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Abstract
We recently reported on the existence of a singular resonance in moving media which arises due
to perfect amplitude and phase balance of evanescent waves. We show here that the
nonequilibrium vacuum friction (lateral Casimir–Lifshitz force) between moving plates
separated by a finite gap is fundamentally dominated by this resonance. Our result is robust to
losses and dispersion as well as polarization mixing which occurs in the relativistic limit.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Nanoscale heat transfer beyond the black body limit has led to
considerable interest due to simultaneous development of
theoretical tools utilizing Rytovʼs heat transfer theory and
experimental validation based on near-field measurements [1–
13]. Surface waves play a key role in heat transfer which has
been ascertained through bimetallic cantilever experiments
[7] as well as near-field thermal emission spectroscopy
[11, 14]. This large radiative thermal energy transfer can be
accompanied by momentum transfer and fluctuational forces
which are nonequilibrium Casimir–Lifshitz forces [15–24].

One interesting case is that of Casimir plates at different
temperatures in relative motion with a fixed gap between
them [17, 21, 25, 26]. The heat transfer is accompanied by a
lateral force opposing the motion (drag) since the exchanged
photons carry preferential momentum along the direction of
motion. This is fundamentally different from the stationary
case where the symmetry of the configuration imposes the
condition of net zero lateral momentum transfer.

In this paper, we outline a derivation of nonequilibrium
vacuum friction utilizing the scattering matrix approach of
heat transfer adapted to the case of moving media [20, 21].

Our aim is to study nanoscale light matter interaction in
moving media which reveal subtle effects fundamentally
distinct from conventional photonic media [18, 27, 28]. In
particular, we analyze the role of singular evanescent wave
resonances on nonequilibrium vacuum friction [21]. We
recently introduced a class of singular Fabry–Perot reso-
nances in moving media which occurs due to a perfect phase
and amplitude balance (PAB) condition [21]. Such a com-
bined PAB condition can only occur for plates in relative
motion and is fundamentally impossible in the stationary
case. We considered before the role of this resonance for heat
transfer [21] while here our focus is on the force accom-
panying the heat transfer (nonequilibrium vacuum friction).
We show the giant increase in the lateral drag force between
the moving plates separated by a fixed gap. We trace the
origin of this giant enhancement to the role of the unique PAB
condition [21]. We also consider in detail the role of polar-
ization mixing and show that the concept of the singular
resonance is valid in the relativistic limit.

The paper is arranged as follows. In section 2, we briefly
mention important earlier work in the field of vacuum friction
and explain the origin of a singular resonance condition in
moving media. In section 3, we derive a compact form for the
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scattering matrix of the moving plate including polarization
mixing which occurs in the relativistic limit. Using this result
we show the persistence of the singular resonance condition
in spite of polarization mixing in section 4. Section 5 outlines
a derivation of the nonequilibrium vacuum friction using the
scattering matrix approach developed for heat transfer.
Finally, in section 6, we analyze in detail the role of the
singular resonance condition on the giant nonequilibrium drag
force between moving plates.

2. Singular resonance in moving media

Macroscopic van der Waals interactions and frictional forces
proportional to the velocity goes back to the early work by
Teodorovich who considered moving plates separated by a
fixed gap [15]. The dissipative nature of this friction and a
quantum field theoretic approach was outlined in [16]. Pendry
provided a derivation of this fluctuational drag force in the

→T 0 limit (quantum friction) making use of the zero point
energy associated with the field fluctuations [17] wherein the
macroscopic reflection coefficients play a key role. Other
macroscopic approaches have also been recently developed
[29, 30]. The stress tensor approach for friction between
moving media closely following Lifshitz theory of Casimir
forces was developed by Volokitin and co-workers [25]. Our
approach closely follows that developed by Kardar et al who
interprets the emission and absorption of photons and resul-
tant forces in terms of the near-field emissivity/absorptivity
[20]. We strongly emphasize that the existence of this none-
quilibrium vacuum friction between moving plates is now
unanimously agreed to by everyone without any debate.

We showed recently the existence of a unique PAB
condition for surface plasmon polariton waves supported by
moving metallic plates separated by a finite gap (figure 1(a))

[21]. Consider a plane wave given by ω⃗ ⃗−e k r ti( · ) incident from

vacuum on an interface (x–y plane) moving at velocity V
parallel to the x-axis. The moving plate will then perceive a
Doppler shifted frequency and wavevector [31],
ω γ ω′ = − k V( )x , γ β′ = −k k k( )x x 0 where β = V c,

γ β= −1 1 2 .
The Doppler shift can lead to a unique condition when

the frequencies in the moving and stationary frames are
exactly the opposite of each other

ω ω′ = − , (1)

which occurs at a special wavevector (phase balance wave-
vector)

γ
ω′ = = +

⎛
⎝⎜

⎞
⎠⎟( )k k

V
1

1
. (2)x

PB
x
PB

At this specific wavevector, the conventional Fabry–
Perot resonance condition

Δ = − =r r1 e 0 (3)c
k d

1 2
2i z

takes the form

Δ ω ω ω= − − = − =− −r r r1 ( ) ( )e 1 ( ) e 0, (4)c
k d k d

1 2
2

1
2 2z z

where kz is the wavevector along the perpendicular direction,
d is the gap between the plates, r1 and r2 are the reflection
coefficients at the two interfaces, and we have used

ω ω− =r r( ) ( )2 1
* .

If we function at the frequency where the metallic plates
support a surface plasmon resonance (SPR) [32, 33], we can
achieve amplitude enhancement such that ω >r| ( ) | 1SPR . The
perfect amplitude balance between evanescent wave
enhancement at the plate and amplitude decay in the gap is
achieved at

=d r kln . (5)z0 1

Thus one can fully satisfy the PAB condition to achieve a

Figure 1. (a) Schematic of the work. Two half-space plates composed of the same medium are separated by a vacuum gap. One plate is
moving at a constant velocity V along the its interface (x direction). (b) Magnitude of reflection coefficient from a stationary plate of Drude
metal in log scale, which depicts the enhancement in the reflection coefficient due to the surface plasmon resonance (SPR). The special phase
balance wavevector is ≈k k20x

PB
0 at a velocity of =V c 10 and ω = 10SPR

15 Hz which leads to the unique mapping of the SPR resonance
frequency of the moving plate to the negative SPR resonance frequency of the stationary plate (ω ω′ = −SPR SPR).
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singular resonance. The SPP dispersion of figure 1(b) shows
the existence of a surface wave resonance (field enhancement)
with large wavevectors in the local limit. The waves with the
specific phase balance wavevector (denoted by arrow) on the
dispersion relation represent those SPP waves which are
Doppler shifted exactly to their negative frequency counter-
part. For these SPP waves, a unique Fabry–Perot resonance is
achieved with Δc being identically zero which can never occur
in stationary passive plates due to causality [34]. We
emphasize that this resonance relies on conversion of
mechanical energy of motion to electromagnetic energy and
gives a unique singularity in the Fabry–Perot multi-reflection
factor ( Δ1 c) that is routinely encountered in various
phenomena.

3. Scattering matrix of a moving plate with
polarization mixing

Moving plates perceive Doppler shifted frequencies and
hence the reflection coefficients of evanescent waves (EVs)
bouncing between them are fundamentally different from the
textbook case of stationary Fabry–Perot plates. Generally
speaking even for moving isotropic media, the reflected
waves of p-polarized incident waves will have s-polarized
components, and vice-versa. This is called polarization mix-
ing due to motion. Here, we provide a succinct and general-
ized form of the scattering matrix of a moving plate and show
the existence of the singular condition despite effects like
polarization mixing that occur at relativistic velocities [21].
The scattering matrix of the moving plate S can be expressed
by

=
⎡
⎣⎢

⎤
⎦⎥S

r r
r r . (6)

ss sp

ps pp

The reflection coefficients are

= ′ − ′r r a r b , (7)ss s p
2 2

= − ′ + ′( )r r r ab, (8)sp s p

= ′ + ′ = −( )r r r ab r , (9)ps s p sp

= ′ − ′r r a r b , (10)pp p s
2 2

where ′rs and ′rp are the reflection coefficients in the co-moving
frame for s- and p-polarized waves, respectively. And the
factors

γ β= − ′ρ ρ ρ( ) ( )a k k k k k , (11)x
2

0

γ β= ′ρ ρ( ) ( )b k k k k , (12)y z

which obey

+ =a b 1. (13)2 2

Here = +ρk k kx y
2 2 , γ β′ = −k k k( )x x 0 and

′ = ′ +ρk k k( )x y
2 2 . Note polarization mixing will not be a

significant effect at non-relativistic velocities due to the factor

β in the off-diagonal elements of the reflection tensor (rsp
and rps).

It is interesting to note that along symmetry directions
dictated by the direction of motion, polarization mixing dis-
appears regardless of the velocity. From the above general-
ized scattering matrix, the case of =k 0y simplifies to

ω ω= ′ ′ ′( ) ( )r k r k, , , (14)ss x s x

ω ω= ′ ′ ′( ) ( )r k r k, , , (15)pp x p x

and

= =r r 0. (16)sp ps

The above equations have a simple but important inter-
pretation. The off-diagonal components signifying polariza-
tion mixing are identically zero when =k 0y . Furthermore
and more importantly, the reflection from a moving plate can
be expressed simply as the standard Fresnel reflection from a
stationary plate with a Doppler shifted frequency and wave-
vector e.g.: for p-polarized waves with =k 0y ,

ω ω= ′ ′ ′r k r k( , ) ( , )p x p x
mov . Specifically, at the relativistic
phase balance wavevector (equation (2)), we have the unique
Doppler mapping

ω ω′ = − ′ =k k, . (17)x x

i.e. the frequency shifts sign and the wavevector remains the
same, consistent with the invariance of the four dimensional
momentum vector. Thus ω ω= ′ −r k r k( , ) ( , )p x p x

mov . Note ′rp

is reflection from a stationary plate in the co-moving frame so
we have

ω ω= ′( )( ) ( )r k r k, , *, (18)p x p x
mov

which is the complex conjugate of the reflection coefficient
from the stationary plate in the lab frame. We have thus
recovered the central result that =r r2 1

* at the phase balance
wavevector.

4. Generalized resonance condition between moving
plates

We now formulate the resonance condition in terms of the
scattering matrices (S S,1 2) of the plates. In matrix form, the
generalized Fabry–Perot resonance condition is that the
determinant of the matrix − S S1 e k d

1 2
2i z should be zero,

Δ = − = + =( )S S a D D b D Ddet 1 e 0. (19)k d
ss pp sp ps1 2

2i 2 2z

Here = − ′D r r1 ess
k d

s s
2i

1 2
z , = − ′D r r1 epp

k d
p p

2i
1 2

z ,

= + ′D r r1 esp
k d

s p
2i

1 2
z , = + ′D r r1 eps

k d
p s

2i
1 2

z . r s p1( , ) are the
reflection coefficients from the stationary plate, ′r s p2( , ) are the
reflection coefficients in the co-moving frame. Note the phase
balance wavevector achieves the unique Doppler mapping
ω ω′ = − ′ =k k, x x and hence the various components of Δ
have to be analyzed for this specific case. Due to the reality of
fields, the reflection coefficients in the co-moving frame at
frequency ω− are the complex conjugates of corresponding
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reflection coefficients in the lab frame at frequency ω,
ω ω′ − =r k k r k k( , , ) ( , , )s p x y s p x y2( , ) 1( , )

* .
We now note the critical fact that at the phase balance

wavevector we have

= = =( ) ( )( )D D D DIm Im Im 0. (20)ss pp sp ps

Thus the multi-reflection factor Δ which includes polarization
mixing and relativistic effects is real valued at the phase
balance vector. Furthermore, in the presence of surface waves
there will always exist a critical distance when this multi-
reflection factor is identically zero (Δ = 0). The main con-
tribution of our work is this delicate phase balance and
amplitude balance condition that has not been pointed out
before.

The multi-reflection factor Δ exhibits a weak dependence
on ky at non-relativistic velocities. Furthermore, waves with
non-zero ky have enhanced damping compared to the case of
ky = 0. Therfore Δ will reach its local minimum at ky = 0
where the damping factor −e k d2| |z is smaller compared to the
case with nonzero ky. We now have a simplified form for the
multi-reflection factor which is Δ = D Dss pp. The s-polarized
reflection coefficients exhibit no enhancement due to lack of
surface waves ( <r| | 1s ), implying a positive Dss, so to achieve
a resonance i.e. Δ = 0, we arrive at the condition

ω= = − =−( )D k k r, 0 1 ( ) e 0. (21)pp x
PB

y p
k d2 2 z

We can adjust the distance d to make this factor zero as
long as there is surface wave enhancement for the phase
balance wavevector ( >r| | 1p ). Note that r| |p reaches its
maximum at the SPR due to evanescent wave enhancement
(ω ω= SPR). Thus the condition that Dpp equals zero at this
resonance frequency leads to the critical distance

ω
ω γ

γ
=

+
d

V
rln ( )

2 2
, (22)p0

SPR
SPR

2

For most cases of interest, we have γ = 1, so
ω ω=d V rln | ( )| (2 )p0 SPR SPR . Note that we achieve an upper

bound on the critical distance. The role of deviations from the
Drude model and limitations of amplitude enhancement due
to non-locality has been analyzed in [21]. The analysis shows
that the minimum velocity to observe the effect is of the order
of the Fermi velocity of the electrons in the metal.

5. Derivation of non-equilibrium vacuum friction

We now consider the effect of such a resonance on physical
observables. We choose to study the momentum transfer
between moving plates that leads to a drag force opposing
motion: non-equilibrium vacuum friction. We emphasize that
the non-integrable nature of this resonance can play an
important role in various phenomena. Our derivation utilizes
the scattering matrix theory of heat transfer [20, 35] gen-
eralized to the case of moving media to recover the results
known from the Maxwellʼs stress–tensor approach for Casi-
mir forces [22, 23]. The net number of photons exchanged

between the two plates is

ω ω

= − −

× − ′

⎡⎣ ⎤⎦( ) ( )
( )( ) ( )

N S S D S S D

n T n T

Tr 1 1

, , (23)

2
†

2 1 1
† †

1 2

for propagating waves (PWs), and

ω ω

= − −

× − ′

⎡⎣ ⎤⎦( ) ( )
( )( ) ( )

N S S D S S D

n T n T

Tr

, , (24)

2 2
†

1
†

1
†

1 2

for EWs, where = −D S Se (1 e )k d k di
1 2

2iz z ,
ω = −ωn T( , ) 1 (e 1)k TB is the Bose–Einstein occupation

number.
With the help of the scattering matrix and after some

algebra, one can derive the expression for number of photons
exchanged

ω ω ω
Δ

ω ω

ω
Δ

= − ′

× − − ′

+ − − ′

+ →
=

− ′

× ′

− ′

+ →

−

−

⎧⎨⎩
⎡
⎣⎢

⎧⎨⎩
⎡⎣

( )( )
( )( )

( )

( )

( )

( )

(

)

( ) ( )

( )

( )

( )

( )

( )

N k k n T n T

a r r D

b r r D

p s

N k k n T

n T

a r r D

b r r D

p s

, , , ,
1

e

1 1

1 1

( )]}, PWs

, , ,

,
4

e

Im ( ) Im

Im ( ) Im

( )]}, EWs (25)

x y
k d

p p ss

p s sp

x y

k d

p p ss

p s sp

1 2 2
2 Im

2
1

2
2

2 2

2
1

2
2

2 2

1

2 2
2 Im

2
1 2

2

2
1 2

2

z

z

The symbol ↔p s denotes the terms that can be gained by
permuting the indexes p and s of preceding terms, and the
definitions of other symbols can be found in equation (19).
The dispersive force, i.e., the momentum transfer between the
two plates [20], is the product of the total number of
exchanged photons and the momentum of a single photon kx

(ℏ is the Planck constant divided by π2 )

ω ω= ( ) ( )f k k k N k k, , , , . (26)x x y x x y

We also note that the energy transfer between the two plates is
the product of the total number of photons exchanged and the
energy of a single photon ω .

The net dispersive force can be achieved by integrating
all possible partial waves ω, kx and ky [20] in the above
equation (26). Note that the frequency ω should be positive.
The friction can be calculated by

∫ ∫ ∫ω
π π π

ω=
∞

−∞

∞

−∞

∞
 ( )F

k k
k N k k

d

2

d

2

d

2
, , . (27)x

x y
x x y

0

Note that N has different expressions for PWs and EWs (see
equation (25)). We can then recover the results in [22] which
has a detailed calculation based on the stress tensor approach.
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6. Results and discussion

Here we consider a Drude metal with frequency dependent
permittivity given by ϵ ω ω ω Γω= − +( ) 1 2 ( i )SPR

2 2 with

the SPR frequency ω = ×1 10 HzSPR
15 and Γ ω= 0.01 SPR.

The temperatures are chosen to be T1 = 320 K and T2 = 300 K.
Note the resonant effect we are considering depends solely on
the classical electromagnetic scattering matrix and the effect
does not depend on the temperature difference. At the velo-
city of =V c 10, the critical distance d0 that satisfies the
singular resonance condition is about 70 nm. In figure 1(b),
we show the enhancement of reflection coefficients due to
SPR and indicate the phase balance wavevector at this
velocity.

In figure 2(a), we show the effect of moving velocity on
the critical distance. It is clear that the critical distance
increases linearly as moving velocity increases. We also
examine the dependence of critical distance on the loss
parameter Γ in the Drude model, which affects the reflection

coefficient, or the enhancement of EWs. At the quasi-static
approximation, we have ω ω Γ=r| ( ) |p SPR SPR , so from
equation (22) the critical distance d0 decreases logarithmically
as the loss parameter increases. In figure 2(b), we observe that

Γ ω∼ −d log ( )0 SPR , which is thus in agreement with our
theoretic prediction.

In figure 3(a), we plot the multi-reflection factor Δ at
various distances near the critical distance at the phase bal-
ance wavevector and the SPR frequency. In the moving
plates, we can clearly see that Δ is purely real at the phase
balance wavevector, which is a sign of phase balance and in
agreement with our theory. Furthermore, Δ crosses zero at the
critical distance, where the amplitude balance is fulfilled.
However, for the stationary case, Δ can never be exact zero,
which is clear in the plot. In figure 3(b), we plot the
denominator ( Δ1 | |) in the expression of photon transfer by
varying frequencies and lateral wavevector (kx). The distance
is chosen to be close to the critical distance. We clearly see a
huge peak located at the phase balance wavevector and SPR
frequency, since at such a distance, the multi-reflection factor

Figure 2. The opposing effects of increasing velocity and damping on the singular resonance condition. (a) Critical distance varying with
moving velocity. The critical distance increases linearly versus moving velocity, in agreement with equation (22). (b) As the Drude damping
increases, the critical distance where the resonance occurs decreases. This is expected since the amplitude balance condition is sensitive to
loss in the surface plasmon resonance and occurs only if the plates are in the extreme near-field.

Figure 3. (a)Values of multi-reflection factor Δ as a function of distance at the phase balance wavevector and SPR frequency. The fact that
Δ =Im ( ) 0 holds true for all distances in the moving plates, which is not valid for the stationary case. For moving plates at the phase balance

wavevector, Δ crosses zero at the critical distance (d0). However, for stationary plates, Δ can never be exactly zero, which is clear from the
plot. (b)The denominator in the expression of photon transfer ( Δ1 | |) resolved by frequency and lateral wavevector kx at → +d d0

( = + −d d(1 10 )3
0). Note the huge peak in the middle located at the phase balance wavevector and the SPR frequency, where the PAB

condition leads to a vanishing Δ. In both (a) and (b), we take ky = 0.
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(Δ) is very close to zero indicated by figure 3(a). Thus we
expect a giant photon number transfer at the PAB condition,
which can further lead to giant momentum transfer between
the moving plates.

In figure 4(a), we plot the spectrum of momentum
exchanged according to their frequency and wavevector in the
lab frame. Our result shows that as the plates are moved
closer to the singular FP resonance condition ( → +d d0 ), a
fundamentally new mechanism of photon exchange emerges.
This is evident from figure 4(a) where photons with the phase
balance wavevector and SPR frequency completely dominate
the interaction. Note that this occurs when the frequencies in
the co-moving frame and lab frame are equal and opposite,
the condition for phase balance and also the enhancement of
EWs due to SPR compensate the decay of waves inside the
gap, the condition of amplitude balance. Indeed, the multiple
scattering term Δ becomes vanishingly small giving rise to a
giant enhancement in the number of photons exchanged.

In figure 4(b), the magnitudes of friction evaluated
around the resonance at =d d21 0 and = + −d d(1 10 )2

6
0 are

× − −2.34 10 N m6 2 and −0.563 N m 2, respectively. We
strongly emphasize the five order of magnitude increase in
friction when the distance changes only by 70 nm. When the
distance d approaches the critical distance d0, we predict the
non-equilibrium friction F to scale with distance as [21]

∼ −⎡⎣ ⎤⎦F d d dln ( )0 0 . We plot the friction versus distance in
figure 4(b) to verify the theoretical predictions. We clearly see
that the force increases dramatically near the critical distance.
We also see that the friction increases as −⎡⎣ ⎤⎦d d dln ( )0 0

when d approaches d0.
We do not assume ideal mirrors [18] and losses or dis-

persion are not an impediment to the singular resonance. At
such a high velocity of c 10, our assumption of a local Drude
model should be valid because the phase balance wavevector
(20k0) is not very large. However, for lower velocities, the
corresponding phase balance wavevector can be significantly

larger than free space wavevector, where the theory should be
modified for electromagnetic interactions with large wave-
vectors [36, 37]. Note, the only fundamental requirement is
the enhancement in the reflection of coefficient of EWs which
is known to occur even in the presence of non-locality (e.g.:
graphene plasmons [38, 39]). The role of the giant photon flux
caused by the resonance on assumptions of macroscopic and
local fluctuational electrodynamics will be analyzed in
future work.

7. Conclusion

In summary, we have provided a compact form of the scat-
tering matrix of moving plates and derived the none-
quilibrium vacuum friction formula through the scattering
matrix theory of heat transfer. We have provided a detailed
numerical and theoretical analysis of the singular resonance
condition in moving media and predicted the existence of a
giant nonequilibrium vacuum friction. Our earlier work dis-
cussed the non-local hydrodynamic model [21] and effect on
the singular resonance while here we have shown that the
result is valid in the relativistic limit.

A direct experimental investigation of our predicted
effect is difficult due to constraints on the velocities to
achieve this resonance however the delicate PAB condition
can emerge as a ubiquitous principle to be applied in moving
nanophotonic media. Non-equilibrium opto-mechanical
structures can also lead to light amplification effects which
rely on our singular resonance condition.
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