo

formalism described by Falkovsky and Varlamov [203], with additional loss included

via the relaxation time approximation with an estimate relaxation time of one pi-

cosecond [204, 205]. The effective parallel permittivities, which play a secondary

role in determining the transferred power, are calculated in identical manner. The

main steps of this calculation are outlined in Appendix E. Again, we stress that

the above analysis on which these particular designs are based shows that a variety

of near-field emitters using other resonances, such as surface plasmon polaritons or

phonon polaritons, could be used with any low dimensional semiconductor to obtain

very similar results.
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Figure 4.4: Optical permittivity of a carbon nanotube metamaterial.
Effective relative permittivity perpendicular to the half spaces for the CNT emitter
absorber pair designed to operate at 1300 K, depicted in Fig. 4.3. For vacuum
gaps on the order of hundreds of nanometers photonic heat transfer is dominated
by evanescent modes with p-polarization. In this case, the overall photonic heat
transfer properties are primarily determined by the perpendicular permittivity. As
predicted by (4.3), the photonic heat transfer is maximized when the γ (ωo) factor
is minimized for both the emitter and absorber.

In Fig. 4.5, we plot the spectral irradiance for this CNT based emitter-absorber

system calculated using Rytov’s theory. As can be seen by comparing the perpen-

dicular permittivity, Fig. 4.4, with the spectral irradiance, Fig. 4.5, the spectral

position of peak radiative heat transfer corresponds strongly with the van Hove sin-

gularities and the minimization of γ (ωo). In fact, although the analytical theory

of (4.3) is valid only in the very near-field, the spectral position of peak photonic

transfer varies only 4% as the vacuum gap is increased up to roughly a tenth the

wavelength of operation, 200 nm. The spectrally tailored nature of emission and ab-

sorption leads to significant enhancement for energy conversion. Using the Shockley-

Queisser analysis [107] as an upper-bound performance estimate, the CNT system

with the 1300 K emitter (Fig. 4.5) could supply up to 15.00 W/cm2 of electrical

power with 53.0% power conversion efficiency. Likewise, the 800 K emitter system

could supply up to 1.07 W/cm2 of electrical power with 15.6% power conversion

efficiency. For comparison, an optimized conventional bulk gallium antimonide [187]

NFTPV design has also been considered. This system consists of a 18 nm thick

Drude metal, with 0.74 eV plasma frequency, 0.21 eV loss parameter, on a tungsten

backing with a vacuum gap separation of 16 nm. Under identical Shockley-Queisser

analysis at a 1300 K emitter temperature this conventional system could produce

1.62 W/cm2 of electrical power with 18.8% power conversion efficiency, whereas
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Figure 4.5: Carbon nanotubes for near-field thermophotovoltaic cells.
Photonic heat transfer for two metamaterial emitter absorber pairs utilizing semi-
conducting CNTs optimized for emitter temperatures of 1300 K and 800 K. In both
instances the absorber is assumed to be held at a temperature of 300 K. Parameters
for the two systems are given in the main text. A schematic of the system is inset
over the plot. The greatly enhanced, spectrally thin, photonic heat transfer peak
produced slightly above the energy bandgap of the matched semi-conducting CNT
absorber seen here is ideal for near-field photonic energy conversion applications.

with an emitter temperature of 800 K it could create only 0.01 W/cm2 of electrical

power with 1.6% power conversion efficiency. More concretely, 73.1% of photonic

thermal power transferred from the emitter in the CNT NFTPV device lies above

the bandgap, 20.7 W/cm2, for the 1300 K model system and 25.0%, 1.7 W/cm2, in

the 800 K model. In comparison, the optimized plasmonic system described above

transfers 28.1% of its thermal power above the bandgap of the gallium antimonide

photovoltaic cell, 2.4 W/cm2, when the emitter is given a temperature of 1300 K

and 3.2%, 0.02 W/cm2, when the emitter is assumed to have a temperature of 800 K.

Finally, we comment briefly on previous far-field TPV designs which have utilized

gallium antimonide [158,206] as the photovoltaic cell for converting the thermal ra-

diation into electric power [207]. Our analysis shows that the optimum cell design

for near-field TPV is fundamentally different and the presence of van Hove Singular-

ities in the material comprising the cell is critical for the spectrally selective nature

of the transferred energy. This in turn should lead to fundamental improvements

in energy conversion efficiency as shown by the Shockley Queisser analysis. The

implementation of near-field TPV designs is more challenging than far-field TPV

designs. However, a fundamental promise of near-field TPV, as mentioned before,

is enhanced heat transfer for lower operating temperatures. This arises because the

black body limit which fundamentally constraints far-field TPV does not apply to
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near-field TPV where heat exchange takes place primarily due to evanescent modes.

4.4 Summary

In summary, we have determined that the ideal joint density of electronic states for

near-field photonic energy capture (photovoltaic) is mathematically equivalent to

the Dirac delta distribution. This result immediately reveals why bulk semiconduc-

tors are ill suited to near-field photonic energy capture; and simultaneously shows

that switching to photovoltaic cells with van Hove singularities, seen in any semi-

conductor with a quantum confined dimension, offers a clear path for improving the

efficiency of future NFTPV devices. To aid with the design of experimental systems

for verifying of these ideas, we have provided model designs utilizing matched meta-

material CNT emitter absorber pairs, and have shown that the Shockley-Queisser

limit performance metrics of these designs are well beyond those achievable with

current NFTPV device designs based on bulk semiconductor photovoltaics. We em-

phasize that similar performance improvement is expected for any low dimensional

semiconductor functioning in the near-field, and appeal to researchers working in the

areas of quantum dot, CNT, nanowire, quantum well, and two dimensional semicon-

ductors to consider the feasibility of adapting their work for thermophotovoltaics.
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Chapter 5

Quantum Optical Sum Rules

and Field Fluctuations inside

Natural Hyperbolic Media

In this chapter, we provide an approach for analytically calculating electromagnetic

field fluctuations inside natural hyperbolic media.

In 1987, Yablonovitch and John independently conceived the idea of the photonic

crystal as a practical means of rigorously forbidding vacuum fluctuations in a given

bandwidth [1,2]; turning one of the most venerated concepts for describing quantum

light-matter interactions [3, 208] into a core tool for photonic engineering. Connec-

tions to this original idea are found in almost every branch of contemporary nanopho-

tonics. By manipulating field fluctuations (the photonic density of states), nearly

any aspect of a medium’s photonic quantum [209–211], thermal [39,66,96,212–214]

and topological properties [138,215,216] can be modified.

Naturally, this has led to considerable interest in various forms of the inverse prob-

lem [217–221]: a practical means of indefinitely enhancing field fluctuations inside

matter in a defined spectral bandwidth. Remarkably, near ideal complements ap-

pear to exist. In particular, hyperbolic (indefinite [222]) media are commonly stated

to posses a broadband photonic dispersion singularity, leading to unbounded elec-

tromagnetic field fluctuations [223,224].

However, despite the success of this picture for interpreting applications spanning

the domains of imaging [225–227], nanophotonics [228–232], quantum [233–237] and

thermal interactions [238–242], there is no simple expression defining precisely how

large the electromagnetic fluctuations inside a given hyperbolic medium are. And as
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such, prior to the results presented in this chapter, it was not possible to rigorously

link the experimentally observed features hyperbolic response [243–249] with the

wealth of existing theory for macroscopic quantum electrodynamics [250–256].

The prevailing consensus, building off the work of Potemkin et al. [257], is that

any quantification of field fluctuations capturing hyperbolic characteristics demands

additional quantification of the optical response of the medium beyond what is pro-

vided by the permittivity tensor. That is, to produce non divergent results, second

order optical effects must be considered. To date, three such approaches have been

used: (1) non-local models of the polarization response of the medium [258,259], (2)

finite correlation / emitter size approximations [140, 257, 260, 261], and (3) second

order fluctuation response [262].

As these normalization techniques do not rely on any specific property of hyperbolic

media, a variety of open questions as to the specific nature of the field fluctuation

enhancement persist. For instance, in photonic crystals it is well known that the

creation of a band gap results from a corresponding enhancement of field fluctua-

tions at the band edge van Hove singularities. The above approaches do not clarify

whether a similar mechanism exists inside hyperbolic media, and it is not known if

the enhancement in regions of hyperbolic response is accompanied by spectral win-

dows of field fluctuation suppression (i.e. if quantum optical sum rules are valid).

With the discovery of strongly hyperbolic optical response in special van der Waals

bonded solids, such as hexagonal boron nitride and bismuth selenide (a topological

insulator), the need to understand why this incongruence exists, and if a description

of the strength of electromagnetic field fluctuations in terms of secondary effects is

truly fundamental, has become increasingly pressing. Here, we address both issues

by categorizing the field fluctuations that can exist inside hyperbolic media into three

distinct types. Specifically, we show that the central characteristics of hyperbolic

response are determined by a coupling of longitudinal and transverse field fluctu-

ations that can not occur in conventional media. This allows for an unambiguous

separation of photonic and polaritonic fluctuations and a quantification of the field

enhancement set only by material absorption. We apply our results to explore quan-

tum optical sum rules for modified spontaneous emission enhancement, and thermal

energy density in hexagonal boron nitride and bismuth selenide. Most notably, we

find that while the sum rule is satisfied, it does not constrain the enhancement of

quantum and thermal properties inside a hyperbolic medium. We also show that

both hexagonal boron nitride and bismuth selenide possess broad spectral regions

where polaritonic fluctuations are over 120 times larger ( and over 800 times larger

71



along specific angular directions) than vacuum fluctuations.

5.1 Introduction

For more than a decade, hyperbolic media have been considered to be one of the

most intriguing platforms for the future nanophotonic devices [222,263]. The appeal

is concisely summarized by the wave condition set by Maxwell’s equations in such

media. With the inclusion of uniaxial anisotropy, the p-polarized relation between

frequency and wave vector for an isotropic medium generalizes to become

k =

√
εA (k, ω) εP (k, ω)

s (θ)2 εP (k, ω) + c (θ)2 εA (k, ω)

ω

c
; (5.1)

where the A and P labels denote the optic axis and plane of the uniaxial medium,

θ is the polar angle defined from the optic axis, and s (...) and c (...) are short-

hands for the sin (...) and cos (...) functions, Fig. 5.1 For a hyperbolic medium

the real parts of the relative permittivity components εA (k, ω) and εP (k, ω) have

opposite signs, creating critical angles along which the real part of the dominator

vanishes. On the cones in reciprocal space satisfying this requirement, the vec-

tor k determined by (5.1) can be both extremely large and nearly real, Fig. 5.1.,

showing that hyperbolic media support extremely localized excitations. Intuitively,

this strong localization allows excitations at a given frequency to effectively interact

on much smaller length scale than in any conventional isotropic medium (enhanced

light-matter interactions), enabling a host of possible applications [225,228,229,237].

Yet, despite this captivating potential, key properties of these media have remained

only superficially understood. Namely, the degree to which light-matter interactions

are enhanced by a structure or medium (to linear order) is universally quantified

by the strength of its electromagnetic field fluctuations, here referred to as the fluc-

tuation density1 (5.3). For isotropic media, this measure of interaction strength is

known to be simply proportional to the refractive index, 〈E (r, ω)⊗E∗ (r′, ω)〉 ∝∫
dk Re

{√
ε (k, ω)

}
, relating the wave vector k to the frequency ω in the isotropic

wave condition. In contrast, prior to the work presented here, for hyperbolic media

the fluctuation density could only be quantified in terms of secondary optical effects,

such as the magnitude of spatial non-locality in the permittivity response.

1If at a given frequency a structure or medium possess large field fluctuations we expect strong
light-matter interactions.
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Figure 5.1: Wave conditions and fluctuation density.
In isotropic media fluctuations in the electromagnetic field are proportionally re-
lated to the magnitude of the wave condition k =

√
ε (k, ω) ω/c. The p-polarized

wave condition for uniaxial media shown above suggests that in the case of hyper-
bolic (indefinite) polarization response these fluctuations will be strongly enhanced.
Presently, all quantifications of this effect are either ill-defined, require the explicit
introduction of non-local parameters, or are described by second order corrections.
Here, we address this longstanding issue.
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In this chapter, we confront these longstanding issues of analytically characterizing

field fluctuations inside natural hyperbolic media by revealing the coupling between

transverse and longitudinal electromagnetic fields. This previously overlooked con-

nection allows us to provide a concrete description of the link between the polariton

excitations that occur in hyperbolic media, and the characteristic near-field optical

and thermal properties that they exhibit. It also allows us to produce a regularized

characterization of the field fluctuations that occur inside hyperbolic media where

material absorption sets the fundamental limit of enhancement. We then apply these

results to study the quantum optical sum rule for modified spontaneous emission

enhancement in hyperbolic media, and calculate thermal fluctuations in hexagonal

boron nitride and bismuth selenide. Most importantly, we conclude that while the

quantum optical sum rule is valid, it does not extend to the polariton modes that

dominate hyperbolic enhancement. We also show that both hexagonal boron nitride

and bismuth selenide have broad spectral regions where fluctuations are over 120

times larger, along specific directions over 800 times larger, than they are in vacuum.

From the fluctuation dissipation theorem [264,265],

〈
E (r, ω)⊗E∗

(
r′, ω

)〉
=
ω Θ (ω, T )

π
Im
{
Ǧ
(
r− r′, ω

)}
, (5.2)

our objective amounts to regularizing the fluctuation density (FD) :

F (ω) = lim
r→r′

Tr
[
Im
{
Ǧ
(
r− r′, ω

)}]
= lim

r→r′

∫
dVk Tr

[
Im
{
eik(r−r′)Ǧ (k, ω)

}]
,

(5.3)

for hyperbolic media. Where Θ (ω, T ) is the energy of a harmonic oscillator at fre-

quency ω and temperature T , Ǧ (r, r′, ω) the dyadic Green function of the medium,

Ǧ (k, ω) it’s Fourier transform,
∫
dVk an integral over reciprocal space and Im {...}

the imaginary part. (This quantity is often called the photonic or electromagnetic

density of states in nanophotonics (PDoS or DoS). The fluctuation density extends

this concept to media supporting polaritonic excitations2.)

The chapter is organized into five sections. The first three cover our theoretical

work leading to equations (5.28), (5.34), (5.37) and (5.38). The last two sections ex-

2In nanophotonics literature the imaginary part of the Green function(5.3) is usually called the
electromagnetic or photonic density of states [266,267] (DoS/PDoS). However, this definition relies
on the fact that emitter is in vacuum. When the emitter is not in vacuum there is an additional
factor of the inverse energy density must be considered to achieve the correct scaling, ∝

√
ε (k, ω).

(The usual view of the density of states, the differential number of states contained in a shell, yields

a proportionality of ∝
√
ε (k, ω)

3
[268].) Further, as we will show, the response of the medium

contained in the Green function is not strictly electromagnetic.
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plore quantum optical sum rules in hyperbolic media and thermal field fluctuations

in hexagonal boron nitride and the topological insulator bismuth selenide.

5.2 Polariton excitations in anisotropic media

The defining feature of hyperbolic media is extremely anisotropic polarization re-

sponse. In this section, we provide the formal relations connecting anisotropy to

polariton excitations that are not possible in isotropic media.

We begin by decomposing Maxwell’s equations in terms of the direction of the

reciprocal space vector k. Letting

wL =
(
k̂⊗ k̂

)
w, (5.3a)

wT =
(
Ǐ − k̂⊗ k̂

)
w (5.3b)

be the projection of a vector w along k̂ and onto the plane perpendicular to k̂

respectively, any vector w can be represented as

w = wL + wT , (5.3c)

where wL and wT are referred to as the longitudinal and transverse components.

From these definitions

k×wL = 0 (5.4a)

k ·wT = 0, (5.4b)

so that Maxwell’s equations separate to become:

k ·EL (k, ω) = −iρ (k, ω) /ε0 (5.5a)

BL (k, ω) = 0 (5.5b)

k×ET (k, ω) = ω BT (k, ω) (5.5c)

ic2k×BT (k, ω) = −iω ET (k, ω) + jT (k, ω) /ε0 (5.5d)

iω EL (k, ω) = jL (k, ω) /ε0 .

with ε0 and µ0 denoting the permittivity and permeability of vacuum, ρ (k, ω) the

charge density, j (k, ω) the current density, B (k, ω) the magnetic field, and E (k, ω)

the electric field. Assuming that the relative permeability is negligibly different than

vacuum, µ̌ (k, ω) = Ǐ, as we will throughout, macroscopic averaging of (5.5a)-(5.5d)
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produces:

k ·DL (k, ω) = −iρf (k, ω) /ε0 (5.6a)

B̄L (k, ω) = 0 (5.6b)

k× ĒT (k, ω) = ω B̄T (k, ω) (5.6c)

ic2k× B̄T (k, ω) = −iω DT (k, ω) + jfT (k, ω) /ε0 (5.6d)

iω DL (k, ω) = jfL (k, ω) /ε0 .

where D (k, ω) = ε̌ (k, ω) E (k, ω) is the electric displacement field, and the f sub-

script is introduced as a shorthand that the quantity is free. (Any quantity Xf is sep-

arate from the microscopic densities that have been averaged over in producing the

macroscopic equations (5.6a)-(5.6d) from the microscopic equations (5.5a)-(5.5d).)

Similarly, the overline X̄ serves as a reminder that the electric and magnetic fields

appearing in (5.6a)-(5.6d) are spatially averaged, and not equivalent to the identi-

cally named fields in (5.5a)-(5.5d).

5.2.1 Characteristics of the microscopic decomposition

This decomposition of the electromagnetic field exposes physical features crucial

for characterizing field fluctuations in a medium. Beginning with the microscopic

equations, (5.5a) and (5.5b) show that the longitudinal electric and magnetic fields

are entirely determined by their respective charge densities as

EL (k, ω) = −iρ (k, ω) k/
(
ε0k

2
)

(5.7a)

BL (k, ω) = 0. (5.7b)

In the absence of charge the longitudinal fields must therefore be zero. Since the

most important properties of this type are the Coulomb self-energy and charge

momentum [269], we will interchangeably refer to longitudinal fields as Coulombic.

A homogeneous solution to (5.6a)-(5.6d) is then purely transverse, and from (5.6c)

we see that this amounts to correctly defining ET (k, ω). In the remainder of the

chapter, we will refer to all such quantities that define homogeneous solutions as

normal variables.

5.2.2 Isotropic media

The generalization to isotropic media follows analogously. By symmetry, the relation

between D (k, ω) and Ē (k, ω) is defined by scalar multiplication of the relative

permittivity, ε̌ (k, ω) = ε (k, ω) Ǐ. Using this relation, the longitudinal electric and
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magnetic fields are now determined by the average free charge densities to be

ĒL (k, ω) = −iρf (k, ω) k/
(
k2ε0ε (k, ω)

)
(5.8a)

B̄L (k, ω) = 0. (5.8b)

Concurrently, so long as ε (k, ω) 6= 0, the normal variables of an isotropic medium

are again transverse and defined by ĒT (k, ω).

The caveat to this congruence is the appearance of the polarization condition

ε (k, ω) = 0. (5.9)

From equation (5.6a) we observe that when this condition is met, the displacement

field may be zero even if the longitudinal electric field is not. Since the remain-

ing macroscopic equations do not depend on the longitudinal electric field, these

Coulombic solutions evolve independent of the transverse, vacuum-like, electromag-

netic solutions [270–272]. Rather, averaging (5.5a) directly,

ρ̄ (k, ω) = iε0k · ĒL (k, ω) , (5.10)

shows that each Coulombic solution is a mechanical macroscopic oscillation of the

microscopic charge density, mediated by the electric field.

These additional solutions demonstrate that (5.6a)-(5.6d) are fundamentally dif-

ferent than a scaled vacuum. The fact that ε (k, ω) exists because of the presence

of charges is inescapable, even after macroscopic averaging. However, in isotropic

media the resulting effects can be considered independent of the electromagnetic

(transverse) properties, as Coulombic modes do not couple to external electromagen-

tic sources. For this reason Coulombic modes may be neglected in many situations.

5.2.3 Anisotropic media
For anisotropic media the relative permittivity tensor, ε̌ (k, ω), can not be expressed

as single scalar and a more careful analysis is required. Rewriting (5.6a)-(5.6d) in

the Coulomb gauge using

ĒT (k, ω) = iωĀT (k, ω) (5.11a)

ĒL (k, ω) = −ik V̄ (k, ω) (5.11b)

B̄T (k, ω) = ik× ĀT (k, ω) (5.11c)
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a homogeneous solution requires both

ω
(
Īk2 − k⊗ k− k2

0
ε̌ (k, ω)

)
ĀT (k, ω) + k2

0
ε̌ (k, ω) k V̄ (k, ω) = 0, (5.12)

and

k ε̌ (k, ω)
(
ω ĀT (k, ω)− k V̄ (k, ω)

)
= 0, (5.13)

with k0 = ω/c, Ā (k, ω) the electromagnetic vector potential, and V̄ (k, ω) the scalar

potential. In order to satisfy (5.13) there are three distinct solutions.

(S1): If in addition to being perpendicular to k, ĀT (k, ω) is constrained to direc-

tions perpendicular to k ε̌ (ω) then V̄ (k, ω) = 0. As in vacuum, the normal variables

are then determined by the transverse electric field. Evaluating the first condition

in this case, simplifying to a uniaxial medium as we will throughout, produces the

s-polarized, or ordinary, wave condition

k =
√
εP (k, ω) k0 , (5.14)

with ĀT (k, ω) confined to the direction ŝ = [−s (φ) , c (φ) , 0] relative to the unit

direction in reciprocal space k̂ = [s (θ) c (φ) , s (θ) c (φ) , c (θ)]. (Our labeling conven-

tion for uniaxial media is shown in Fig. 5.1.)

(S2): If k ε̌ (k, ω) k = 0 then V̄ (k, ω) can be non-zero independent of the value

of ĀT (k, ω). These purely longitudinal modes bear a straightforward relation to

the Coulombic solutions of an isotropic media occurring with the polarization con-

dition, (5.9). The updated criterion

k ε̌ (k, ω) k = 0, (5.15)

simply accounts for the loss of complete k̂ symmetry. For uniaxial anisotropy, (5.15)

reduces to

εU (k, θ, ω) = 0, (5.16)

with

εU (k, θ, ω) = s (θ)2 εP (k, ω) + c (θ)2 εA (k, ω) . (5.17)

We will refer to this directional projection of the uniaxial permittivity tensor as the

uniaxial permittivity of the medium (U subscript).

(S3): If ĀT (k, ω) is not perpendicular to k ε̌ (k, ω), then from (5.13)

V̄ (k, ω) = ω k ε̌ (k, ω) ĀT (k, ω) / (k ε̌ (k, ω) k) (5.18)
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and (5.12) becomes(
Ǐ
k2

k2
0

− k⊗ k

k2
0

− ε̌ (k, ω) +
ε̌ (k, ω) k⊗ ε̌ (k, ω) k

k ε̌ (k, ω) k

)
ĀT = 0. (5.19)

Given the directional constraints on ĀT , satisfaction of this equation for a uniax-

ial medium requires k to be a solution of the p-polarized, or extraordinary, wave

condition

k =
√
εE (k, θ, ω) k0 , (5.20)

with ĀT (k, ω) confined to the direction p̂ = [−c (θ) c (φ) ,−c (θ) s (φ) , s (θ)], with

εE (k, θ, ω) is defined as the extraordinary relative permittivity

εE (k, θ, ω) =
εA (k, ω) εP (k, ω)

εU (k, θ, ω)
. (5.21)

(Note that (5.21) is strikingly similar to the excitation condition of a surface plas-

mon polariton [21].)

Using the above definition of the Coulomb gauge, substitution into V̄ (k, ω) =

ωk ε̌ (k, ω) ĀT (k, ω) / (k ε̌ (k, ω) k) shows that for the extraordinary family of so-

lutions

ĒL (k, ω) = k̂ εH (k, θ, ω) ĒT (k, ω) , (5.22)

where ĒT (k, ω) is the undetermined scalar magnitude of the transverse component

of the electric field,

ε∆ (k, θ, ω) = s (θ) c (θ) (εP (k, ω)− εA (k, ω)) (5.23)

is the relative degree of polarization anisotropy between the optical axis and plane,

and

εH (k, θ, ω) =
ε∆ (k, θ, ω)

εU (k, θ, ω)
(5.24)

is defined as the hyperbolic permittivity.

Startlingly, from (5.22) we find that the normal variables of the extraordinary fam-

ily of solutions now possess a mixture of transverse and longitudinal fields. This

fundamentally does not occur for isotropic media and is one of the central results of

this chapter. Averaging (5a) as before,

ρ̄ (k, ω) = iε0k εH (k, θ, ω) ĒT (k, ω) , (5.25)
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it is apparent that the electromagnetic part is accompanied by a Coulombic charge

oscillation. To keep this fact in mind, we will call these solutions the anisotropic

polariton (AP) family.

Again, in isotropic media such an excitation is impossible. The global direction of

the electric field for a Coulombic mode is uniquely fixed by the propagation direction

of the charge oscillation. These electric fields can not couple to the magnetic field,

and hence are not electromagnetic solutions. However, in the presence of anisotropy,

the normal variables of a homogeneous solution are not required to be either purely

electromagnetic or Coulombic; and are in general mixed, or polaritonic. For these

solutions, there is no way of fully describing resulting properties and interactions

without both components. (Note that the same reasoning can be applied to the

magnetic field and relative permeability tensor µ̌ (k, ω).)

(5.24) and (5.25) show the that Coulombic part of an AP type mode grows propor-

tionally with the degree of anisotropy of the medium, (5.23), and is resonant with

zeros of the uniaxial permittivity, (5.17). These properties inherently characterize a

hyperbolic medium. As we will demonstrate, when this special polarization response

is present AP type modes dominate the ordinary electromagnetic excitations.

5.3 Normal variable decomposition of the anisotropic

green function

In this second section, we decompose the anisotropic Green function using the solu-

tion families (S1)-(S3). Using this form, we then determine the FD of a hyperbolic

medium in reciprocal space.

Substituting (5.6c) into (5.6d), the electric field inside a macroscopic medium obeys

the equation

−k× k× Ē (k, ω)− k2
0
ε̌ (k, ω) Ē (k, ω) = ijf (k, ω) /

(
ε0c

2
)
, (5.26)

so that any electric field implies a current density as described by

ijf (k, ω) = ε0c
2
(
k2
(
Ǐ − k̂⊗ k̂

)
− k2

0
ε̌ (k, ω)

)
Ē (k, ω) = Ǧ−1 (k, ω) Ē (k, ω)

(5.27)
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The dyadic Green function of a uniaxial medium is exactly the inverse of this relation,

ǦU (k, ω) =
k0

ε0c
2

(
ŝ⊗ ŝ

k2 − εP (k, ω)
− k̂⊗ k̂

εU (k, θ, ω)
+(

p̂ + εH (k, θ, ω) k̂
)
⊗
(
p̂ + εH (k, θ, ω) k̂

)
k2 − εE (k, θ, ω)

)
,

(5.28)

where all reciprocal vectors have been normalized by k0 , and, recalling our previous

definitions,

ŝ = [−s (φ) , c (φ) , 0] (5.29a)

p̂ = [−c (θ) c (φ) ,−c (θ) s (φ) , s (θ)] (5.29b)

k̂ = [s (θ) c (φ) , s (θ) s (φ) , c (θ)] . (5.29c)

For isotropic media, εH (k, ω) reduces to zero while εU (k, ω) and εE (k, ω) become

the isotropic permittivity ε (k, ω) so that (5.28) simplifies to

ǦI (k, ω) =
k0

ε0c
2

(
ŝ⊗ ŝ

k2 − ε (k, ω)
− k̂⊗ k̂

ε (k, ω)
+

p̂⊗ p̂

k2 − ε (k, ω)

)
. (5.30)

Here, the U and I superscripts mark that the results applies specifically to either

uniaxial or isotropic media.

Recalling the normal variable picture of the previous section, the meaning of the

Green function as an operator is clear. (5.28) determines the electric field generated

by a point current source as a modal expansion in terms of the three homogeneous

solution families.

(S1): Ordinary electromagnetic (O) type excitations, represented by the purely

transverse term

ǦU
O

(k, ω) =
k0

ε0c
2

ŝ⊗ ŝ

k2 − εP (k, ω)
. (5.31)

(S2): Coulombic polarization (C) type excitations, represented by the purely longi-

tudinal term

ǦU
C

(k, ω) = − k0

ε0c
2

k̂⊗ k̂

εU (k, ω)
. (5.32)
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(S3): Anisotropic polariton (AP) type excitations, represented by the mixed term

ǦU
AP

(k, ω) =
k0

ε0c
2

(
p̂ + εH (k, θ, ω) k̂

)
⊗
(
p̂ + εH (k, θ, ω) k̂

)
k2 − εE (k, θ, ω)

. (5.33)

Taking the trace of the imaginary part of the uniaxial Green function, the portion

of the fluctuation density that will persist as r→ r′ is given by

FU (k, ω) = Tr
[
Im
{
ǦU (k, ω)

}]
=

k0

ε0c
2
Tr

[
(
Im {εP (k, ω)}
|k2 − εP (k, ω) |2

ŝ⊗ ŝ +
Im {εE (k, θ, ω)}
|k2 − εE (k, θ, ω) |2

p̂⊗ p̂+((
c (θ) |k2 − εP (k, ω) |
|εU (k, θ, ω) |

)2
Im {εA (k, ω)}
|k2 − εE (k, θ, ω) |2

+

(
s (θ) |k2 − εA (k, ω) |
|εU (k, θ, ω) |

)2
Im {εP (k, ω)}
|k2 − εE (k, θ, ω) |2

)
k̂⊗ k̂

)]
.

(5.34)

Where r− r′ has been replaced by r. (The trace of the p̂⊗ k̂ and k̂⊗ p̂ matrices are

zero.) The poles of this function show that the first term again represents ordinary

(O type) excitations, while the final two terms form the combined contributions of

the mixed anisotropic polariton (AP) and pure longitudinal (C type) modes. These

two solution classes couple due the presence of shared longitudinal fields. Regardless,

the fact that the second transverse p̂⊗ p̂ term has |k2 − εE (k, ω) |2 (S3) poles, but

not |εU (k, ω) |2 (S2) poles separates the influence of these two types of excitations.

5.4 Model-independent regularization of the fluctuation

density through spatial non-locality

Having determined the FD of a hyperbolic medium in reciprocal space in the previ-

ous section, (5.34), we now turn to its real space counterpart. This quantity diverges

in the approximation of local polarization response. Here, we reveal how the AP

contribution, hitherto undefined, can nevertheless be extracted from the FD in a

model-independent way.

In the analysis we have carried out so far, all permittivity factors have been written

as functions of the magnitudes k and ω. From the inverse Fourier transformation,

these dependencies correspond respectively to spatial and temporal non-locality;

qualities fundamentally required of any properly defined response function. Never-

82



theless, in practice, the approximation of local spatial response

r′ − r 6= 0 ⇒ ε
(
r− r′, t− t′

)
= 0

ε (k, ω)→ ε (ω) , (5.35)

is almost always used. Because the momentum of a photon is typically very small

compared to the scale set by the material lattice, the difference between ε (k, ω) and

ε (ω) for electromagnetics is often insubstantial. (Additionally, it is also presently

difficult to accurately probe permittivity response at optical and infrared frequencies

above k/k0 ≈ 5 [273].)

Notwithstanding, the FD contains both transverse (electromagnetic) and longitudi-

nal (Coulombic) parts. For the Coulombic portion, ignoring non-locality implies C

type modes with no k dependence. Directly, this leads to divergence when consider-

ing a point charge coupling equally well to all k. Inside isotropic media, the simplest

solution is to ignore this longitudinal part, and concentrate on the transverse portion

of the FD. This can be done without introducing any issues as the electromagnetic

and Coulombic fields correspond to different normal variables [269]. However, the

mixed field characteristics of AP type modes clearly make this approach unusable

for anisotropic media. Recalling that we are working in spherical coordinates, the

asymptotic behavior of (5.34) shows that

FU (ω) = lim
|r|→0

π∫
0

dθ

2π∫
0

dφ

∞∫
0

dk
k2s (θ)

(2π)3 FU (k, ω)
eik·r + e−ik·r

2
(5.36)

diverges as k3 under the above local approximation3. This term contains the longitu-

dinal fields of both AP and C type modes. Without it, the polaritonic characteristics

of a hyperbolic response can not be captured.

To extract the contribution of AP modes we begin by expanding all absolute values

and imaginary parts of (5.34), treating k as a real variable. In this form, the result-

ing expression in k can be extended as an analytic function over the entire complex

plane. Taking an equivalent k integral over the entire real line, Jordan’s lemma

then implies that if k2FU (k, ω) → 0 as |k| → ∞ the Cauchy integral theorem will

equate FU (ω) to the residues of FU (k, ω). (Here, we are using infinite semi-circle

contours in the upper and lower half spaces depending on the value of k ·r4.) There-

3This divergence also occurs in vacuum. Classically, the strength of the electric field generated
by a point dipole scales as ∝ 1/r3. In an absorbing medium the energy loss per unit volume then
also scale as ∝ 1/r3 or in Fourier space ∝ k3.

4In our convention the square function is cut along the positive real axis.
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fore, we can conclude that any model of non-locality leading to Im {εA (k, ω)} and

Im {εP (k, ω)} having asymptotic k scaling stronger than ∝ 1/k2 will make (5.36)

convergent.

Interestingly, as we show in first the appendix, this is a generally valid assump-

tion, and the above result allows us to determine key features of (5.36) without

assuming any specific model of spatial non-locality. Precisely, for each wave equa-

tion there are poles of the form kS = ±
√
εX (kS , ω) that do not explicitly depend

spatial non-locality, i.e. poles that tend to kS = ±
√
εX (ω) in the limit of local

response. Using the Cauchy integral theorem as described above and taking the

|r| → 0 limit, we find that the residues determined by these poles sum to give

FU
O

(ω) =

2π∫
0

dφ

π/2∫
0

dθ s (θ)Tr
[
Im
{
ǦU
O

(θ, φ, ω)
}]

=

k0π

(2π)3 ε0c
2

2π∫
0

dφ

π/2∫
0

dθ s (θ) Re

{√
εP (kO , ω)

} (5.37)

for O type modes, and

FU
AP

(ω) =

2π∫
0

dφ

π/2∫
0

dθ s (θ) Im
{
ǦU
AP

(θ, φ, ω)
}

=

k0π

(2π)3 ε0c
2

2π∫
0

dφ

π/2∫
0

dθ s (θ) Re

{√
εE (kE (θ) , θ, ω)

}(
1 + |εH (kE (θ) , θ, ω)|2

)
(5.38)

for AP type modes, with kO and kE (θ) standing for the implicitly modified solutions

to (5.14) and (5.20) (most like the poles of the local approximation). For (5.38) the

first term results from the transverse field and the second term form the longitu-

dinal field. These two expressions provide an unequivocal characterization of the

O and AP type parts of the FD, and are crucial to all following results. (For local

isotropic response, the sum of these two terms is the photonic density of states [254].)

Convincingly, (5.38) is also precisely the result obtained by considering the nor-

mal variables of the AP solution family. In the second section, we showed that any

AP excitation has both longitudinal and transverse components, related by (5.22).

(5.28) identifies the transverse part of these excitations with the second term of

(5.34). Since there is no question as to the convergence of this term, the existence

of (5.38) is in fact a requirement of Maxwell’s equations. We emphasize that either
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approach to (5.38) is independent of the specific form of non-locality considered,

and that by virtue of this fact (5.38) is unambiguously the AP part of the FD. It is

also worthwhile to note that the permittivity dependence of the Coulombic piece of

this term

FU
AP L

(ω) =
k0π

(2π)3 ε0c
2

2π∫
0

dφ

π/2∫
0

dθ s (θ)Re

{√
εE (kE (θ) , θ, ω)

}
|εH (kE (θ) , θ, ω)|2

(5.39)

is the same as that observed in calculating the power radiated by a dipole in a losses

hyperbolic medium [274, 275], and is essentially an angular version of the FD asso-

ciated with a surface plasmon polartion excitation [21]. As discussed in the second

appendix, for the materials we will examine later in this chapter it is reasonable to

assume that the local approximations of (5.37) and (5.38) contain the only O and

AP contributions to the FD that need to be considered.

To determine the FD resulting from the (S2) C type poles, a specific model of

non-locality is required [126, 213]. To focus our discussion we will not investigate

these terms. Still, there are general characteristics worth noting. Considering the

real k integral of this term as written in (5.36), once k2 surpasses |Re {εE (k, θ, ω}) |
we will quickly approach

(
|k2 − εP (k, ω) |/|k2 − εE (k, θ, ω) |

)2 ≈ (|k2 − εA (k, ω) |/
|k2 − εE (k, θ, ω) |

)2 ≈ 1. (Non-locality will not drastically increase the peak mag-

nitude of the polarization response for real k.) Once this condition is achieved, the

final term of (5.34) is accurately approximated as

Im
{
ǦU
C

(k, ω)
}

=
k0

ε0c
2

(
k̂⊗ k̂

|εU (k, θ, ω) |2
Im {εU (k, θ, ω)}

)
. (5.40)

This expression is again the exact result found by considering the normal variables

of the Coulombic solutions independently, and a straightforward extension of the

Coulombic FD encountered in isotropic media,

Im
{
ǦI
C

(k, ω)
}

=
k0

ε0c
2

(
k̂⊗ k̂

|ε (k, ω) |2
Im {ε (k, ω)}

)
. (5.41)

For k where the above approximation is valid, the residues from these (S2) type poles

can safely be attributed to pure Coulombic modes, and the resulting divergence in

the local approximation attributed to an artifact of treating matter in the continuum

limit.
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5.5 The sum rule for modified spontaneous emission en-

hancement in hyperbolic media

Building from expressions (5.37) and (5.38), we now turn to applications. In this

fourth section we demonstrate that while the quantum optical sum rule for sponta-

neous emission enhancement is valid for hyperbolic media, it does not capture the

most important features of hyperbolic enhancement.

The sum rule for modified spontaneous emission enhancement, formulated by Bar-

nett and Loudon [254,276], states that it is not possible to alter the total relative rate

of spontaneous emission into purely electromagnetic (transverse) excitations. That

is, if the properties of a medium enhance the relative rate of spontaneous emission

into electromagnetic modes in one spectral range, they must equally suppress this

relative rate in another. Mathematically, this is written as∫ ∞
0

dω
ΓT (r, ω)− Γ0 (ω)

Γ0 (ω)
= 0, (5.42)

where

ΓT (r, ω) =
2ω2

~
d Im

{
ǦTT (r, r, ω)

}
d (5.43)

is the relative rate of spontaneous emission of a single level emitter of frequency ω,

with transition dipole moment d, at position r in a medium described by Ǧ (r, r′, ω),

and

Γ0 (r, ω) =
k3

0

3π~ε0

d Ǐ d (5.44)

is the rate of spontaneous emission in vacuum. The TT subscript refers to the fact

that the transverse projection is applied to both indices of the Green function.

As the frequency dependencies of the uniaxial (5.28) and isotropic (5.30) Green func-

tions are the same, Scheel’s argument for the general validity of the sum rule [277]

applies, guaranteeing that the transverse part of the uniaxial Green function

Im
{
ǦU
TT

(ω)
}

=
k0π

(2π)3 ε0c
2

2π∫
0

dφ

π/2∫
0

dθ s (θ)

(
Re

{√
εP (ω)

}
ŝ⊗ ŝ +Re

{√
εE (θ, ω)

}
p̂⊗ p̂

)
,

(5.45)

must satisfy (5.42) so long as the permittivites considered satisfy the Kramers-

Kronig relations.
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Figure 5.2: Quantum optical sum rule for transverse spontaneous emission
enhancement in hyperbolic media.
Panel (A) displays the absolute relative permittivity values resulting from (5.46).
The thin dashed lines and schematic dispersion surfaces highlight spectral regions
of hyperbolic response where one of either Re {εP (ω)} or Re {εA (ω)} is negative.
Panel (B) shows the resulting transverse spontaneous emission enhancement offset
by vacuum, the integrand of (5.42). Panel (C) plots the integrated enhancement
as function of the upper wavenumber considered. These result confirm that the
enhancement sum rule is strictly obeyed inside hyperbolic media [277]. (We have
tested a great number of other cases and have always found perfect agreement.)
Accounting only for purely electromagnetic (transverse) contributions, emission en-
hancement in spectral regions of hyperbolic response is unremarkable. Panel (D)
further highlights this fact by comparing the orientationally averaged enhancement
from (B), black line, with the enhancement found by averaging two isotropic me-
dia with ε (k, ω) = εP (ω) and ε (k, ω) = εA (ω) weighted by factors of 2/3 and 1/3
respectively. The graphs are found to be nearly identical, even though the two situa-
tions correspond to very different electromagnetic environments and have completely
different angular behavior.
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Figure 5.3: Polaritonic spontaneous emission enhancement surpassing the
sum rule in hyperbolic media.
The figure displays the orientationally averaged spontaneous emission enhancement
of the Coulombic (longitudinal) part of the AP contribution, considering a uniaxial
media with permittivity model (5.46). Contrasting with Fig. 5.2, this longitudinal
enhancement dominants in spectral regions of hyperbolic response. This quantity
does not obey a quantum optical sum rule like (5.42).

An illustrative example of this result assuming local Lorentzian polarization re-

sponses,

ε (ω) = 1 +
ω2
ρ

ω2
0
− ω (ω + iγ)

, (5.46)

for εA (ω) and εP (ω) with ωρ = {500A , 700P } cm−1, ω0 = {600A , 1000P } cm−1

and γ = {5A , 10P } cm−1 is provided in Fig. 5.2.

From the graph, we observe that the regions of hyperbolic response are essentially

featureless, and that just as in isotropic media the most important spectral char-

acteristics occur at polarization maximas. Further, Fig. 5.2(D) shows that the

orientationally averaged enhancement of this transverse part is nearly equivalent to

considering the planar and axial permittivities separately and summing the result.

That is, replacing (5.45) with the sum of (2/3) FI
T

(ω) with ε (k, ω) = εP (ω) and

(1/3) FI
T

(ω) with ε (k, ω) = εA (ω).

These results for the transverse part of the AP enhancement, which hold to ar-

bitrarily low absorption (γ), follow from the normal variable picture. Any property

of a linear macroscopic medium should be consistent with an arrangement of some

collection of dipoles in vacuum. Since a dipole does not introduce new electromag-

netic modes, the transverse part of the FD must obey the sum rule for modified

spontaneous emission enhancement in any such environment. From (5.38) the reso-
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Figure 5.4: Scaling with material absorption of fluctuation densities in
hyperbolic media.
The figure depicts the power scaling of the transverse O type (5.45), longitudinal C
type (5.40), and mixed AP type (longitudinal part only) (5.47) contributions to the
FD as a function of material absorption Im {εA,P (ω)}. For the C type contribution,
only the angular integrals in (5.36) have been computed as the k integral diverges
in the limit of local polarzation response. The knee transitioning from a scaling of
∝ −1 to a scaling of ∝ 0 is set by the minimum magnitude of the real permittivity
components |Re {εA,P (ω)} |, just as in the isotropic case [268]. The AP contribution
is found to exhibit a stronger power scaling than either of the two pure solution types.
The x−3/2 dependence exhibited is identical to the material absorption scaling of a
surface plasmon polariton on a flat surface.

nant effects of hyperbolic response for AP type excitations occur in the Coulombic

field [237]. In taking the strictly electromagnetic (transverse) part of (5.38) these

features are ignored.

The orientationally averaged, equivalent to setting d = [1, 1, 1] /
√

3, spontaneous

emission enhancement resulting from the Coulombic portion of the AP FD

ΓU
AP L

(ω)

Γ0 (ω)
=

6πε0c
3

ω
FU
AP L

(ω) =
3

2

π/2∫
0

dθ s (θ)Re

{√
εE (θ, ω)

}
|εH (θ, ω)|2 , (5.47)

is plotted in Fig. 5.3. (For numerical convenience in the remainder of this chapter

the FD will be taken to be vacuum normalized by the prefactor appearing in (5.47).)

Comparing with Fig. 5.2, it is clear that this enhancement does not obey the quan-

tum optical sum rule. To first order, it is an additional positive contribution that

grows arbitrarily large as material absorption is decreased. (Since this enhancement

stems from charge oscillations, here there is no restriction based on the properties of

the vacuum.) By itself, this fact is not particularly unusual. In a general isotropic
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medium the absorption of energy into matter is not limited by the number of elec-

tromagnetic modes (5.42), and so neither is the enhancement contribution of C type

modes. Yet, there are key distinctions that differentiate these two cases:

(1) The AP enhancement of the FD does not diverge in the limit of local per-

mittivity response (non-locality is a second order effect). This is not the case for C

type enhancement [213].

(2) The AP enhancement of the FD is not simply related to the magnitude of the po-

larization, density of charge carriers, as has been shown C type enhancement [277].

Instead, it depends principally on the magnitude of anisotropy and material absorp-

tion.

(3) The AP type enhancement of the FD shows a unique scaling with material

absorption, which is stronger than the scaling exhibited by either the transverse O

type (5.45) or longitudinal C type (5.40) enhancement, Fig. 5.4.

5.6 Thermal fluctuations in hexagonal boron nitride and

bismuth selenide

In this fifth section, we examine how AP type excitations alter the thermal energy

density in the electric field of natural hyperbolic media. Our discussion focuses on

two particular material examples, hexagonal boron nitride and bismuth selenide.

Like the degree of relative spontaneous emission enhancement, the thermal energy

density in the electric and magnetic fields is likewise set by the FD through the

relation

U (r, ω, T ) =
ε0

2
Tr [〈E (r, ω)⊗E∗ (r, ω)〉] +

1

2µ0

Tr [〈B (r, ω)⊗B∗ (r, ω)〉] , (5.48)

with

Tr [〈E (r, ω)⊗E∗ (r, ω)〉] =
ω Θ (ω, T )

π
F (ω) (5.49)
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Figure 5.5: Relative thermal energy and fluctuation densities in natural
hyperbolic media.
The figure shows the contribution that AP type modes, solid lines, and O type
modes, dashed lines, make to the electric and magnetic thermal energy densities
inside hexagonal boron nitride (C) and bismuth selenide (D). (For comparison the
energy densities are normalized by half the thermal energy density of vacuum.) The
absolute relative permittivity components of these two materials, based on data from
references [245, 247], is plotted in figures (A) and (B). Each sharp peak and dip in
these plots signals a sign flip of the corresponding real part (these are all positive
at the high end of the given wavenumber ranges). The imaginary part of each
component remains positive throughout. The green electric lines (bold polariton,
dashed ordinary) double as the respective FDs. Both media show broad spectral
regions where this quantity is over 120 times larger than it is in vacuum.
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Figure 5.6: Angular polaritonic fluctuation density in natural hyperbolic
media.
The figure depicts the polaritonic FD inside hexagonal boron nitride at 1500 cm−1,
and bismuth selenide at 110 cm−1, as a function of polar angle on a logarithmic scale.
The inset shows this same quantity as a polar plot on a linear scale. Although the
integrated FDs of these two cases are nearly equal, Fig. 5.6, as hexagonal boron
nitride more closely approaches the resonance condition |εU (θ, ω) | = 0, but possess
less polarization anisotropy, the angular distribution of its FD is much more radical.
Both materials show angular regions where the relative polar FD is over 800 times
larger than vacuum.

Using (5.2), (5.37), (5.38), and (5.6c), the energy density in the O and AP type

modes of a uniaxial medium is then

U (r, ω, T ) =
UBB (ω, T )

4
(FE (ω) + FM (ω)) , (5.50)

with

FE (ω) = Re

(√
εP (ω)

)
+

π/2∫
0

dθ s (θ)Re

(√
εE (θ, ω)

)(
|εH (θ, ω)|2 + 1

)
(5.51)

and

FM (ω) = |εP (ω)|Re
{√

εP (ω)

}
+

π/2∫
0

dθ s (θ) |εE (θ, ω)|Re
{√

εE (θ, ω)

}
(5.52)

denoting the relative electric and magnetic contributions.

The results of this expression for hexagonal boron nitride and bismuth selenide,

normalized by UBB (ω, T ) /2 for direct comparison with the FD, are plotted in Fig.

5.5. Following this figure, note that:
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(1) The solid green curves, denoting the contribution of AP type modes, confirm

that in real media either a high degree of anisotropy ε∆ (θ, ω) or low material ab-

sorption εU (θ, ω) may lead to a large polaritonic FD. Bisumth selenide exhibits

substantial material absorption, yet nevertheless a strong enhancement results from

the extreme difference between the axial and planar permittivity components. Con-

versely, hexagonal boron nitride possess much less anisotropy, but lower material

absorption leads to a similar FD.

(2) The energy density of the magnetic field is often substantially larger than that

of the electric field, particularly near maxima of the polarization response. This

observation corresponds to the fact that the magnetic field energy includes the po-

larization energy of the medium, (5.6d), while the electric field does not.

(3) (5.49) equates the green lines with the FD contributions of AP (bold line) and

O (dashed line) type modes. As such, it should be expected that all related quan-

tum phenomena will show this level of enhancement. Importantly, both hexagonal

boron nitride and bismuth selenide show broad spectral regions where the FD is

over 120 times larger than vacuum. (Contrasting with equations (5.43) and (5.44),

this enhancement is equivalent to scaling the frequency ω found in relative rate of

spontaneous emission by nearly a factor of 5.)

(4) Moving to Fig. 5.6, the FD is found to have extreme angular dispersion. As the

value of εU (θ, ω) in a hyperbolic medium is highly dependent on the polar angle, θ,

the FD from Fig. 5.5 is highly concentrated along the critical angles determined by

Re {εU (θ, ω)} = 0. Along this cone, the polaritonic FD is observed to be over 800

times larger than vacuum FD in both bismuth selenide and hexagonal boron nitride.

To conclude, it is interesting to compare the results plotted in Fig. 5.5 with the

full near-field energy density of a hyperbolic medium [66, 165]. For this purpose,

equation (16) of Guo et al. [165] is plotted in Fig. 5.7. Considering that for Fig.

5.5 the contributions of the C type and surface polariton modes are not included,

the spectral features of the two figures are in excellent agreement for the smallest

observation distances. The additional peaks seen in Fig. 5.7, as compared to Fig.

5.5 (B) and Fig. 5.5 (D), are strongly correlated with the surface polariton condition

Re {ε (k, ω)} = −1. This observation indicates the consistency of our results with

previous theory, and suggests that (5.37) and (5.38), likely play roles similar to the

wave conditions inside an isotropic media. (Note that further support of this claim

is seen in calculated heat transfer [278] and experimentally reported confinement
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Figure 5.7: Near-field electromagnetic energy density of natural hyperbolic
media.
The figure plots the sum of the near-field electric and magnetic energy densities
above half-spaces of hexagonal boron nitride (A) and bismuth selenide (B) for in-
creasing observation distances using equation (16) of Guo et al. [165]. (Neither
hexgonal boron nitride of bismuth selenide is considered in this reference.) For com-
parison with the FD results this energy is normalized by half the energy density of
vacuum. The inset in panel (A) shows a schematic representation. Recalling that
surface mode contributions are not included in (5.48), the relative spectral charac-
teristics of the near-field energy density are seen to be in excellent agreement with
FDs plotted in Fig. 5.5 for small observation distances.

factors for hexagonal boron nitride resonators [245].)

5.7 Summary

In summary, we have shown that it is possible to analytically quantify the polaritonic

FD in a hyperbolic (indefinite) medium using only material absorption. Through
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this result, we have studied the quantum optical sum rule for modified spontaneous

emission enhancement, and have found that it does not apply to the key polartionic

features of a hyperbolic medium. We have also investigated thermal field fluctua-

tions and the FD inside both hexagonal boron nitride and bismuth selenide. We

have found that both media have broad spectral regions where these quantities are

over 120 times (along specific angular directions 800 times) larger than they are in

vacuum.
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Chapter 6

Summary

In this final chapter, we summarize the thesis, discuss how our results may motivate

future work, and provide a speculative outlook of the field.

In summary, this thesis has provided a collection of results for understanding and

manipulating macroscopic thermal electromagnetic field correlations via connections

to microscopic electronic and polarization characteristics (ε (ω)).

Our contributions began in Chapters Two and Three with our formulation of far-

field thermal emission control from the perspective metamaterial design concepts.

In the first of these chapters, we theoretically showed how the features of deeply

sub wavelength(nano) structure are manifested in the effective medium parameters

of a system, and analyzed how this concept can be used to selectively enhance

and suppress thermal radiation in the near infrared to improve the performance of

traditional thermophotovoltaic devices. In the second chapter, we experimentally

confirmed these ideas by fabricating a refractory metamaterial and measuring its

high temperature thermal properties. More specifically this work has provided:

• General design principles for controlling far-field thermal emission that can

be applied to any micro or nanophotonic structure in the effective medium

limit through the identification of epsilon-near-zero and epsilon-near-pole like

response.

• Detailed analysis of the performance of metamaterial emitters for thermopho-

tovoltaics, highlighting the possibility of surpassing the full concentration

Shockley-Quessier limit at modest emitter temperatures (≈ 1500 K)

• Introduction of thermally stable (lossy, low figure of merit) metals supporting

high temperature plasmons for metamaterial device applications. (Previous

work had not considered metamaterial applications above 600 K, and hence
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was focused entirely on high figure of merit metals, primarily gold and silver.)

• Experimental confirmation of the thermal stability of effective topological tran-

sitions in refractory metamaterials (up to 1000 oC).

Chapter 4 then shifted to the near-field, where we examined the role played by polar-

ization in defining the characteristics of an ideal near-field photovoltaic cells. Here,

we depicted how the electronic band structure of a bulk three dimensional semicon-

ductor leads to optical properties that are in direct conflict with those required to

maximize the magnitude and efficiency of thermal energy transfer in the very near-

field. In contrast, we also unveiled that this issue can be substantially mitigated by

the introduction of photovoltaic cells with van Hove singularities (low dimensional

semiconductors). The role that the photovoltaic cells could play in improving the

performance of near-field thermophotovoltaics had been previously disregarded, and

in completing this analysis we have contributed two key results for driving further

progress in this area:

• Expression of extremely near-field photonic heat transfer in terms of the joint

density of electronic states (a direct connection between thermal electromag-

netic correlations and electronic band structure).

• Outline of realistic program for improving near-field thermophotovoltaics; the

switch from bulk to low dimensional semiconductors.

Finally, Chapter 5 examined the physical underpinnings of thermal fluctuations in

hyperbolic media, and the relation of these fluctuations to the anisotropic permit-

tivity tensor. In this chapter, we revealed that the divergent behavior observed in

previous calculations of thermal electromagnetic field correlations in hyperbolic me-

dia stems from the excitation of formerly unrecognized charge density resonances.

This result allowed us to create a regularized mathematical framework for calculat-

ing the electromagnetic enhancement properties of these media without requiring

specific knowledge of second order effects, like spatial non-locality in the polariza-

tion response of the medium. Importantly, the resulting expressions are the first

definitive bounds on electromagnetic enhancement phenomena in hyperbolic media,

and have immediately resolved longstanding questions about quantum optical sum

rules in these media. The central contributions of these results can be summarized

as follows:

• Regularized (non-divergent) characterization of the thermal field fluctuations

that occur inside hyperbolic media where material absorption sets the funda-

mental limit of enhancement.
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• Mathematically rigorous physical description of the link between the polariton

excitations that occur in hyperbolic media, and the characteristic near-field

optical and thermal properties that they exhibit.

• Analysis of quantum optical sum rules showing non-trivial agreement.

• Experimentally verifiable predictions of the electromagnetic fluctuation en-

hancement in hexagonal boron nitride and bismuth selenide. (Both materi-

als have broad spectral regions where the integrated density of electromag-

netic/polaritonic fluctuations is over 120 times larger than vacuum.)

6.1 Outlook

At the outset of this dissertation, we described thermal electromagnetic field correla-

tions as a theoretically mature field. After all, the resolution of current and electric

field correlations in terms of linear response functions given by Landau [279], Lifs-

chitz [280], and Rytov [281,282] is now over sixty years old; and while understanding

and computational methods have progressed considerably since, nothing about these

initial results has ever required a major reformulation. However, on closer inspection

this description in not entirely accurate, and there are sound reasons to believe that

we may be on the verge of such a first principles reworking.

The foundation of this view rests on the role that statistical spatial independence

plays in the current framework. Namely, it is assumed that the random currents

at any two distinct points in space are uncorrelated. This assumption is logical

when considering macroscopically sized bodies in thermal equilibrium. In this case,

the exchange of heat energy between any two points is mediated by an intractably

large number of bulk phonon and radiative excitations, with no average flow; and

once excited, the heat flux resulting from a given current fluctuation is thought to

dephase immediately.

However, in the near-field it is not at all clear how well this idea holds [283]. Cru-

cially, it is well known that radiative heat exchange may be dominated by small

collection of excitations [284]. If media at different temperatures exchange heat en-

ergy in such a way, then it seems highly likely that fluctuating currents near the

two surface will not be independent. Although not explicitly stated, a very similar

idea is behind recent proposals for super-radiant thermal emitter assembly [285,286].

In order for super-radiant scaling to occur, current fluctuations in distinct emitters

must be correlated.
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It is important to note that such possibilities have not been experimentally ruled

out. Total heat transfer is known to be in good agreement with the Rytovian theory.

However, no experiment has yet to determine if the predicted spectra match equally

well. Experimental tests of thermal super-radiance should provide strong evidence

either for or against major reformulation. Given that thermal electromagnetic field

correlations have been shown to possess nearly all other types of coherence, and

were initially thought not to, it would perhaps be more surprising if this idea of

correlated current fluctuations turns out to be false.
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heat transfer in the extreme near field,” Nat., 2015.

[63] R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat trans-

fer between parallel structures in the deep subwavelength regime,” Nat. Nan-

otech., 2016.

[64] B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-

Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, et al., “Enhance-

ment of near-field radiative heat transfer using polar dielectric thin films,” Nat.

Nanotechnol., vol. 10, no. 3, pp. 253–258, 2015.

[65] K. Kloppstech, N. Könne, S.-A. Biehs, A. W. Rodriguez, L. Worbes, D. Hell-

mann, and A. Kittel, “Giant heat transfer in the crossover regime between

conduction and radiation,” Nat. Commun., vol. 8, 2017.

[66] Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian

thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett., vol. 101,

no. 13, p. 131106, 2012.

[67] A. Volokitin and B. Persson, “Near-field radiative heat transfer between closely

spaced graphene and amorphous sio 2,” Phys. Rev. B, vol. 83, no. 24, p. 241407,

2011.

[68] K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on

multilayer graphene-hbn heterostructures,” ACS Photon., 2017.

[69] P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat

transfer mediated by surface wave hybridization between two films,” J. Appl.

Phys., vol. 106, no. 4, p. 044306, 2009.

[70] R. Messina and M. Antezza, “Three-body radiative heat transfer and casimir-

lifshitz force out of thermal equilibrium for arbitrary bodies,” Phys. Rev. A,

vol. 89, no. 5, p. 052104, 2014.

[71] P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev.

Lett., vol. 112, no. 4, p. 044301, 2014.

105
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Appendix A

Historical Perspective

In this appendix, we provide a condensed history of the ideas underpinning our cur-

rent understanding of thermal electromagnetic field correlations.

The lineage of electromagnetic field correlations traces back to the mid nineteenth

century. At the time, with the recent rise to prominence of thermodynamics, the

development of a microscopic theory of heat (a kinetic theory) was widely consid-

ered one of the most pressing questions of scientific thought [287]. As a means to

both supplement this problem and gain a better understanding of it’s implications,

a great deal of progress was made in understanding thermal transport processes and

fluctuations1

In particular, two foundational concepts emerged in the collective works of the pe-

riod2. The first crucial supposition, initially put forward by Lord Kelvin [297] in

the context of finite temperature circuits, and later echoed by von Helmholtz [298],

Nernst [299], and Eastman [300], stated that competing irreversible processes are

governed by reciprocal relations. In the language of matrices, for coupled interac-

tions, such as shared thermoelectric transport in a circuit (Peltier effect [301]), or

the transfer of electrolytes in liquid heat conduction (Soret effect [302]), the linear

“off-diagonal” response terms should be equal (ideally by the principles of ther-

modynamics3.) Let the linear relation between one type of source, for instance a

temperature difference at a metal junction, and the opposite measurable, the cur-

rent, be denoted as χ12. Then, the converse linear relation between the opposite

1Much of this development was spurred by Boltzmann’s H-Theorem [288] connecting microscopic
states to entropy, the ensuing reversibility paradox [289], and subsequent probabilistic interpretation
of the second law of thermodynamics [290–294].

2There were also important attempts to find results contradicting these ideas by Soret and
Voigt [295,296].

3In all these derivation there are additional assumptions or specifications. The most often used
simplification was to assume that any one of the mixed processes occurs independently of the others.
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source and measurable, source current with measured temperature difference, is also

determined by χ12 (χ21 = χ12). In this way, the two linear relations are reciprocal,

and independent of the “on-diagonal” relations4. The second key insight, initiated

by Lord Rayliegh, was the principle of least dissipation of energy. In analogy with

classical principle of least action, Rayliegh proposed that a given system of linear

process can always be recast as an equivalent relation between the measurables and

the derivatives of a potential (dissipation [303]) function. By applying variational

principles to this function, the behaviour of any system can then be connected with

energy, or entropy.

These leaps of advancement in conceptual thermodynamics were further amplified

by a collection of powerful results from the nascent field of stochastic process [304].

At the start of the twentieth century, Einstein [305] and von Smoluchowski [306]

independently produced two seminal studies of Browian motion, using statistical

arguments to determine the thermodynamic features of liquid suspensions. Impor-

tantly, these works showed for the first time that, by fairly simple and regular [307]

arguments, the response characteristic of a system could be related to its statistical

features of motion (as specific examples Einstein calculated the diffusion constant,

1905, and relation between voltage and capictance in a noisy circuit, 1907 [305]).

These strong initial inroads were quickly followed by improved approaches to the

general analysis of stochastic processes by Langevin [308] and Campbell [309]. These

works showed that if the response of a system measurable, Y , to a discrete event

at time ti is denoted as G (t− ti), then the average, Y , and variance, (∆Y )2, of the

measurable for events occurring at a rate λ, on a time frame much longer than the

average period between events, are given by

Y = λ

∞∫
0

du G (u) , (∆Y )2 = λ

∞∫
0

du G2 (u) . (A.1)

Following the derivation given in the introduction, it is clear that these equations

already possess germs of the fluctuation dissipation theorem.5

The most important aspects of these two approaches for connecting linear response

and statistical thermodynamics began to coalesce in 1930-1931 with the works of

4For the example given here, this means that the temperature current and voltage heat relations
are reciprocal, and independent of the usual heat temperature and voltage current relations.

5Using this framework further evidence of the existence of a general formula directly relating
an arbitrary linear response function to fluctuations was seen in Schotty’s work on shot noise [310]
and Johnson’s [311] and Nyquist’s [312] analysis, experimental and theoretical respectively, on the
relation between the noise spectra of electrons and fluctuations in the current of resistive circuits.
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Onsager [313, 314], and Uhlenbeck and Ornstein [315]6. Unlenbeck and Ornstein

showed that Einstein’s approach to Brownian motion could both be extended (1) to

systems without continuous surroundings and (2) to the calculation of all powers of

velocity and position. Together, theses results gave a much more general approach to

the study of random process. Meanwhile, Onsager showed that the reciprocal nature

exhibited by mutually occurring reversible processes could be interpreted as a prod-

uct of microscopic reversibility; and that in this very general setting the fluctuation

characteristics of a system could be connected with entropy production. However,

as pointed out by Casimir [319], Onsager’s derivation included a number of approx-

imation taken from the theory of Brownian motion that could not be supposed in

all cases. Nevertheless, Onsager’s conclusion were considered almost undoubtedly

valid [320,321]. Further, as pointedly demonstrated by Chandrasekhar [322], fluctu-

ations were not just useful for examining microscope properties but rather a powerful

method for dealing with complex physical problems. The fundamental extension of

thermodynamics contained in these ideas only briefly remained an open problem.

In the eight year period between 1946-1954 the landscape of statistical thermo-

dynamics was again radically altered through the works Kirkwood, Prigogine, Taka-

hasi, Van Hove, Bolembergen and Purcell, and Callen (both independently and in

collaboration with Welton and Greene). The theory contained in these additions not

only placed Onsager’s findings on a firm theoretical footing [323,324], but also estab-

lished the Green function approach essential for incorporating fluctuations into the

theory of quantum mechanics [325,326], and provided important explicit examples to

key physical systems [327,328]. Complementarily, it was also shown for the first time

that fluctuations could be related to linear response characteristics [325, 329, 330].

Quoting Callen and Greene’s 1952 paper the first universal fluctuation dissipation

theorem was written as7

〈
ζ2
〉

=
2kβT

π

∫
dω

σ (ω)

ω2
. (A.2)

Where, kβ is the Boltzmann constant, T the absolute temperature, ω the frequency,〈
ζ2
〉

the mean squared of some extensive parameter averaged over the frequency

range determined by the integral, and σ (ω) the dissipative part of the correspond-

ing linear system response.

6During roughly this same period, 1930-1934, the mathematical theory random processes in the
frequency domain was placed on a logically sound footing by the contributions of Weiner [316], Car-
son [317] and Khintchine [318]. These results, which also highlighted the importance of stationary
processes (Khintchine), were immediately understood to be pillars of stochastic analysis, and are
still routinely used in modern approaches.

7The first true theorem of this kind is attributed to, depending on the author, either Nyquist
[312], or Einstein [305]. However, both results depend on the specific models.
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Following these results, the initial connections of the fluctuation dissipation the-

orem with quantum mechanics and perturbative analysis were provided by Kubo in

his classic 1954 [331], 1957 [332] and 1966 [264] papers. From the perspective of

statical mechanics, the results contained in this collection of papers form a complete

support for the findings we present in this dissertation.

Nevertheless, they represent only one of the two pillars on which the theory of

electromagnetic correlations rest. Paralleling the history of advancement of statical

mechanics, the mid nineteenth century also marked two of the most important dis-

coveries of electromagnetics. First, between 1861 and 1862 Maxwell published his

treatise on the differential equations governing electrodynamics. Second, in 1860

Kirchhoff [333] proved, based on thermodynamic arguments, that the amount of en-

ergy radiated by an object in a given frequency, ζ (ω), was related to its absorptivity

coefficient, α (ω), by a yet undetermined function that depended only on frequency,

ω, and temperature, T ,
ζ (ω)

α (ω)
= UBB (ω, T ) . (A.3)

The challenge posed by Kirchhoff to the find the form of this function signified the

birth of both the study of electromagnetic field correlations and quantum mechanics.

As the resulting period between 1875 and 1900 is one of the most famous in all

of physics, here we will simply note some of the major milestones, and direct the

interested reader to the fuller accounts given by Pais [333] and Ter Haar [334]8:

• 1879 Based on experimental evidence, Stefan speculated that the total energy

radiate by a hot body scales with the fourth power of its temperature.

• 1884 Combining arguments from thermodynamics and electromagnetics Boltz-

mann showed that the T 4 scaling proposed by Stefan can only hold for black-

bodies, i.e. bodies for which α (ω) = 1. The work is credited as the first

application of thermodynamics to electrodynamics.

• 1893 Arguing from the perspective of adiabatic expansion Wien proved the

displacement law bearing his name; and that UBB (ω, T ) was of the form

UBB (ω, T ) =
cf3

8π
g (f/T ) , (A.4)

where f is the frequency and c the speed of light.

8The following information is taken from these references.
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• 1896 Wien conjectured the exponential form g (f/T ) = αe−βf/T with unde-

termined parameters α and β.

• 1897 Paschen confirmed that Wien’s conjecture was accurate in the near-

infrared spectral range of 1 to 8 µm.

• 1900 Lummer and Prinsheim, and Rubens and Ferdinand discovered that

Wien’s exponential law failed in the mid and far infrared (12 to 18 µm and 30

to 60 µm respectively).

• 1900 In a series of three papers Planck derived the correct form of the black-

body distribution using an ad hoc statistical quantization.

This connection between thermodynamics and electromagnetics was furthered by

Fokker in his 1914 work on a rotating dipole in a radiation field [335], and 1920 de-

scription of the relation between polarization and random currents [336]. Combined

with Planck’s 1917 characterization of the statistical features of quantum radia-

tion [337] these results form the basis of the famous Fokker-Planck equation9.

Again mirroring the evolution of the field of stochastic processes, the next major

set of developments occurred in the 1950’s. Shortly following Kubo’s initial pub-

lication of the modern form of the fluctuation dissipation theorem, Landau [279],

Lifschitz [280], Rytov [281, 282], and subsequently Willam and Callen [339], pre-

sented the formalized theory of thermal electromagnetic correlations that serves as

the foundation for our original work.

However, while from a theoretical prescriptive complete, the remarkably different

characteristics of this new theory compared to Kirchhoff’s classical formulation were

not realized for some time. In writing on the subject, Hargraves suggests that in

the early 1960’s it was generally suspected that near-field electromagnetic modes, as

discussed by Casimir in 1948 [340], would modified average thermal fields near sur-

faces [341]. Yet, no major effort to determine the form of these modifications appears

until much later in the decade when in 1967 Cravalho, Tien and Caren [342] analyzed

radiation between closely spaced dielectrics, and in 1969 and 1970 Hargreaves [343]

and Domoto, Boehm and Tien [344] experimentally investigated radiative heat trans-

fer between closely spaced conducting plates. Although later disputed [41], the

proximity effects observed in these experiments sparked renewed interest; and the

extension of the Rytovian theory to explain the proximity effects observed in these

experiments was undertaken by Boehm and Tien in 1970 [345], Polder and van Hove

9These dynamics were treated independently from a mathematical perspective by Kolmogorov
and Fomin in 1931 [338]
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in 1971 [13], and Caren in 1972 [346]. These works, in conjunction with similar anal-

ysis for small cavities by Case and Chui [347] and Baltes [348], provided an initial

glimpse of many of the most important features of near-field thermal electromag-

netic correlations for potential engineering applications; including approximations

for distance scaling, and the realization of the possibility of strong spectral features.

This short span of retrospectively major advancement in understanding initiated

a new round of theoretical inquiry. Beginning in the mid 1970’s major efforts cen-

tering around the works of Agarwal [10], Baltes, Steinle and Pabst [349], Baltes [350]

and Eckhardt [351,352] were made to connect the phenomena of coherence and en-

ergy transfer observed in Rytovian electrodynamics with previously existing theory,

including the validity of Kirchhoff’s law10. Following the positive resolution of these

questions, attention turned to developing methods of calculation. While the consis-

tency of the theory was no longer in doubt, it was entirely unclear how calculations

could be practically carried out beyond closely separated plates. A first step towards

treating this still pressing issue11 was made with the formal proof of the equality of

Rytov’s original formulation with the so called fluctuation-dissipation of the second

kind, positing fluctuating electric fields rather than currents [92, 356]. In this for-

mulation, global field correlations are determined directly from the electromagnetic

Green function, which offers a number of computational advantages [357].

The fluctuation-dissipation of the second kind is also much closer to the methods

used in quantum optics; and active research interests in the late eighties and early

nineties moved almost exclusively to connecting the now relatively mature theory

of macroscopic thermal electromagnetic field correlations with the quantization of

electomagnetic fields in matter12. As such, we mention only two other noteworthy

contributions predating the time line provided in the introduction: Hesketh et. al’s

1986 [360] experimental characterization of the strong spectral features of microma-

chined silicon surfaces; and Bertilone’s 1994 comment on the coherence of thermal

correlations, which provided new results for thermal Stokes parameters [361].

10These works made extensive use of the formulation of coherence developed by Glauber in early
sixties [353], and the findings of Mehta and Wolf [354,355].

11Even with modern computational resources, calculating thermal electromagnetic field fluctua-
tions is a difficult problem in all but the simplest cases. However, substantial progress has been
made with the recent formalizations of the scattering approach [72–74] and computationally simpler
boundary fluctuation formulations [80,81].

12An importation but by no means complete cross section of this work includes the contributions
by Glauber [250], Knoester [251], Ho and Kumar [252], Milonni [253], Barnett and Loudon [254],
de Vries and Lagendijk [256], Van Coevorden and Sprik [358], Wijnands, Pendry, and Garćıa-
Vidal [359], and Tip [255].
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Appendix B

The Blackbody Distribution

In this appendix, we review the semiclassical arguments leading to Bose-Einstein,

Fermi statistics, and Planck’s blackbody distribution.

B.1 Density of free space states

To supplement later argument, we will require an expression for the number of

electromagnetic oscillator modes per unit frequency in a cuboid cavity described by

the lengths {Lx, Ly, Lz} (V = LxLyLz). Assuming periodic boundary conditions,

along each direction we must have the component of the wave vector, k, obeying the

equation

e±ikL = 1, (B.1)

implying that that kL = 2πn, with n ∈ Z≥0, so that each mode can be thought

of as occupying an index volume of (2π)3 /V . Passing to the continuum limit,

{Lx, Ly, Lz} → {∞,∞,∞} the differential number of modes included by increasing

k is then

dN =
2dVk
Vstate

=
2V

(2π)3k
2sin (θ) dkdθdφ. (B.2)

Integrating over the angular variables and using the definition of the wave vector

k = ω/c this expression becomes,

dN =
V

π2c3
ω2dω. (B.3)

The density of oscillators per unit frequency, per unit volume, is then

D (ω) =
1

V

dN

dω
=

ω2

π2c3
. (B.4)
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B.2 State expectation in the canonical ensemble

In the micro canonical ensemble, the entropy of a state is given by the relation

S = kB ln (W (E)) , (B.5)

where kB is the Boltzmann constant, and W (E) is the number of states that have

same energy, E. From the differential form of the first law of thermodynamics

entropy is also connected to energy by the relation

dE + PdV = TdS, (B.6)

so that at constant volume
1

T
=
∂S

∂E
. (B.7)

Passing to the the contact ensemble, where the original system (now subsystem) is

placed in contact with a heat bath1, the energy of the total system is

Etot = Esys + Ebath. (B.8)

Noting that the total number of states for a particular distribution of energy between

the two separated systems is

W (Esys) = Wsys (Esys)Wbath (Etot − Esys) , (B.9)

for any particular energy of the subsystem that occurs only once

W (Esys) = Wbath (Etot − Esys) . (B.10)

Returning to (B.7) and (B.5) then shows that the total number of states for one

particular state of the subsystem obeys the equation

1

T
=
∂S

∂E
=

k
β

W (E)

∂W (E)

∂E
. (B.11)

Correspondingly,

W (Esys) = A eβ(Etot−Esys), (B.12)

1A heat bath is defined to be system so large that its temperature does not change with an
infinitesimal addition or subtraction of energy.
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with A an undefined constant and β = 1/ (kBT ). The total number of states for a

given energy E of the subsystem is then

W (Esys) = AeβEtot
∑

Esys=E

e−βEsys , (B.13)

and the total number of states

Z =

∫
Esys

dEsys W (Esys) , (B.14)

where Z is referred to as the partition function of the system.

B.3 Planck’s quantization

Consider the system to be a single harmonic oscillator of a given frequency ω. From

the classical picture of (B.14) the energy of the oscillator can take on any value

greater than zero, and so the partition function is

Z =
C

β
, (B.15)

with C standing for the constant AeβEtot . The expectation value of the energy of

the oscillator is then

〈E〉 = β

∞∫
0

dE E e−βE = β. (B.16)

In context of the electromagnetic modes of a cavity, (B.16) produces disastrous

results. Recalling (B.4) the number of oscillators between the angular frequency ω

and ω + dω scales as ω2. The total electromagnetic energy per unit volume in an

empty cavity is then

E

V
= β

∞∫
0

dω
ω2

π2c3
, (B.17)

which clearly diverges as ω →∞.

The solution to this problem, called the ultra-violet catastrophe, is that energy

spectrum of each oscillator is in fact discrete, occurring in steps of ~ω, and not

continuous. Taking this line, the partition function is instead

Z = C
∞∑
n=0

e−β n~ω =
C

1− e−β ~ω , (B.18)
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where ω is the angular frequency or strength of the oscillator, ω = 2πf/λ, ~ is

Planck’s energy quantization constant, and C the constant previously introduced

for (B.14)2. The energy expectation of the oscillator is then

〈E〉 =
C~ω
Z

∞∑
n=0

n e−β n~ω =
C~ω

Z (1− e−β ~ω)

∞∑
n=1

e−β n~ω =
~ω

eβ~ω − 1
. (B.19)

(If n is limited to be either 0 or 1 then 〈n〉 = 1/
(
e~ω + 1

)
, giving Fermi statistics.)

Evaluating the total electromagnetic energy per unit volume in this case we instead

have

E

V
=

~
π2c3

∞∫
0

dω
ω3

eβ~ω − 1
=

π2

15 (~c)3

1

β4
, (B.20)

which is Planck’s distribution.

2For Fermi statistic, we find Z = C
(
1 + e−β ~ω).

140



Appendix C

Power Transfer between Half

Spaces

In this appendix we outline the steps connecting (1.41) and (1.42).

C.1 S-polarized components

Beginning with the s-polarized component, following the naming conventions of Fig

1.1, the explicit form of the Green function in Cartesian coordinates produces four

contributing terms; two of the type

0∫
−∞

∞∫
0

dz′dkρ
−3ikρ
26π

k∗z3|ts (kρ) |2

|kz1|2
e−2Im{kz1}z′ , (C.1)

and two of the type

0∫
−∞

∞∫
0

dz′dkρ
−ikρ
26π

k∗z3|ts (kρ) |2

|kz1|2
e−2Im{kz1}z′ . (C.2)

Bringing these fours terms together and carrying out the integral over the z’ coor-

dinate, gives

〈Sz (ω)〉s = −ω
2Im {ε (ω, T )}H (ω, T )

c2
Re


∞∫

0

dkρ
kρ

23π

k∗z3|ts (kρ) |2

Im {kz1} |kz1|2

 . (C.3)

Making use of the identity,

ω2Im {ε (ω, T )}
c2

= 2Re {kz1} Im {kz1} , (C.4)
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and the explicit form of the transmission coefficient for one layer between two semi-

infinite media,

ts =
t12
s (kρ) t

23
s (kρ)

1 + r12
s (kρ) r23

s (kρ) e2ikz2L
eikz2L, (C.5)

the above becomes

〈Sz (ω)〉s = −H (ω, T )

∞∫
0

dkρ
kρ

22π

Re {kz1}Re {kz3} |t12
s (kρ) t

23
s (kρ) |2

|kz1|2|1 + r12
s (kρ) r23

s (kρ) e2ikz2d|2
e−2Im{kz2}L.

(C.6)

Expanding out the transmission coefficients,

t12
s =

2kz1
kz1 + kz2

, (C.7)

this result becomes

〈Sz (ω)〉s = −H (ω, T )

∞∫
0

dkρ
kρ
π

Re {kz1}Re {kz3} |kz2|2e−2Im{kz2}L

| (kz1 + kz2) (kz2 + kz3) |2|1 + r12
s r

23
s e

2ikz2d|2
.

(C.8)

C.2 P-polarized components

Switching to the p-polarized components, again making use of the explicit forms of

the Green for Cartesian coordinates contained, results in six contributing terms

∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2 (
k4
xkz3

)
e−2Im{kz1}z′ , (C.9)

∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2 (
k2
xk

2
ykz3

)
e−2Im{kz1}z′ , (C.10)

∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2
(
k2
x

(
k2
x + k2

y

)2
kz3

|kz1|2

)
e−2Im{kz1}z′ ,

(C.11)
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∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2 (
k2
xk

2
ykz3

)
e−2Im{kz1}z′ , (C.12)

∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2 (
k4
ykz3

)
e−2Im{kz1}z′ , (C.13)

∫
z′

∞∫∫
−∞

dz′dkxdky
−i

24π2

(
k2
x + k2

y + k∗2z3
)
|tp (kρ) |2

|k1|2 |k3|2
(
k2
x + k2

y

)2
(
k2

2

(
k2
x + k2

y

)2
kz3

|kz1|2

)
e−2Im{kz1}z′

(C.14)

Taking the integral over the z′ coordinate, summing the six terms, and reincorpo-

rating gives

〈Sz (ω)〉p =
−ω2Im {ε (ω, T )}H (ω, T )

c2

Re


∞∫∫

−∞

dkxdky
24π2Im {kz1}

(
|tp (kρ)|2 kz3

(
k2
x + k2

y + k∗2z3
)

|kz1|2 |k3|2

)(
k2
x + k2

y + |kz1|2

|k1|2

) .

(C.15)

Again making use of identity (C.4), and noting that Re
{
kz3k

∗2
z3

}
= Re {kz3} |kz3|2

the above becomes

〈Sz (ω)〉p = −H (ω, T )

∞∫∫
−∞

dkxdky
23π2

|tp (kρ)|2

|kz1|2
Re {kz3}

(
k2
x + k2

y + |kz3|2
)

|k3|2
Re {kz1}

(
k2
x + k2

y + |kz1|2
)

|k1|2
.

(C.16)

Using the identity

Re {kznε∗n} =
Re {kzn}
|ko|2

(
k2
x + k2

y +
∣∣k2
zn

∣∣) . (C.17)

we then have

〈Sz (ω)〉p = −H (ω, T )

∞∫∫
−∞

dkxdky
23π2

|tp (kρ)|2Re {kz3ε∗3}Re {kz1ε∗1}
|kz1|2 |ε3| |ε1|

, (C.18)

so that by using the transmission parameter for the layered medium,

tp =
t12
p (kρ) t

23
p (kρ)

1 + r12
p (kρ) r23

p (kρ) e2ikz2L
eikz2L, (C.19)
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with

t12
p =

√
ε1 (ω, T )

ε2 (ω, T )

2ε2 (ω, T ) kz1
ε2 (ω, T ) kz1 + ε1 (ω, T ) kz2

(C.20)

and switching to polar coordinates then gives

〈Sz (ω)〉p = −H (ω, T )

∞∫
0

kρ
π

|ε2|2 |kz2|2Re {kz3ε∗3}Re {kz1ε∗1} e−2Im{kz2}L

| (kz1ε2 + kz2ε1) (kz3ε2 + kz2ε3) |2
∣∣1 + r12

p r
23
p e

2ikz2d
∣∣2 .

(C.21)

Adding this result to the thermal electromagnetic power transfered by the s-polarized

component, we find

〈Sz (ω)〉 = (H (ω, T3)−H (ω, T1))
∞∫

0

dkρ
π

Re {kz1}Re {kz3} |kz2|2

| (kz1 + kz2) (kz2 + kz3) |2|1 + r12
s r

23
s e

2ikz2L|2
e−2Im{kz2}L+

Re {k∗z1ε1}Re {k∗z3ε3} |ε2|2|kz2|2

| (kz1ε2 + kz2ε1) (kz2ε3 + kz3ε2) |2|1 + r12
p r

23
p e

2ikz2L|2
e−2Im{kz2}L.

(C.22)

The total power from this expression is given by the over all frequencies, both

negative and positive, and switching to strictly positive frequencies introduces a

factor of 2.

C.3 Final forms

To bring (C.22) into a form more conducive to evaluation we note that for the

s-polarized component

∣∣t12
s t

23
s

∣∣2 Re {kz1}Re {kz3}
|kz1|2

=
16 |kz2|2Re {kz3}Re {kz1}
(|kz2 + kz3| |kz1 + kz2|)2 . (C.23)

Comparing this to

(
1−

∣∣r12
s

∣∣2)(1−
∣∣r23
s

∣∣2) =

(
1− |kz1 − kz2|

2

|kz1 + kz2|2

)(
1− |kz2 − kz3|

2

|kz2 + kz3|2

)
=

4
(
kz3 |kz2|2 k∗z1 + k∗z3k

2
z2k
∗
z1 + kz3k

∗2
z2kz1 + k∗z3 |kz2|

2 kz1

)
(|kz1 + kz2| |kz2 + kz3|)2 ,

(C.24)

it can be concluded that if kz2 is strictly real then the above expressions are equiv-

alent due the complex conjugate relation xy∗ + x∗y = 2Re [xy∗]. A similar results
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can be shown for the p-polarized light

∣∣t12
p t

23
p

∣∣2 Re {kz1ε∗1}Re {kz3ε∗3}
|ε1| |ε3| |kz1|2

=
16 |ε2|2 |kz2|2Re [kz3ε

∗
3]Re [kz1ε

∗
1]

(|kz2ε3 + kz3ε2| |kz1ε2 + kz2ε1|)2 , (C.25)

(
1−

∣∣r12
p

∣∣2)(1−
∣∣r23
p

∣∣2) =

(
1− |kz1ε2 − kz2ε1|

2

|kz1ε2 + kz2ε1|2

)(
1− |kz2ε3 − kz3ε2|

2

|kz2ε3 + kz3ε2|2

)
=

4
(
kz3ε

∗
3 |kz2|

2 |ε2|2 k∗z1ε1 + k∗z3ε3k
2
z2ε
∗2
2 k
∗
z1ε1 + kz3ε

∗
3k
∗2
z2ε

2
2kz1ε

∗
1 + k∗z3ε3 |kz2|

2 |ε2|2 kz1ε∗1
)

(|kz2ε2 + kz1ε2| |kz2ε3 + kz3ε2|)2 .

(C.26)

Again, under the assumption that both kz2 and ε2 are real quantities these equa-

tions are equivalent as xy∗ + x∗y = 2Re {xy∗}. However, for waves decaying in

the thin film separating the two half space, with kz2 imaginary, these relations for

Im
{
r21
n

}
Im
{
r23
n

}
do not hold. Instead for p-polarized light

Im
{
r21
p

}
Im
{
r23
p

}
=

Im

{
(ε1kz2 − ε2kz1) (ε∗2k

∗
z1 + ε∗1k

∗
z2)

|ε2kz1 + ε1kz2|2

}
Im

{
(ε3kz2 − ε2kz3) (ε∗3k

∗
z2 + ε∗2k

∗
z3)

|ε3kz2 + ε2kz3|2

}
=(

2 |ε2| |kz2|Re {kz1ε∗1}
|ε2kz1 + ε1kz2|2

)(
2 |ε2| |kz2|Re {kz3ε∗3}
|ε3kz2 + ε2kz3|2

)
,

(C.27)

which is again equivalent to (C.25) when multiplied by a factor of 4. For s-polarized

light, the mirror result is

Im
{
r21
s

}
Im
{
r23
s

}
= Im

{
(kz2 − kz1) (k∗z1 + k∗z2)

|kz1 + kz2|2

}
Im

{
(kz2 − kz3) (k∗z2 + k∗z3)

|kz2 + kz3|2

}
=(

2Re {kz1} |kz2|
|kz1 + kz2|2

)(
2Re {kz3} |kz2|
|kz2 + kz3|2

)
.

(C.28)

Combining these expression the thermal electromagnetic power transfer at a partic-

ular frequency is found to be

〈Sz (ω)〉 =
∑
n

(
H (ω, T3)−H (ω, T1)

2π

)
 ko

√
ε2∫

0

kρ

(
1−

∣∣r21
n

∣∣2)(1−
∣∣r23
n

∣∣2)
|1− r21

n r
23
n e

2ikz2L|2
+ 4

∞∫
ko
√
ε2

kρ
Im
{
r21
n

}
Im
{
r23
n

}
|1− r21

n r
23
n e

2ikz2L|2
e−2Im{kz2}L

 ,

(C.29)

which is result quoted in the main text.
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Appendix D

General Green Function Results

Following Principles of Nano-Optics by Novotny and Hecht [362], in this appendix

we reproduce a collection of Green function results that are used throughout this

thesis.

D.1 Mathematical basis of Green functions

Let L (. . .) be a differential operator, and s (r) a source function. The central relation

between a Green function G (r, r′) and a solution A (r) is then determined by the

following set of equations

L (A (r)) = s (r) , (D.1)

L
(
Ǧ
(
r, r′

))
= Ǐδ

(
r− r′

)
, (D.2)

L (A (r)) =

∫
dV ′ L

(
Ǧ
(
r, r′

))
s
(
r′
)
. (D.3)

The equality provided by this final result then identifies the solution A (r) as

A (r) =

∫
dV ′ Ǧ

(
r, r′

)
s
(
r′
)
. (D.4)

D.2 Electromagnetic Green function relations

In the Lorentz radiation gauge, the following relations are satisfied by the elec-

tromagnetic Green function in a homogeneous local dielectric environment with

angular frequency ω, scalar potential φ (r, t), magnetic displacement H (r, ω), per-

mittivity ε (ω), permeability µ (ω), vector potential A (r, ω), current density j (r, ω),
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and k =
√
ε (ω)µ (ω) ω/c.

G
(
r, r′, ω

)
=

eik|r−r
′|

4π|r− r′|
(D.5)

A (r, ω) = µoµ (ω)

∫
dV ′ G

(
r, r′, ω

)
j
(
r′, ω

)
(D.6)

φ (r, ω) =
1

εoε (ω)

∫
dV ′ ρ

(
r′, ω

)
G
(
r, r′, ω

)
(D.7)

Ǧ
(
r, r′, ω

)
=

(
Ǐ +

1

k2
∇∇

)
G
(
r, r′, ω

)
(D.8)

E (r, ω) = iω

(
Ǐ +

1

k2
∇∇

)
A (r, ω) (D.9)

E (r, ω) = Eo (r, ω) + iωµoµ (ω)

∫
dV ′ Ǧ

(
r, r′, ω

)
j
(
r′, ω

)
(D.10)

H (r, ω) = Ho (r, ω) +

∫
dV ′

(
∇× Ǧ

(
r, r′, ω

))
j
(
r′, ω

)
(D.11)

Here, the o subscript denotes either background fields or constants. Introducing the

electric dipole

j (r, t) =
d

dt
p (t) δ

(
r− r′

)
j (r, ω) = −iωp (ω) δ

(
r− r′

)
, (D.12)

the electric field and vector potential relations become

E (r, ω) = Eo (r, ω) + ω2µoµ (ω) Ǧ
(
r, r′, ω

)
p
(
r′, ω

)
(D.13)

A (r, ω) = −iωµoµ (ω)G
(
r, r′, ω

)
p
(
r′, ω

)
. (D.14)

D.3 Electromagnetic Green function in Cartesian coor-

dinates

Using the spatial Fourier transform, with {kx, ky, kz} denoting the transform indices,

the Green function for the vector potential is expanded as

G
(
r, r′, ω

)
=
eik|r−r

′|

|r− r′|
=

i

2π

∫∫
dkxdky

ei(kxx+kyy+kz |z|)

kz
, (D.15)

with

kz = ±
√
ε (ω)µ (ω)ω2

c2
− k2

x − k2
y, (D.16)

and the ± sign used to keep the imaginary part of kz positive. Using (D.8) the

electromagnetic Green function is then

Ǧ
(
r, r′, ω

)
=

i

8π2

∫∫
dkxdky

(
M̌ s + M̌p

)
ei(kxx+kyy+kzz) (D.17)
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with

M̌ s =
1

kz1
(
k2
x + k2

y

)
 k2

y −kxky 0

−kxky k2
x 0

0 0 0

 (D.18)

M̌p =
1

k2
1

(
k2
x + k2

y

)
 k2

xkz1 kxkykz1 ∓kx
(
k2
x + k2

y

)
kxkykz1 k2

ykz1 ∓ky
(
k2
x + k2

y

)
∓kx

(
k2
x + k2

y

)
∓ky

(
k2
x + k2

y

) (
k2
x + k2

y

)2 1
kz1
.

 (D.19)

This same representation can also be used to describe the reflected and transmitted

Green functions with the corresponding expansion matrices

M̌ s
r =

rs (kx, ky)

kz1
(
k2
x + k2

y

)
 k2

y −kxky 0

−kxky k2
x 0

0 0 0

 (D.20)

M̌p
r =

−rp (kx, ky)

k2
1

(
k2
x + k2

y

)
 k2

xkz1 kxkykz1 kx
(
k2
x + k2

y

)
kxkykz1 k2

ykz1 ky
(
k2
x + k2

y

)
−kx

(
k2
x + k2

y

)
−ky

(
k2
x + k2

y

)
−
(
k2
x + k2

y

)2 1
kz1

 (D.21)

M̌ s
t =

ts (kx, ky)

kz1
(
k2
x + k2

y

)
 k2

y −kxky 0

−kxky k2
x 0

0 0 0

 (D.22)

M̌p
t =

tp (kx, ky)

k1kn
(
k2
x + k2

y

)
 k2

xkzn kxkykzn −kx
(
k2
x + k2

y

)
kzn
kz1

kxkykzn k2
ykzn −ky

(
k2
x + k2

y

)
kzn
kz1

−kx
(
k2
x + k2

y

)
−ky

(
k2
x + k2

y

) (
k2
x + k2

y

)2 1
kz1


(D.23)

Here, kzn is used to denote the quantity

kzn = ±
√
εn (ω)µn (ω)ω2

c2
− k2

x − k2
y, (D.24)

where εn (ω) and µn (ω) are the permittivity and permeability of the nth local homo-

geneous medium. Similarly, Green functions and expansion matrices can be found

for the magnetic displacement field,

Ȟ
(
r, r′, ω

)
= ∇× Ǧ

(
r, r′, ω

)
=

i

8π2

∫∫
dkxdky

(
Ň s + Ňp

)
ei(kxx+kyy+kzz), (D.25)
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with

Ň s
t =

its (kx, ky)

kz1
(
k2
x + k2

y

)
 kznkxky −kznk2

x 0

kznk
2
y −kznk2

x 0(
ky3 − k2

xky
) (

kx3 − kxk2
y

)
0

 (D.26)

Ňp
t =
−itp (kx, ky)

(
k2
x + k2

y + k2
zn

)
k1kn

(
k2
x + k2

y

)
kykx k2

y
ky
kz1

k2
x kxky

kx
kz1

0 0 0

 (D.27)

Note that the form of these matrices can alternatively be found by taking the ex-

ternal product of the s and p-polarization vectors

ŝ =
ky
|k|||

x̂− kykz
|k|||

ŷ (D.28)

p̂ =
1

|k|

(
kxkz
|k|||

x̂ +
kykz
|k|||

ŷ + |k|||ẑ
)
. (D.29)

Finally, letting denote r = |r− r′|, the real space electromagnetic Green function is

given by

Ǧ
(
r, r′, ω

)
=
eikr

4πr

((
1 +

ikr − 1

k2r2

)
I +

(
3− 3ikr − k2r2

k2r2

)
řr

r2

)
, (D.30)

where again k =
√
ε (ω)µ (ω)ω/c, and no longer denotes a Fourier transform pa-

rameter. The small kr behavior of this quantity is of particular importance, and

using the Taylor series expansion up to the third power of (ikR), is found to obey

the equality

lim
r′→r

np · Im
{
Ǧ
(
r, r′, ω

)}
· np = lim

r′→r

1

3
Im
{
Tr
[
Ǧ (r, r, ω)

]}
=
ωRe {ε (ω)}

6πc
, (D.31)

setting µ (ω) = 1.

D.4 Lehmann representation and the density of states

The Lehmann representation explicitly connects the Green function to the solution

basis implied by the delta distribution definition. Although the procedure is com-

pletely general, here we present the result specifically for the Helmholtz’s equation

of a particular system

∇×∇×Uk (r, ωk)−
ω2
k

m2
Uk (r, ωk) = 0, (D.32)
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where m is a medium parameter playing the role of propagation velocity, and ωk is

the eigenvalue for the mode indexed by k. Assuming these solutions do indeed form

a complete set, they can also be made to fulfill the orthogonality relation∫
dV ′U∗k′

(
r′, ωk′

)
Uk

(
r′, ωk

)
= δkk′ . (D.33)

From its defining equations, the Green function is then defined by the expansion

Ǧ (r, r, ω) =
∑
k

Ak

(
r′, ω

)
Uk (r, ωk) = c2

∑
k

U∗k (r′, ωk) Uk (r, ωk)

ω2
k − ω2

, (D.34)

where Ak (r′, ω) is the expansion parameter for the mode k. Using the Cauchy

integral theorem, the imaginary part of the Green function is then determined to be

Im
{
Ǧ
(
r, r′, ω

)}
=
πc2

2ω

∑
k

U∗k
(
r′, ωk

)
Uk (r, ωk) δ (ω − ωk) . (D.35)

If the strength of the modes are normalized, then in the limit r′ → r this quantity

effectively counts the number contributing modes at a specific spatial point, and

hence is referred to as the density of states1. The partial density of states along a

direction np is similarly defined as

ρρ (r, ω) = lim
r′→r

6ω

πc2

(
np · Im

{
Ǧ
(
r, r′, ω

)}
· np
)
. (D.36)

Using the result from the end of the previous section for a local homogeneous medium

the partial density of states is then

ρρ (r, ω) =
ω2Re {ε (ω)}

π2c3
. (D.37)

D.5 Connection to energy dissipation

The principle importance of these results is that they connect directly to the rate of

energy dissipation, and the first order term in light-matter interactions. Letting W

denote work by classical definition

P (t) =
dW

dt
= −1

2

∫
dV ′Re {j∗ (r, t) ·E (r, t)} . (D.38)

1The difference between the photonic density of states found in Appendix A, and this photonic
density of states are examined in greater depth in the Dipoles Inside Hyperbolic Media Appendix.
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The results of this appendix then show

P (ω) =
ω

2
(p (ω) · Im {E (r, ω)}) (D.39)

P (ω) = lim
r′→r

ω3|p (ω) |2µo
2

(
np · Im

{
Ǧ
(
r, r′, ω

)}
· np
)
, (D.40)

giving

P (ω) =
µo ω

4|p (ω) |2

12πc
Re
{√

ε (ω)
}
. (D.41)
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Appendix E

Optical Properties of Carbon

Nanotubes

As mentioned in Chapter 3, our calculation of the optical properties of carbon

nanotubes has followed the Kubo formalism method described by Falkovsky and

Varlamov [203]. The central equation for the dielectric permittivity tensor in this

approach is

εab (k, ω) = εsur +
e2

hcεo

Pab (k, ω)

ω
, (E.1)

where

Pab (ω,k) =

∫
dp

2π

∑
ωn

Tr
[
Va (p)G

(
ωn, p

+
)
Vb (p)G

(
ωn, p

−)] . (E.2)

Here, Pab denotes the polarization matrix, with the subscripts a and b indicating

directions, G the Matsubara Green function, ω the frequency of the exciting photon,

ωn the discrete frequencies of the Matsubara sum, Tr the trace operation, εo the per-

mittivity of free space, εsur the relative permittivity of the surrounding medium, Va

the velocity operator matrix defined by the Heisenberg operator evolution equation

Va = ẋa =
[xa, H]

i~
=
∂H

∂pa
, (E.3)

p the momentum integration variable, and the + and − superscripts the values p+ k
2

and p − k
2 with k standing for the momentum of the photon excitation. Moreover,

the Green’s function is explicitly defined as

G = (iωn −H (p))−1 , (E.4)

152



and its the sum over the discrete frequencies of the Matsubara sum, in terms of its

matrix elements indexed by the subscripts i and j, by

∑
ωn

Gi
(
ωn, p

+
)
Gj
(
ωn, p

−) =
fo (Ej (p−))− fo (Ei (p+))

ω + iη − (Ej (p+)− Ei (p−))
. (E.5)

In these definitions H is the Hamiltonian of the system, η the loss parameter fol-

lowing the relaxation time approximation, and fo (Ej) the Fermi distribution at the

energy level of the j eigen state.

For the carbon nanotube system treated in the text, only π-orbital interactions

have been considered due to the energy range of interest [363]. With these approxi-

mations the Hamiltonian is

H (p, j) = γ

(
ei
ipa
√

3
2
− iπj

n + e
i pa
2
√

3
+ iπj

n + e
−i pa√

3

)
, (E.6)

where a is the lattice constant for graphene, 2.46 Å, j the angular number, p the

momentum of the electron along the tube, n a constant related to the wrapping of

the tube [194], and γ is the orbital overlap energy for graphene, 3.1 eV . The loss

parameter η = h/τ is estimated with a relaxation of one picosecond [204,205] for τ .

The energy of the nanotube is similarly defined as

Ej = ±γ

√√√√1 + 4 cos

(√
3pa

2

)
cos

(
jπ

n

)
+ 4 cos2

(
jπ

n

)
. (E.7)

To extend the theory presented by Falkovsky and Varlamov from graphene to the

single layer nanotubes, the Hamilitonian associated with graphene is first enlarged to

take into account the energy level splitting resulting from the additional confinement

in the nanotube. This step is accomplished by the substitution

[
0 H

H∗ 0

]
→


0 0 0 HE1

0 0 HE2 0

0 H∗E2 0 0

H∗E1 0 0 0

 , (E.8)

with H as above, and the E1 and E2 subscripts denoting the lowest level energy bands

for the particular chiral vector chosen following the discussion provided by Wong

and Akinwade [199]. The velocity operators for axial, z, and angular direction, θ,
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are then:

Vz =


0 0 0 vZE1

0 0 vZE2 0

0 v∗ZE2 0 0

v∗ZE1 0 0 0

 (E.9)

for the axial direction, and

Vθ+ =


0 0 vθE2 0

0 0 0 0

v∗θE2 0 0 0

0 0 0 0

 , Vθ− =


0 0 0 0

0 0 0 vθE1

0 0 0 0

0 v∗θE1 0 0

 (E.10)

for increasing and decreasing angular momentum along the angular direction respec-

tively, see [194]. Note that for the angular velocity operators the derivative is taken

with respect to the natural discrete momenta. These operators are then converted

to the eigenbasis of the Hamilionian by the linear transformation v → U †vU , with

U =


− HE1
|HE1| 0 0 HE1

|HE1|
0 − HE2

|HE2|
HE2
|HE2| 0

0 1 1 0

1 0 0 1

 . (E.11)

An identical procedure is undertaken for the effective mass operators, Mij = ± 1
~2

∂2H
∂pi∂pj

,

for the calculation of the static conductivities used in the relaxation time approx-

imation. With these substitutions the procedure detailed by Falkovsky and Var-

lamov [203], equations (E.1) and (E.2), can be followed directly to achieve Fig.4.4.
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Appendix F

Additional Results for Natural

Hyperbolic Media

As a companion to the results presented in Chapter 5, in this appendix we examine

the differences encountered in calculating the Purcell factor, the ratio of the power

emitted by an electric dipole compared to vacuum, for isotropic and anisotropic me-

dia, and provide additional results for the anisotropic Green function.

F.1 Issues in the Purcell factor and photonic density of

states

In modern convention, the Purcell factor (PF) is defined in terms of quantum fluc-

tuations of the electric field as

P (ω) =

(∫
Vk

dVk 〈0| Ê2
j med (k) |0〉 δ (ωk − ω)

)
N

, (F.1)

(Fermi’s Golden Rule) with k denoting the reciprocal space vector, Vk the volume of

reciprocal space, ω the frequency, Ê2
j med (k) the component of the effective electric

field operator (Êmed (k) = Êvac (k) /
√
ε (ω) [268]) of the mode k along the transition

dipole moment, ε (ω) the relative permittivity of the medium, |0〉 the ‘vacuum’ state

of the medium (equilibrium state), and the N subscript is introduced as a shorthand

that the enclosed quantity is normalized by its free space value (ε (ω) = 1). Using

the Green function formulation [359], (F.1) is interpreted classically as the relative

rate of emission of an electric dipole

P (ω) = −Re{
∫
V
dV j∗ (r, ω) E (r, ω)}N = −Im{

∫
Vk

dVk j∗ (k, ω) Ǧ (k, ω) j (k, ω)}N ,

(F.2)
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Figure F.1: Overview of material properties and Purcell factor.
The top half of the figure displays the material permittivity (ε) classifications used
throughout this appendix, along with examples for each class. The inset shows the
permittivity labeling convention. All factors of ε have an unwritten dependence on
the frequency ω. The bottom half of the figure shows the permittivity dependence of
the Purcell factor and the electromagnetic fluctuation density. In these expressions
d is the characteristic size of the emitter, or correlation size of the current density,
and ko = ω/c. In the anisotropic media column the plotted surfaces correspond
to the transverse and longitudinal fluctuation densities, shown with artificial cuts.
Building off the results of Chapter 5, we present a more detailed examination of the
Purcell factor.
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with V standing for the volume of the real space, j (r) the current density, E (r) the

electric field, and Ǧ (k, ω) the Green function (tensor) for the electric field.

In either view, as describe in the introduction of this thesis, the PF is a first order

determination of the interaction between the equilibrium fields of a medium and

an external emitter, and thus is of key importance for determining the potential of

optical engineering applications. In nanophotonics literature this quantity is also

understood in terms of, or directly defined as, the photonic density of states of the

medium [267]. As we are considering this quantity inside a medium, for the sake of

consistency we will not use this defintion (see below). Regardless of the particular

definition used, there are major issues in extending the interpretation of the pho-

tonic density of states to anisotropic media.

Before facing these concerns, it is worthwhile to recap why the two quantities are

typically thought of as interchangeable. By symmetry, in isotropic media the effec-

tive electric field operator depends only on the magnitude of k, and (F.1) is evaluated

by the means of the wave equation k = ω
√
ε (ω)/c. Using this identity, the PF is

broken into the product of two factors: the expectation value of the relative energy

density of the electric field, 〈0| Ê2
j m (ω) |0〉 ∝ 1/ε (ω), and the photonic density of

states, ∝
√
ε (ω)

3
ω2dω/c2 as defined by

D (ω) =

(∫
δVk

dVk

)
N

, (F.3)

where δVk stands for the differential volume between the surfaces in reciprocal space

found by evaluating the wave equation at ω, and ω + δω in the limit δω → 0. Mul-

tiplying these factors, the PF is found to be ∝
√
ε (ω), (first row Tab.1, and purple

lines Fig. F.1). Consequently, for a given isotropic media the magnitude of the

PF follows the magnitude of the photonic density of states (PDoS); a larger PDoS

results in a larger PF, and a smaller PDoS in a smaller PF. Moreover, if the emit-

ter is located in free space, so that Êmed (k) = Êvac (k), the connections between

the PF and PDoS given by (F.1) and (F.2) allow the two quantities to be conflated1.

This intuitive relation between the magnitude of the PDoS and PF does not hold

in anisotropic media. As the value of both the effective electric field operator,

〈0| Ê2
j med (k) |0〉, and differential number of states, dk3δ (ωk − ω), now depend on

the direction of k, the integral expression for the PF (F.1) can not be factorized

1This is the usual case in nano-photonic problems, and so the usual convention of taking (F.2)
as the definition of the photonic density of states limr′→r Im {G (r− r′, ω)} [267] is sensible in this
context.
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Case Isotropic Uniaxial axis Uniaxial plane

D (ω) ε
√
ε ε3/2

P
+
√
εP εA ε3/2

P
+
√
εP εA

P (ω)
√
ε

√
εP

ε
A

+3ε
P√

ε
P

D (ω) /P (ω) ε εP + εA
ε2
P

+ε
A
ε
P

3ε
P

+ε
A

ε→ 0 | εp → 0 → 0 → εA →∞

Table F.1: Permittivity proportionality of the photonic density of states
and Purcell factor.
The table displays the permittivity dependence of the photonic density (PDoS
= D (ω)) and Purcell factor (PF = P (ω)) for lossless isotropic and uniaxial me-
dia. Each permittivity factor has an unwritten dependence on the frequency ω (see
Fig. F.2 for labeling conventions). The box highlights the peculiar permittivity
dependence of the PF for a dipole in the plane of a uniaxial crystal in the εP → 0
limit.

0.0 0.2 0.4 0.6 0.8 1.0
Relative permittivity

PD
oS

 | 
PF

0.4

0.8

1.2

1.6

2.0
ε  , zA

ε  , yP
ε  , xP

ε   = ε  →0 P A

ε  =1, ε  →0A P

PDoS
PF

0.0

PF diverges PDoS vanishes

Figure F.2: Relative scaling of the photonic density of states and Purcell
factor.
The figure shows the photonic density of states (PDoS), dashed lines, and Pur-
cell factor (PF), solid lines, for a dipole in a uniaxial crystal oriented in the optic
plane, as either the total (εP (ω) = εA (ω)), purple lines, or planar (εp (ω)), red lines,
permittivity is brought to zero. The inset shows the coordinate system considered
throughout (z-axis parallel to the optical axis), and schematic views of the the sur-
faces produced by solving the respective wave equations in reciprocal space. In
isotropic media, the magnitude of the PF follows the magnitude of the PDoS. In
anisotropic media this relation does not hold, and anomalous variation is observed
in the relative behaviour of the two quantities.

like the isotropic case. As shown in Fig. F.2 and Tab. F.1, this change leads to

remarkable variation in the relative values of the PDoS and PF depending on the
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orientation of the dipole and specific values of the relative permittivity factors. For

example, as displayed in Fig. F.2, as the planar permittivity of a lossless uniaxial

crystal approaches zero the PF diverges, despite a vanishing PDoS2.

The link between the PDoS and PF is further complicated by the continuation

of the PF to absorbing (Im{ε (ω)} > 0) and metallic (Re{ε (ω)} < 0) media [364].

Using (F.2), the continuation of the PF is found to be

PI (ω) = Re{
√
ε}+

2πIm{ε}
(k3
od

3) |ε|2
(F.4)

for isotropic media, and

PU (ω) = n Re

{
ε
A

+3ε
P

4
√
ε
P

0 0

0
ε
A

+3ε
P

4
√
ε
P

0

0 0
√
εP

+

π∫
0

dθ s (θ)

(c
2 (θ) 0 0

0 c2 (θ) 0

0 0 2s2 (θ)


3i c2 (θ) s2 (θ) (εA − εP )2

4ε2
U

(θ) (kod)
+

1 0 0

0 1 0

0 0 −2

 3i c2 (θ) s2 (θ)
(
ε2
A
− ε2

P

)
4ε2

U
(θ) (kod)

+

s
2 (θ) 0 0

0 s2 (θ) 0

0 0 2c2 (θ)

 6πi ε∗
U

(θ)

4|εU (θ) |2 (k3
od

3)

)}
n

(F.5)

for uniaxial media in the limit of a vanishingly small Gaussian distributed electric

dipole with size parameter d. As in Chapter 5, the I superscript serves to note

that the result applies specifically to isotropic media, and the U superscript that

the result applies to uniaxial media. Likewise, s (θ) and c (θ) again stand as short-

hands for the sin and cos functions, ε for ε (ω), n for the unit vector direction of

the dipole, ko for the characteristic inverse length ω/c, and εU (θ) for the effective

angular permittivity, εU (θ) = s2 (θ) εP + c2 (θ) εA , of a uniaxial medium following

the coordinate convention shown in Fig. F.1.

2It is primarily for this reason that we introduced the fluctuation density in Chapter 5.
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Following the Re{ε} > 0, Im{ε} = 0 evaluations of the PF for an isotropic medium

given in Tab.1, the suggested pattern would have the PDoS proportional to the PF,

(F.4) and (F.5), up to terms depending on the size parameter of the emitter (terms

that not depend on d). Yet, for certain values of εA and εP the d independent terms

of (F.5) (first matrix) may be strangely negative; despite the fact that a negative

value would seemingly go against (F.1), and can never occur in the isotropic result

(F.4). Furthermore, for hyperbolic media (Re{εA}Re{εP } < 0) the PDoS is known

to diverge in the limit of low loss [137, 365], leading to emission enhancement that

has been experimentally observed [138, 257, 261]. These observations suggest that

the d independent terms of the uniaxial PF should also diverge. However, (F.5)

shows no such characteristic feature.

F.2 Dipole emission in anisotropic media

To help understand the Purcell factor in uniaxial media, and give pictorial view of

charge the density resonances discussed in Chapter 5, we now examine the electric

field and Poynting vector (S = Re {E×H∗} where H is the magnetic induction

field) of an electric dipole in the optic plane of a uniaxial crystal as anisotropy is

introduced (Fig. F.3, Fig. F.4).

As the PF is classically equivalent to the (normalized) power required to main-

tain the oscillation of an electric dipole, (F.2). By Poynting’s theorem, this power

is in turn equal to the sum of the power absorbed and the power radiated from the

surface of any volume as determined by the expression R =
∫
∂V d∂V S s, where s

is the unit vector normal to the surface of the volume, and ∂V the boundary of the

volume. If the medium is not absorbing, then R normalized by the emission of an

electric dipole in vacuum, RN , is equal to the PF. More generally, given that energy

is used and not produced by a passive medium, the normalized power emitted is a

lower bound of the PF,

RN (ω) =

∫
∂V
d∂V SN s ≤ P (ω) . (F.6)

Taking Im{ε} = 0 so that (F.6) is an equality, Fig. F.3 displays the electric field

and Poynting vector as the magnitude of the planar permittivity (εP ) drops below

that of the axial permittivity (εA). Following the figure, the resulting fields are

found to be radically different than those of a dipole in an isotropic medium. First,

the magnitude electric field is seen to become larger along the optical axis, while

the phase accumulation is observed to decrease. This effect is a consequence of the

continuity of the electric displacement field, ∇ D = 0, and the phase propagation of
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a plane wave, Exp (i
√
ε k · r). Along the axis perpendicular to the dipole, (E), the

electric field lies in the x̂ direction so that it interacts exclusively with εP , and so

the accumulation of phase requires large propagation distances. But, as the polar

angle increase towards the XY plane the direction of the direction of the electric

is modified so that it begins to act with both permittivity component, correspond-

ingly modifying the phase accumulation. Similarly, imagining an area with top and

bottom edges following the contours traced by the electric field and perpendicular

right and left boundaries, satisfying ∇ D = 0 requires that electric field must be

relatively enhanced along the optical axis. Since the magnetic field is determined

by ∇ × E = −∂B/∂t, this enhancement of the electric field is also passed on to

the magnetic field, acting to produce an enhancement of the radial Poynting vector

along the optical axis that is nearly a factor of ten larger than the total emission

enhancement RN (ω) = (εA + 3εP ) /
(
4
√
εP
)
, which is in fact equal to the d inde-

pendent term of the uniaxial PF, (H). Viewing panels (B,C,D) and (F,G,H) the

global characteristic of the Poynting vector are equally interesting. Since the only

free charge present is the dipole located at the origin, it might be expected that

the streamlines, the movement of a point following the vector field, of the Poynting

vector field should never turn towards the XY or XZ planes (each coordinate should

always increase). Yet, without introducing loss (F,G) clear swirls develop as soon

as anisotropy is introduced. (The net power flow into any volume not containing

the dipole is still zero. As when the streamlines bend towards the dipole axis in one

plane, they bend away from the dipole axis in the other.) Note that logically these

swirls must develop if the large emission enhancement observed along the optical

axis is to be consistent with the PF as required by the equality of (F.6).

Considering a small amount of loss to avoid divergence, Fig. F.4, the enhanced

emission of the electric dipole is observed to increase as the epsilon-near-zero condi-

tion is approached, |εP | ≈ 0, following the general trend suggested by the PU (ω) =

RN (ω) = (εA + 3εP ) /
(
4
√
εP
)

lossless evaluation of the PF3. Yet contrary to the be-

haviour predicted by this term, the emission enhancement is seen to continue across

the hyperbolic transition, Re{εP } < 0 [257, 261]. By (F.6) this result shows that

the uniaxial PF (F.5) remains positive despite the appearance of the d independent

terms. Moreover, the influence of the enhanced PDoS occurring from hyperbolic

response is clearly visible.

The reconciliation of the observed emission enhancement, acting as a lower bound

for the PF, in the hyperbolic regime with the permittivity dependence of the d in-

3Note that as |εP | → 0 even relatively small amounts of loss Abs [Re {εP }] << Im {εP } drasti-
cally alter this behavior
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Figure F.4: Dipole emission across a hyperbolic transition.
The figure shows the radial component of the Poynting vector, SN r̂, normalized
to the vacuum maximum (εP = εA = 1) at a distance of one wavelength from the
dipole. The permittivity values considered are εA = 1, εP = 10−3 + i10−4 (solid
line), εA = 1, εP = −10−3 + i10−4 (large dashes), and εA = 1, εP = −1 + i10−4

(small dashes), corresponding to the transition form an ellipsoidal to a hyperbolic
media. The enhancement of the radial Poynting vector does not decrease or become
negative in the hyperbolic regime. By (F.6) this means that the PF must also
remain positive. Such behaviour would not be expected from the lossless evaluation
the uniaxial PF (F.5).

dependent terms of (F.5) is achieved through the contribution of the d dependent

terms. Rather than tending to zero as optical absorption (Im{ε}) is decreased, as

in isotropic media4, the zero approached in the εU (θ) factors causes theses terms to

become increasingly dominant in low loss hyperbolic and epsilon-near-zero media.

In other words, the Im{εA , εP } = 0 evaluation of the uniaxial PF is not equivalent

to the physically relevant limit of Im{εA , εP } → 0. Surprisingly, there is no physical

situation in which the d dependent terms of (F.5) can be properly ignored [257,261].

F.3 Calculation of the Purcell factor

To calculate the PFs (F.4) and (F.5), we begin with the Green function definition, as

given in Chapter 5, and the relative rate of spontaneous emission, (F.2). Switching

to spherical coordinates and normalizing the integral by ko this equation becomes

PI (ω) = −Im

{ π ∞ 2π∫∫∫
0

dθ dk dφ k2s (θ) j∗ (k, ω)

(
p̂⊗ p̂

k2 − ε
+

ŝ⊗ ŝ

k2 − ε
−

k̂⊗ k̂

ε

)
j (k, ω)

}
N

(F.7)

4A similar pole occurs in isotropic media with Re{ε} = 0 as Im{ε} → 0. However, this behavior
is not dispersive. Integrating over frequency the effect of this pole is removed.
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for an isotropic medium, and

PU (ω) = −Im

{ π ∞ 2π∫∫∫
0

dθ dk dφ k2s (θ) j∗ (k, ω)

(
p̂⊗ p̂

k2 − εE (θ)
+

ŝ⊗ ŝ

k2 − εP
− k̂⊗ k̂

εU (θ)
+
c2 (θ) s2 (θ) (εP − εA)2

ε2
U

(θ)

k̂⊗ k̂

k2 − εE (θ)
+

c (θ) s (θ) (εP − εA)

εU (θ)

(
p̂⊗ k̂ + k̂⊗ p̂

k2 − εE (θ)

))
j (k, ω)

}
N

(F.8)

for a uniaxial medium.

Without a model of the current source, there is no systematic way to evaluate

(F.7) and (F.8). To proceed to (F.4) and (F.5), a finite Gaussian current source is

assumed,

j (r, ω) = e−iωt

(√
2

d

)3

e−2πr2/d2
n̂

j (k, ω) = e−iωte−k
2d2/8π n̂,

(F.9)

where d acts a size parameter controlling the extent of the distribution. (Due to the

ko normalization of the k integrals in (F.7) and (F.8), when this distribution is sub-

stituted into the integral expressions for the PF d is replaced by kod.) Inserting (F.9)

into (F.7) and (F.8), the dφ integral can be performed using standard trigonometric

identities. The dk integrals then fall into two categories, integrals of the form 1©
k2e−k

2k2
od

2/4π, and integrals of the form 2© k2e−k
2k2
od

2/4π/
(
k2 − σ

)
where σ is a com-

plex number with a positive imaginary component. Since the bounds of integration

do not depend on the size parameter d, the k2 factor in the numerator of these expres-

sions is removed using the identity k2e−k
2k2
od

2/4π = −2π/
(
k2
od
)

(∂/∂d) e−k
2k2
od

2/4π

and interchanging the order of operation between the integral and derivative. The

resulting integrals are then evaluated as

∞∫
0

dk e−k
2k2
od

2/4π =
π

kod
, (F.10)

and

∞∫
0

dk
e−k

2k2
od

2/4π

k2 − σ
=

πe−σk
2
od

2/4π

(
i− Erfi

(√
σd2k2

o
4π

))
√
σ

, (F.11)

164



where Erfi (...) is the imaginary error function. Applying the derivative operator

−2π/
(
dk2

o

)
(∂/∂d), these expressions become

1© = 2π2/
(
k3
od

3
)
, and

2© = − π
kod

+ e−σk
2
od

2/4π π
√
σ

2

(
−i+ Erfi

(√
σd2k2

o
4π

))
.

If σk2
od

2 � 1, then 2© ≈ −π/ (kod) − iπ
√
σ/25, and substituting into (F.7) and

(F.8) yields (F.4) and (F.5)6.

F.4 Physical constraints on non-locality in polarization

response

Since ε (k, ω)− 1 = χ (k, ω) is a susceptibility, we may assume that it is analytic for

all but an finite set of points in the complex k plane for a given ω [366]. Therefore,

we can conclude that there is then a convergent Laurent series expansion in complex

k such that

χ (k, ω) =

∞∑
n=−∞

cn (ω) kn (F.12)

for M < |k| < ∞, where M is magnitude of the largest k pole of χ (k, ω), and

{cn (ω)} is the set of coefficients of the expansion. Accepting that the polarization

of any medium must ultimately be limited by some material size parameter, we may

also freely assume that |k| → ∞ ⇒ χ (k, ω)→ 0 for any ω. And so, cn (ω) = 0 for

all n ≥ 0.

Now, as we have only considered spaces with inversion symmetry the equality

ε (k, ω) = ε (k, ω) has been used throughout. Nevertheless, the true parameter

in reciprocal space for the polarization susceptibility is k, and the above reasoning

implies that there must be an equally valid Laurent expansion in kx, ky and kz. To

keep inversion symmetry in these expressions only even powers can appear. The

equivalence of the two descriptions then implies that χ (k, ω) can only contain even

values of kn. Combining this observation with cn (ω) = 0 for all n ≥ 0 shows that

asymptotically χ (k, ω) is at least proportional to 1/k2. Therefore, since in the com-

plex plane any polynomial can be decomposed as the product of linear factors, we

5In the limit of a lossless hyperbolic or epsilon-near-zero media this limit can not be taken.
6To find the uniaxial expression shown in the text expand all terms that do not have a 1/ (kod)3

factor to a common denominator of ε2
U

(θ), and integrate the d independent term.
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must have

χ (k, ω) =
Z (k + a1 (ω)) ... (k + an (ω))

(k + b1 (ω)) ... (k + bm (ω))
, (F.13)

where n ≥ m+ 2 are the number of factors in the numerator and denominator, and

Z is an arbitrary complex number.

Returning to real k, we note that because χ (r, t) is a real quantity χ (k, ω) must

obey the relation χ∗ (k,−ω) = χ (k, ω), where ∗ is the complex conjugate. Since this

equality must hold for all values of k and ω, and in the large k limit χ (k, ω) ∝ Z/k2,

we must have Z = Z∗. Taking the imaginary part of χ (k, ω) we then have

Im {ε (k, ω)} = Im {χ (k, ω)} ∝ Z/kl, (F.14)

(in the limit of large k) with l ≥ 3 (since Zkn is real); confirming that any physically

acceptable model of permittivty response will be sufficient to make (5.36) converge.

F.5 Validity of the local response approximation for

hexagonal boron nitride and bismuth selenide in

the infrared

For hexagonal boron nitride and bismuth selenide, the largest absolute value achieved

by the permittivities εA (ω), εP (ω), and εE (ω) in (5.34) is ≈ 400, and the smallest

≈ 0.1. Based on the maximum permittivity bound, in the local approximation the

poles of the wave equations occur no higher than k ≈ 20 ko. Taking the largest

lattice spacing present in either material, ≈ 3 nm, this upper limit of k still corre-

sponds to less than 1% of the Brillouin zone for wavelengths longer than 6 µm. As

such a small change will only minimally alter the probed bandstrucutre around the

dominant optical phonon features [247,367,368], there is no reason to expect that k

dependence will introduce variation in the relative permittivties on the order of the

lower magnitude bound. This being the case, it should be expected that including

spatial non-locality will not tangibly alter (5.37) or (5.38).

By the same logic, the contribution of additional non-local poles should also be

minimal. If a factor of 1/
(
k2 − εX (k, θ, ω)

)
at a particular frequency is rewritten in

term of linear factors, it will be of the form

1

k2 − εX (k, θ, ω)
=

(k − b1) ... (k − bn)

(k − a) (k + a) (k − c1) ... (k − cn)
, (F.15)
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where bi and ci are related non-local constants with
n∏
i=1

bi ≈
n∏
i=1

ci, and a ≈
√
εX (θ, ω).

So long as the ci poles are large compared to the ai poles, ai << ci, the resulting

residues from the ci poles are likely to be much smaller than the residues resulting

from the ai poles.

F.6 Half-Space transverse thermal electric field fluctu-

ations

Finally, we show that half-space transverse electric field fluctuations follow the same

form as the full-space fluctuations, a result assumed in Chapter 5 to show the sim-

ilarities between the full near-field energy density and the fluctuation density. Re-

quiring that current fluctuations can occur only in the lower half space, the Rytovian

expression for current correlations becomes〈
jB∗ (k, ω) jZ

(
k′, ω

)〉
N

= −i (εBZ (ω)− εZB∗ (ω)) δ
((

k− k′
)
ρ̂
)(

i (k′ − k) ẑ

((k′ − k) ẑ)2 + δ2
+

δ

((k′ − k) ẑ)2 + δ2

)

〈
jB (k, ω) jZ∗

(
k′, ω

)〉
N

= −i (εBZ (ω)− εZB∗ (ω)) δ
((

k− k′
)
ρ̂
)(

i (k− k′) ẑ

((k− k′) ẑ)2 + δ2
+

δ

((k− k′) ẑ)2 + δ2

)
.

(F.16)

Here, δ denotes the infinitesimal value used in defining the Fourier transform of the

Heaviside function, ε̌ (ω) is symmetric, and ρ̂ and ẑ are the unit directions of the

standard cylindrical coordinates. (In comparing the half-space and full-space there

is also an overall factor of 1/2, but this factor is absorbed in the new normalization.)

Replacing every occurrences of k in (F.16) with the equivalent cylindrical coor-

dinate expression
√
k2
z + k2

ρ, and analytically continuing into the complex kz plane,

the transverse thermal electric field fluctuation of a half-space is

χXYhalf
(
r, r′, ω

)
= Re

{∫
Vk

∞∫
−∞

dk′ dkze
i(k′x(x′−x)+k′y(y′−y)+kz |z|−k′z |z′|)

(
Ǐ − k̂⊗ k̂

)

ǦU∗
(
k′x, k

′
y, kz, ω

)( i (kz − k′z)
(kz − k′z)

2 + δ2
+

δ

(kz − k′z)
2 + δ2

)
Im {ε̌ (ω)} ǦU

(
k′x, k

′
y, k
′
z, ω
) (
Ǐ − k̂⊗ k̂

)}
N

,

(F.17)
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with the absolute value signs on |z| and |z′| resulting from explicitly setting the

field evaluation points to be in the lower half-space. As the action of
(
Ǐ − k̂⊗ k̂

)
on ǦU

(
k′x, k

′
y, kz, ω

)
removes all terms in the Green function that have k̂ as the left

vector in the exterior product, using the identities k̂′ord⊗ k̂′ord Im {ε̌ (ω)} k̂′ex⊗ k̂′ex =

0, k̂′ord ⊗ k̂′ord Im {ε̌ (ω)} k̂′ ⊗ k̂′ex = 0, and k̂ex ⊗ k̂′ Im {ε̌ (ω)} k̂′ord ⊗ k̂′ord = 0, the

remaining integral expression has the form

χXYhalf
(
r, r′, ω

)
= Re

{∫
V ′k

dk′ ei(k
′
x(x−x′)+k′y(y−y′))

∞∫
−∞

dkze
i(kz |z|−k′z |z′|)

(
(

i (k′z − kz)
(k′z − kz)

2 + δ2
+

δ

(k′z − kz)
2 + δ2

)( p̂⊗ p̂(
k2
z + k′2ρ

) (
k2
z − γ2∗

1

) +
ε∗
P
− ε∗

A

ε∗
A

(
k2
z + k′2ρ

) p̂⊗ k̂′zρ
k2
z − γ2∗

1

)
Im {ε̌ (ω)}

( p̂′ ⊗ p̂′(
k2
z − γ2

1

) (
k′2z + k′2ρ

) +
εP − εA

εA
(
k′2z + k′2ρ

) k̂′zρ ⊗ p̂′

k′2z − γ2
1

)
+

((
i (k′z − kz)

(k′z − kz)
2 + δ2

+
δ

(k′z − kz)
2 + δ2

)( ŝ′ ⊗ ŝ′

k2
z − γ2∗

2

)
Im {ε̌ (ω)}

( ŝ′ ⊗ k̂′

k′2z − γ2
2

))}
N

.

(F.18)

Here, γ1 =
√
εP − k′2ρ εP /εA , γ2 =

√
εP − k′2ρ , p̂ and k̂ are written in terms of k′ρ

and kz, k̂′ex and k̂ in terms of k′ρ and kz, and k̂zρ =
〈
0, 0, k′ρ

〉
with

ŝ = [−s (φ) , c (φ) kρ, 0] (F.19)

p̂ = [−kzc (φ) ,−kzs (φ) , kρ] /k (F.20)

k̂ = [kρc (φ) , kρs (φ) , kz] /k. (F.21)

Since only the trace is required to find the most pertinent thermodynamic quantities,

(F.18) can be simplified as

Fhalf
(
r, r′, ω

)
= Re

{∫
V ′k

dk′ ei(k
′
x(x−x′)+k′y(y−y′))

∞∫
−∞

dkze
i(kz |z|−k′z |z′|)

((
i (k′z − kz)

(k′z − kz)
2 + δ2

+
δ

(k′z − kz)
2 + δ2

)
(
k′zkz + k′2ρ

) (
k′2ρ Im {εA} |εP |2 + k′zkzIm {εP } |εA |2

)
|εA |2

(
k2
z + k′2ρ

) (
k′2z + k′2ρ

) (
k2
z − γ2∗

1

) (
k′2z − γ2

1

) +(
i (k′z − kz)

(k′z − kz)
2 + δ2

+
δ

(k′z − kz)
2 + δ2

)
Im {εP }(

k2
z − γ2∗

2

) (
k′2z − γ2

2

))}
N

.

(F.22)

without greatly reducing the utility of the result. By Jordan’s lemma, the integral

along the real axis of k′z can again be evaluated by considering an infinite semi-circle
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contour in the upper half-plane centered on the real axis. Applying the Cauchy

integral theorem to this contour, three distinct pole types contribute:

(A) The pole resulting from the fluctuating current

At this first kind of pole kz = k′z + iδ so that

2πi

(
i (kz − k′z)

(kz − k′z)
2 + δ2

+
δ

(kz − k′z)
2 + δ2

)
= 2π;

and resulting expression in k′ is the same as the full-space current fluctuations writ-

ten in cylindrical coordinates.

(B) The pole resulting from cylindrical coordinates

For the second type and third type of pole, the δ → 0 limit of the Heaviside function

can be taken immediately since the kz = k′z pole has already been evaluated. In this

limit, (F.22) reduces to

Fhalf
(
r, r′, ω

)
= Re

{∫
V ′k

dk′ ei(k
′
x(x−x′)+k′y(y−y′))

∞∫
−∞

dkze
i(kz |z|−k′z |z′|)

(
i

k′z − kz

(
k′zkz + k′2ρ

) (
k′2ρ Im {εA} |εP |2 + k′zkzIm {εP } |εA |2

)
|εA |2

(
k2
z + k′2ρ

) (
k′2z + k′2ρ

) (
k2
z − γ2∗

1

) (
k′2z − γ2

1

) +

i

k′z − kz
Im {εP }(

k2
z − γ2∗

2

) (
k′2z − γ2

2

))}
N

.

(F.23)

Focusing on the poles in the γ1 term at ±ik′ρ, evaluating the k′z integral as before,

(F.23) becomes

Fhalf
(
r, r′, ω

)
= Re

{∫
V ′k

dk′ ei(k
′
x(x−x′)+k′y(y−y′))ei(ik

′
ρ|z|−k′z |z′|)

k′2ρ Im {εA} |εP |2 + ik′zk
′
ρIm {εP } |εA |2

|εA |2
(
k′2z + k′2ρ

) (
k′2ρ + γ2∗

1

) (
k′2z − γ2

1

)}
N

.

(F.24)

Extending k′z to the complex plane, and evaluating the integral along the real k′z

axis using a semi-circle in the lower half space, we find two poles, −ik′ρ and −γ1.
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The first of these poles gives

Fhalf
(
r, r′, ω

)
= Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))

−e−k′ρ(|z|+|z′|)k
′
ρ

(
Im {εA} |εP |2 + Im {εP } |εA |2

)
|εA |2

(
k′2ρ + γ2∗

1

) (
k′2ρ + γ2

1

) }
N

,

(F.25)

and the second,

Fhalf
(
r, r′, ω

)
= Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))

e−k
′
ρ|z|+iγ1|z′| ik

′2
ρ Im {εA} |εP |2 + k′ργ1Im {εP } |εA |2

|εA |2
(
k′2ρ + γ2

1

) (
k′2ρ + γ2∗

1

)
(γ1)

}
N

.

(F.26)

(C) The pole resulting from the wave equations

The last type of pole in (F.23) results from the wave equations (eg. k2
z−γ2

1). In order

to make γ1 and γ2 continuous functions of k′ρ the cut of the
√
... function must be cho-

sen to lie along the positive real axis. (γ2
1 =

(
1− k′2ρ Re {εA} +i k′2ρ Im {εA}

)
εP /|εA |

begins at an arbitrary point above the real axis in the complex plane, k′2ρ = 0, and

proceeds contour clockwise with increasing k′2ρ to potentially cross any spoke from

the origin other than the real axis.) The kz integral is now evaluated as before giving

Fhalf
(
r, r′, ω

)
= Re

{∫
V ′k

dk′ ei(k
′
x(x−x′)+k′y(y−y′))ei(−γ

∗
1 |z|−k′z |z′|)

(
1

k′z + γ∗1

(
−k′zγ∗1 + k′2ρ

) (
k′2ρ Im {εA} |εP |2 − k′zγ∗1Im {εP } |εA |2

)
|εA |2

(
γ2∗

1 + k′2ρ
) (
k′2z + k′2ρ

)
(γ∗1)

(
k′2z − γ2

1

) )

+ei(−γ
∗
2 |z|−k′z |z′|)

(
1

k′z + γ∗2

Im {εP }
(γ∗2)

(
k′2z − γ2

2

))}
N

.

(F.27)

where we have used the fact that the pole in the upper half plane generated by√
γ2∗ is −γ∗. Again, k′z is also analytically continued into the complex plane and

the integral along the real axis evaluated by considering a semicircle in the lower
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half-space. The −ik′ρ pole, which occur only in the extraordinary γ1 term produces

χ
T half

(
r, r′, ω

)
= Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))e−k

′
ρ|z′|−iγ∗1 |z|

(
−ik′2ρ Im {εA} |εP |2 + k′ργ

∗
1Im {εP } |εA |2

|εA |2
(
k′2ρ + γ2

1

) (
k′2ρ + γ2∗

1

)
(γ∗1)

)}
N

,

(F.28)

while the wave equation pole gives

χ
T half

(
r, r′, ω

)
= −Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))ei(γ1|z′|−γ∗1 |z|)

((
|γ1|2 + k′2ρ

) (
k′2ρ Im {εA} |εP |2/|γ1|2 + Im {εP } |εA |2

)
2Im {γ1} |εA |2

(
k′2ρ + γ2∗

1

) (
k′2ρ + γ2

1

) )

+ei(γ1|z′|−γ∗1 |z|)

(
Im {εP }

2Im {γ2} |γ2|2

)}
N

.

(F.29)

Summing the results of all (B) and (C) type poles, we find that in the limit {z, z′} →
0 the total is exactly −1/2 that of the (A) type pole. Specifically, following the same

integral procedure for k′z the value of the (A) type pole is then

χ
T half

(
r, r′, ω

)
= 2Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))

e−k
′
ρ||z|−|z′||

(
k′ρ
(
Im {εA} |εP |2 − Im {εP } |εA |2

)
|εA |2

(
k′2ρ + γ2∗

1

) (
k′2ρ + γ2

1

) )}
N

.

(F.30)

for the ik′ρ term and

χ
T half

(
r, r′, ω

)
= 2Re

{ ∫
V ′kρ

dk′ρ e
i(k′x(x−x′)+k′y(y−y′))eiγ1||z|−|z′||

(
k′2ρ Im {εA} |εP |2/γ1 + γ1Im {εP } |εA |2

|εA |2Im
{
γ2

1

} (
k′2ρ + γ2

1

) )
+ eiγ2||z′|−|z||

(
Im {εP }

2γ2Im
{
γ2

2

})}
N

(F.31)

for the γ1, −γ∗1 , γ2, and −γ∗2 poles. (The comparative factor of 2 results from the

removal of the δ/
(
(kz − k′z) + δ2

)
piece of the current fluctuation).

The strength of the half-space transverse electric field fluctuation at the bound-

ary is thus exactly half that of the full-space transverse electric field fluctuation.

This conclusion is physically intuitive. Considering the full-space case: (1) the ran-
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dom electric field is generated symmetrically about the boundary, (2) there is no net

effect on the strength of the electric field fluctuation from the interaction of distinct

volumes as the generating current is point correlated. Bringing these arguments

together we conclude that the electric field fluctuation should be half as large in the

half-space case, matching the above mathematical proof.

172




