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Abstract

Quantum causality is an emerging field of study which has the potential to greatly ad-
vance our understanding of quantum systems. One of the most important problems in
quantum causality is linked to this prominent aphorism that states correlation does not
mean causation. A direct generalization of the existing causal inference techniques to the
quantum domain is not possible due to superposition and entanglement. We put forth a
new theoretical framework for merging quantum information science and causal inference
by exploiting entropic principles. For this purpose, we leverage the concept of conditional
density matrices to develop a scalable algorithmic approach for inferring causality in the
presence of latent confounders (common causes) in quantum systems. We apply our pro-
posed framework to an experimentally relevant scenario of identifying message senders on
quantum noisy links, where it is validated that the input before noise as a latent confounder
is the cause of the noisy outputs. We also demonstrate that the proposed approach out-
performs the results of classical causal inference even when the variables are classical by
exploiting quantum dependence between variables through density matrices rather than
joint probability distributions. Thus, the proposed approach unifies classical and quantum
causal inference in a principled way. This successful inference on a synthetic quantum
dataset can lay the foundations of identifying originators of malicious activity on future
multi-node quantum networks.

Keywords: Structure learning, Confounder, Common Cause, Optimization, Quantum
causality

1. Introduction

Causal inference lies at the heart of science (Pearl, 2009; Pearl and Mackenzie, 2018): the
conclusions drawn from scientific studies almost always involve extracting causation (cause
and effect relationships) from association, even if researchers often refrain from explicitly
acknowledging the causal goal of research projects (Hernán, 2018; Hernán et al., 2019). How-
ever, causal inference from observational data is an ambitious and difficult task. Identifying
cause and effect relationships from observational data is even more challenging in the pres-
ence of hidden common causes (latent confounders) (Heckerman, 2019). The broad impact
of this phenomena has been studied in multiple domains of science such as epidemiologic
studies (Lipsitch et al., 2010), biology and medicine (Skelly et al., 2012; Meinshausen et al.,
2016), experiential education (Ewert and Sibthorp, 2009; Kallus et al., 2018), economics
and marketing (Varian, 2016; Hünermund and Bareinboim, 2019), among others.
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A similar concept is increasingly appreciated among quantum physicists, namely the
inference of quantum common causes (Wolfe et al., 2020; Allen et al., 2017; Ried et al.,
2015; Chaves et al., 2014a,b, 2015; Hofer-Szabó et al., 1999). It has been used to provide
a satisfactory causal explanation (i.e., non-fine-tuned) of Bell inequality violations (Allen
et al., 2017; Hofer-Szabó et al., 1999). This also has led to a formalization of quantum
causal models (Costa and Shrapnel, 2016; Barrett et al., 2019; Chiribella and Ebler, 2019;
Shrapnel, 2019). As shown in (Chaves et al., 2014a,b, 2015), in some cases, (hidden)
common causes can be distinguished from direct causation using information theoretical
generalization of Bell’s inequalities and causal directed acyclic graphs (DAGs). Also, as
shown in (Fitzsimons et al., 2015; Ried et al., 2015), observed quantum correlations alone
are sometimes enough to imply causation. However, the proposed approach in (Fitzsimons
et al., 2015; Ried et al., 2015) depends on the precise knowledge of the physical system
and the measurement apparatuses (Gachechiladze et al., 2020). In this paper, we propose
the first tractable algorithmic approach to distinguish between a hidden common cause and
direct causal influences among two observed quantum systems without any interventional
data.

To show the difficulty of causal structure discovery task even in the simplest classical
case, where our observation consists of only two jointly-distributed random variables X
and Y that are statically correlated, we recall Reichenbach’s common cause principle (Re-
ichenbach, 1991): If two random variables X and Y are statistically dependent, then there
exists a third variable Z that causally affects both. As a special case, Z may coincide with
either X or Y . Furthermore, this variable Z makes X and Y conditionally independent,
i.e., X ⊥⊥ Y |Z. So, possible candidates for representing causal relationships between X and
Y are: X → Y , X ← Y , and X ← Z → Y , and there is no easy way to determine which
one is the right structure based on the observational data alone. The variable Z in the
case X ← Z → Y is called unmeasured (latent) confounder or unmeasured (latent) common
cause. So, one of the fundamental questions in causality is to determine how cause-effect
relationships can be inferred from statistical information, encoded as a joint probability
distribution, obtained under normal, intervention-free experiments.

To discover the true cause-effect relationships, scientists normally perform randomized
experiments where a sample of units drawn from the population of interest is subjected
to the specified manipulation directly. In many cases, however, such a direct approach is
not possible due to expense or ethical considerations. Instead, investigators have to rely
on observational studies to infer causality. This task is even more challenging in quantum
context due to quantum superpositions and entanglement relations. In this work, we are
interested in quantum generalizations of causal structures in the presence of latent common
causes. These structures can be shown as a directed acyclic graph (DAG), where nodes
are quantum systems, and edges are quantum operations1. However, the key theoretical
distinction between an entirely classical causal structure and a quantum casual structure
is the concept of coexisting. Because of the impossibility of cloning, the outcomes and the
quantum systems that led to them do not exist simultaneously. If a system X is measured to
produce Y , then ρXY is not defined and hence neither is the entropy S(ρXY ) (Weilenmann
and Colbeck, 2017). For a given causal structure, a coexisting set of systems is one for which

1. In the context of quantum computation (Hogg, 1996), a quantum operation is called a quantum channel.
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a joint state can be defined (Chaves et al., 2015; Weilenmann and Colbeck, 2017, 2020). If
we pick a coexisting set of nodes (e.g., a classical system, or a set of nodes that are created
at the same instance of time, i.e., they do enjoy a joint density operator), then we can inves-
tigate the identification of quantum causal structures in the presence of latent confounders.

Hidden 
Cause

Figure 1: We develop a theoretical frame-
work for solving the problem of quantum
common cause.

In this paper, we consider causality be-
tween two coexisting quantum subsystems.
As a part of the evaluation framework, we
provide a model of such a coexisting system,
where two entangled qubits are used, and one
of the qubit is transmitted over a quantum
channel. Similarly, three entangled qubits
are used, and two of them are transmitted
over two separate quantum channels. The
models can be further generalized, while note
that the subsystems which are being con-
sidered for quantum causality relationships
have to coexist, unlike in the classical case
where it is not necessary for the sub-systems
to coexist. To address this problem, we introduce a theoretical framework to merge quan-
tum information science with causal inference using entropic principles. Classically, it has
been proposed and tested that minimization of the trade-off between the entropy of the
(hidden) common cause Z (i.e., H(Z)) and the conditional mutual information of observed
variables X and Y given Z (i.e., I(X;Y |Z)) can be used to distinguish the latent graph
X ← Z → Y (Z is an unmeasured confounder) from the directed graphs X → Y and
X ← Y based on observational data alone under certain assumptions (Kocaoglu et al.,
2020) (a brief review is given in Section 2). We will provide the first generalization of this
approach to the quantum domain (Figure 1).

Even though the paper considers an approach for quantum causal inference, we also
apply the proposed approach to a classical setup, where two bits are transmitted over a
binary symmetric channel (to illustrate the case of no confounder), or two bits are trans-
mitted over two separate channels (to illustrate the case of latent confounder). We show
that the proposed approach outperforms the classical causal inference in (Kocaoglu et al.,
2020) due to the use of quantum density matrix. We note that finding the optima over
a quantum density matrix rather than over the probability distribution function provides
larger degrees of freedom thus resulting in improved results. This demonstrates that the
proposed approach can also be used for classical causal inference with improved results.
Our main contributions are as follows:

• Inferring causality in the presence of latent confounders from observational data alone is
one of the most important and challenging problems in statistical inference. We propose
an iterative algorithm, called QInferGraph, for identifying latent confounders in Section 3.
Our method leverages the concept of quantum conditional matrices to unify the solution
for classical and quantum (latent) common cause problem in a principled way.
•We evaluate the proposed approach for classical causal inference. By leveraging optimiza-
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tion over density matrices, the proposed approach is shown to outperform the results of
classical causal inference in (Kocaoglu et al., 2020).

•We put forth an experimental scheme that can be used to confront our theoretical frame-
work. We consider a minimalistic model of an unknown message (possibly encrypted) with
unknown origin in a two-node quantum network with the possibility of the presence of a
latent common cause, where nodes are a coexisting set of quantum systems for which a joint
density matrix can be defined. Entangled quantum subsystems are used, where subsystems
are communicated over noisy channels (e.g., optical fiber) to create such coexisting set of
quantum systems. We prove that only using the joint density matrix of the observed two
quantum system, we can identify the originator of the message (i.e., the sub-system that did
not encounter the noisy channel). To verify the validation of QInferGraph, we use realistic
quantum noisy links such as quantum symmetric channel and depolarizing channel (valid for
quantum networking and quantum communications) (Section 4). Moreover, we show that
finding the joint probability distribution and using the classical common entropy technique
may result in erroneous outcomes, as shown in Section 5, thus showing that the classi-
cal approaches cannot be directly used on quantum systems. This specific approach can
lay the foundations of identifying originators of malicious activity on multi-node quantum
networks.

The rest of the paper is organized as follows. In Section 2, we review the classical
causal inference approach proposed in (Kocaoglu et al., 2020) for the identification of causal
structures in the presence of hidden common causes. In Section 3, we generalized the
classical approach to the quantum domain. In Section 4, we put forward an experimental
scheme that can be used to validate our proposed approach using a minimalistic model of
an unknown message (possibly encrypted) with unknown origin in a two-node/three-node
quantum network. In Section 5, we explain and show why should we not map quantum to
classical directly. In Appendix A and B, we provide details on the best choice of hyper-
parameters of our proposed algorithm.

2. Review of Classical Causal Inference Framework in (Kocaoglu et al.,
2020)

In this section, we briefly review the proposed approach in (Kocaoglu et al., 2020) for
confounder discovery via solving an optimization problem that its aim is to discover the
trade-off between the entropy of the latent variable and the conditional mutual informa-
tion of the observed variables. Consider that the joint distribution P (X,Y ) between two
observed variables is given. The goal is to find a random variable Z that makes X and Y
conditionally independent given Z. Possible cases that can represent this situation is shown
in Figure 2.

In the classical causal inference, Kocaoglu et al. (2020) distinguished between latent
graph in Figure 2(a) from others in Figure 2 based on unmeasured confounder having low
Shannon entropy under certain assumptions. Formally, the following was assumed:

Assumption 1 Consider any causal model with observed variables X and Y . Let Z repre-
sents the variable that captures all latent confounders between X and Y . Then H(Z) < θ,
where H(Z) = −

∑n
i=1 P (xi) log(xi).

4
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Figure 2: (a) Latent Graph, (b) Triangle Graph, (c) Direct Graph, and (d) Mediator Graph.

Algorithm 1: LatentSearch (Kocaoglu et al., 2020)
Input: Supports of X,Y , and Z, respectively; Joint probability distribution p(x, y); Number of iterations

N ; β in the loss function L = I(X;Y |Z) + βH(Z), Initialization of q1(z|x, y).
Output: Joint distribution q(x, y, z).

1 for i = 1 : N do
/* Form the joint distribution: */

2 qi(x, y, z)← qi(z|x, y)p(x, y), ∀x, y, z;
3 Calculate:

qi(z|x)←
∑
y∈Y qi(x, y, z)∑

y∈Y,z∈Z qi(x, y, z)
, qi(z|y)←

∑
x∈X qi(x, y, z)∑

x∈X,z∈Z qi(x, y, z)
, qi(z)←

∑
x∈X,y∈Y

qi(x, y, z)

4 Update:

qi+1(z|x, y)←
1

F (x, y)

qi(z|x)qi(z|y)
qi(z)1−β

, where F (x, y) =
∑
z∈Z

qi(z|x)qi(z|y)
qi(z)1−β

5 end
6 return q(x, y, z) := qN+1(z|x, y)p(x, y).

Assumption 2 Consider a causal model where X causes Y . If X causes Y only through
a latent mediator Z, i.e., X → Z → Y , then H(Z) ≥ θ.

Note that I(X;Y |Z) = 0 means that Z makes the variables X and Y conditionally
independent, i.e., X ⊥⊥ Y |Z.2 To identify latent graphs, Kocaoglu et al. (2020) proposed
an iterative algorithm (Algorithm 1) that discovers the trade-off between the entropy of the
unmeasured confounder and the conditional mutual information of the observed variables.
This trade-off is formally defined as follows:

L = I(X;Y |Z) + βH(Z) (1)

In fact, LatentSearch (Algorithm 1) sets q(x, y, z) = q(z|x, y)p(x, y) and searches over
q(z|x, y) to find the stationary point of the loss function L in Equation (1). For this purpose,
LatentSearch returns a joint probability distribution q(X,Y, Z) from which the Shannon
entropy of the latent variable W , i.e., H(W ) can be computed. To verify whether the
causal graph G = (V = {X,Y }, E) is a latent graph or not, InferGraph (Algorithm 2)
(Kocaoglu et al., 2020) runs LatentSearch multiple times and selects the smallest H(W )

2. Note that this is different from the notion of causal independence, which refers to the situation where
multiple causes contribute independently to a common effect (Zhang and Poole, 1996).
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discovered by the algorithm among those that ensure the conditional independence of X
and Y given W , i.e., I(X;Y |W ) ≤ θ for a practical threshold ( as suggested in (Kocaoglu
et al., 2020), θ = 0.001). We refer readers to (Kocaoglu et al., 2020) for more experimental
settings. Kocaoglu et al. (2020) conjecture that, under assumptions 1, 2 and in practice, the
Shannon entropy of observed variables X and Y for directed graphs and triangle graphs is
lower-bounded by the entropies of X and Y , up to a scaling by a constant (as suggested in
(Kocaoglu et al., 2020), 0.8 min{H(X), H(Y )}). For more detailed discussion see (Kocaoglu
et al., 2020).

Algorithm 2: InferGraph: Identifying the Latent Graph (Kocaoglu et al., 2020)
Input: Joint probability distribution p(x, y); Number of iterations N ; I(X;Y |Z) threshold T ; H(Z)

threshold that is determined by θ = αmin(H(X), H(Y )); {βi}Ni=1; Support size of X,Y , and Z,
i.e., r,m, and n, respectively.

Output: ”Latent Graph” if Z is an unmeasured confounder for X and Y , otherwise, returns ”Triangle or
Direct Graph”.

1 for i = 1 : N do
2 qi(x, y, z)← LatentSearch(p(x, y), α, βi, r,m, n);
3 Calculate Ii(X;Y |Z) and Hi(Z) from qi(x, y, z);

4 end
5 S = {i : Ii(X;Y |Z) ≤ T};
6 if min(Hi(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

3. Proposed Entropic Approach for Confounder Discovery in Quantum
Systems

In this section, we provide an approach for identifying latent graphs in quantum systems,
where we assume the Assumptions 1 and 2, with the entropy replaced by the von-Neumann
entropy, S(X) = −tr(ρX log ρX). We first briefly review the formalism of quantum condi-
tional density matrices, which provides a solid framework for adapting classical iterative
algorithms (Algorithm 1 and 2) to the quantum domain. Then, the proposed algorithm
to identify latent graphs is described which uses the concept of the quantum conditional
density matrix.

3.1 Conditional Density Matrix

Quantum theory can be understood as a non-commutative generalization of classical prob-
ability theory wherein probability measures are replaced by density operators (Leifer and
Spekkens, 2013). Analogies between the classical theory of Bayesian inference and the
conditional states formalism for quantum theory are listed in Table 1.

Quantum conditional densities are a generalization of classical conditional probability
distributions. However, to generalize conditional probabilities to the quantum case, sev-
eral approaches have been proposed in the literature. The three following generalizations
are the best known in the literature of quantum information: (1) quantum conditional ex-
pectation (Umegaki, 1962), (2) quantum conditional amplitude operator (Cerf and Adami,
1997, 1999), and (3) quantum conditional states (Leifer, 2007; Leifer and Spekkens, 2013).
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Table 1: Analogies between classical and quantum formalism

Classical Probability Quantum Theory

probability distribution p(X) density operator (matrix) ρX
joint distribution p(X,Y ) joint density ρXY
marginal distribution p(X) =

∑
Y p(X,Y ) partial trace ρX = TrY (ρXY )

conditional probability conditional density (Leifer, 2007; Leifer and Spekkens, 2013)

p(X|Y ) = p(X,Y )/p(Y ) ρX|Y = (IX ⊗ ρ−1/2Y )ρXY (IX ⊗ ρ−1/2Y )

instance conditional probability instance conditional density matrix (Javidian et al., 2021)

p(X|Y = y) = p(X,Y=y)∑
x p(X,Y=y) ρX|Y=|y〉 = TrY {ρXY ?|y〉〈y|}

trace{TrY {ρXY ?|y〉〈y|}} , where

ρXY ? |y〉〈y| = (I ⊗ (|y〉〈y|)1/2) ∗ ρXY ∗ (I ⊗ (|y〉〈y|)1/2)

Arguably, quantum conditional states are the most useful generalization of conditional prob-
ability from the point of view of practical applications. For example, quantum conditional
states have been used in (Leifer and Spekkens, 2013) to build a quantum theory of Bayesian
inference. Since quantum conditional states provides a closer analogy between quantum
theory and classical probability theory, we choose this formalism to define quantum condi-
tional density matrices. We will see that this formalism plays a significant role in the design
and success of our entropic quantum causal inference algorithm.

3.2 QLatentSearch: An Algorithm for Computing Exact Quantum Common
Entropy

In this section, we propose an iterative algorithm (Algorithm 3) that discovers the trade-off
between the entropy of the unmeasured confounder and the quantum conditional mutual
information of two observed quantum systems given the unmeasured confounder, which
is fundamental for designing an algorithm for the identification of latent confounders in
quantum systems as we show in the next subsection. This trade-off is formally defined as
follows:

L = IQ(X;Y |Z) + βS(Z) (2)

Note that IQ(X;Y |Z) = 0 implies that the quantum conditional independence of X and
Y given Z (Allen et al., 2017, Theorem 3). Having low von Neumann entropy of hidden
common cause Z, i.e., S(Z) under the quantum version of Assumption 1 and 2 enable us
to identify latent graphs from direct/mediator graphs in practice, as we show in Section
4. For this purpose, rather than searching over ρXY Z and enforcing the constraint ρXY =

TrZ(ρXY Z), we can search over ρ(Z|X,Y ) and set ρXY Z = (ρ
−1/2
XY ⊗ IZ)ρ(Z|X,Y )(ρ

−1/2
XY ⊗

IZ) because:

L = IQ(X;Y |Z) + βS(Z)

= S(XZ) + S(Y Z)− S(Z)− S(XY Z) + βS(Z)

= S(XZ) + S(Y Z)− S(XY Z) + (β − 1)S(Z)

= S(X) + S(Z|X) + S(Y ) + S(Z|Y )− S(XY )− S(Z|X,Y ) + (β − 1)S(Z)

= S(Z|X) + S(Z|Y )− S(Z|X,Y ) + (β − 1)S(Z) + IQ(X;Y )

Note that ρ(Z|Y ) = TrX((ρ1/2(X|Y ) ⊗ IZ)ρ(Z|X,Y )(ρ1/2(X|Y ) ⊗ IZ)), ρ(Z|X) =

TrY ((ρ1/2(Y |X)⊗IZ)ρ(Z|X,Y )(ρ1/2(Y |X)⊗IZ)), and ρZ = TrX,Y ((ρ
1/2
XY⊗IZ)ρ(Z|X,Y )(ρ

1/2
XY⊗

7
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IZ)). So, we have L = L(ρ(Z|X,Y )), which is the counterpart of the classical loss function
in Equation 1 with the following differences: (i) rather than using (conditional) probabil-
ity distributions, we use (conditional) density matrices, and (ii) rather than using Rényi
entropy, we use the von Neumann entropy.

We aim to optimize the objective L over ρ(Z|X,Y ). Although first order methods (e.g.,
gradient descent) or genetic algorithm (GA), which is a metaheuristic method inspired by
the process of natural selection, can be used to find a stationary point of the optimiza-
tion problem in (2), as we empirically observe the convergence is unattainable/slow and
the performance is very sensitive to the tuning parameters such as step size and the mu-
tation probability. This optimization problem is difficult to perform numerically because
the boundary of the space of positive semidefinite matrices is hard to compute. In order to
provide a scalable algorithm for this optimization, we extend the iterative algorithm that
was proposed for classical version of the problem in (Kocaoglu et al., 2020).

The proposed iterative algorithm for the optimization of L is described in Algorithm 3,
and is called QLatentSearch. This algorithm starts from a random initialization ρ1(Z|X,Y ),
and then at each iteration i does the following two phases to update ρi+1(Z|X,Y ) from
ρi(Z|X,Y ) to finally minimize the loss function L in (2):

• Calculate Phase: In this phase we use partial trace to get ρi(Z|X) (line 3-5), ρi(Z|Y )
(line 6-8), and ρiZ (line 9) from ρiXY Z .

• Update Phase: In this phase we update ρi+1(Z|X,Y ) to get ρi+1
XY Z (line 10) for the

next iteration.

Algorithm 3: QLatentSearch, An Iterative Algorithm for Computing Exact
Quantum Common Entropy

Input: Joint density matrix ρXY ; Number of iterations N ; β parameter in the loss function
L = IQ(X;Y |Z) + βS(Z), Initialization of ρ1(Z|X,Y ).

Output: Joint density matrix ρXY Z .
1 for i = 1 : N do

/* Form the joint density matrix: */

2 ρiXY Z = (ρ
1/2
XY ⊗ IZ)ρi(Z|X,Y )(ρ

1/2
XY ⊗ IZ);

/* Calculate Phase: */

/* (i) Calculate ρi(Z|X): */

3 ρiXZ = TrY (ρiXY Z) // Then, compute ρiXIY Z
by reordering the entries of ρiXZ

4 ρiX = TrZ(ρ
i
XZ);

5 ρi(Z|X)← ((ρiX)−1/2 ⊗ IY Z)ρiXIY Z((ρ
i
X)−1/2 ⊗ IY Z);

/* (ii) Calculate ρi(Z|Y ): */

6 ρiY Z = TrX(ρiXY Z) // Then, compute ρiIXY Z
= IX ⊗ ρiY Z

7 ρiY = TrZ(ρ
i
Y Z);

8 ρi(Z|Y )← (IX ⊗ (ρiY )−1/2 ⊗ IZ)ρiIXY Z(IX ⊗ (ρiY )−1/2 ⊗ IZ);
/* (iii) Calculate ρiZ: */

9 ρiZ = TrXY (ρiXY Z);
/* Update Phase: */

10 ρi+1(Z|X,Y )← (IXY ⊗ (ρiZ)
β−1)ρi(Z|X)ρi(Z|Y );

11 end

12 return ρXY Z := (ρ
1/2
XY ⊗ IZ)ρN+1(Z|X,Y )(ρ

1/2
XY ⊗ IZ).

8
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3.3 QInferGraph: An Algorithm for the Identification of Latent Confounders

In this section, we propose a quantum entropic approach to causal inference that can discern
the difference between causation and correlation. Specifically, under the assumption that
there are no low-entropy mediators (Assumption 2), Algorithm 3 can be used to distinguish
causation from spurious correlation between two observed quantum systems. This enables
us to distinguish latent graph in Figure 2(a) from the triangle or direct graphs in Figure
2(b)-(c). Our main assumption is that the latent confounders, if they exist, have small von
Neumann entropy. In other words, in Figure 2(a), S(Z) ≤ θ for some θ. Similar to the
classical version of this problem, we conjecture that θ = αmin{S(X), S(Y )} for some α < 1.
Considering Assumption 1 and Assumption 2 along with QLatentSearch (Algorithm 3), we
propose an algorithm, called QInferGraph (Algorithm 4), to identify latent graphs.

Algorithm 4: QInferGraph: Identifying the Latent Graph
Input: Joint density matrix ρXY ; Number of iterations N ; IQ(X;Y |Z) threshold T ; S(Z) threshold that

is determined by θ = αmin(S(X), S(Y )); {βi}Ni=1; The number of rows (or equivalently, columns)
of X,Y , and Z, i.e., r,m, and n, respectively.

Output: ”Latent Graph” if Z is an unmeasured confounder for X and Y , otherwise, returns ”Triangle or
Direct Graph”.

1 for i = 1 : N do
2 ρiXY Z ← QLatentSearch(ρXY , α, βi, r,m, n);

3 Calculate IiQ(X;Y |Z) and Si(Z) from ρiXY Z ;

4 end

5 S = {i : IiQ(X;Y |Z) ≤ T};
6 if min(Si(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

In short, QInferGraph calls QLatentSearch N times to figure out if there exist a W , for
which IQ(X;Y |W ) < T , i.e., W makes X and Y conditionally independent. Also, the von
Neumann entropy of W is enough small such that S(W ) < αmin{S(X), S(Y )} for some
α in practice. If there exist such a W , the algorithm declares W is a latent confounder.
In other words, latent graph represents correlation without causation relationship between
observed quantum systems X and Y . Otherwise, very likely such a W that minimizes the
loss function L does not exist, and QInferGraph declares that a triangle graph or a direct
graph represents the connection between X and Y better than a latent graph in this case.
In the next section we conduct experiments to verify this procedure in practice.

4. Evaluation on Quantum Causal Synthetic Data

Since there is no quantum cause-effect repository to verify the validity of our proposed algo-
rithm, we put forward an experimental scheme that can be used to confront our theoretical
framework. To show the effectiveness of the proposed approach in section 3, we use quan-
tum noisy links, where it is validated that the input before noise, as a latent confounder
(hidden source), is the cause of the noisy outputs, as shown in Figure 3.

We first apply the proposed approach to a classical setup, as explained in Model 1,
where two bits are transmitted over a binary symmetric channel (to illustrate the case of no

9
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Alice

Bob

Hidden 

Figure 3: Alice and Bob are connected by a noisy channel (e.g., an optical fiber) with an
unknown source of message.

confounder), or two bits are transmitted over two separate channels (to illustrate the case of
latent confounder). We show that the proposed approach outperforms the classical causal
inference in (Kocaoglu et al., 2020) due to the use of quantum density matrix. Finding the
optima over a quantum density matrix rather than over a probability distribution provides
larger degrees of freedom thus resulting in improved results. Our results indicate that the
proposed approach can also be used for classical causal inference with improved results.

Model 1 (Classical Binary Symmetric Channel: Latent and Direct Graph) Part
I: Latent Graph. Assume a 2-bit input Z ∈ {00, 01, 10, 11}. Let each bit of Z be in
the state 1 with probability q and 1 − q otherwise, and independent of each other. So,
p(Z = 00) = (1− q)2, p(Z = 01) = p(Z = 10) = q(1− q), and p(Z = 11) = q2. Z is trans-
mitted over a binary symmetric channel with independent bit error probability of p1, and
is denoted X. A cloned version of Z is transmitted over a binary symmetric channel with
independent bit error probability of p2, and is denoted Y . The joint probability distribution
of X,Y , and Z, where Z is the cause of X and Y , i.e., X ← Z → Y can be computed as
p(X,Y, Z) = p(Z)p(X|Z)p(y|Z). For example, p(01, 10, 00) = (1 − q)q ∗ p1p2 ∗ (1 − p1)p2.
Then we marginalize out Z to obtain the joint probability distribution for the latent graph
X ↔ Y . Note that the corresponding joint density matrix ρXY is a diagonal matrix that
its diagonal entries come from the joint probability distribution p(X,Y ). The key reason of
constructing ρXY as the diagonal matrix from p(X,Y ) is to have the mixed states, so that
the von-Neuman entropy of ρXY is the same as the Shannon entropy of p(X,Y ).

Now, we apply QInferGraph (Algorithm 4) on ρXY to verify that X and Y are con-
founded by Z. For this purpose, we use QLatentSearch (Algorithm 3) on 100 different
values of β, uniformly spaced in the interval (0.7, 0.8). A discussion regarding the best
choice of β can be found in appendices A and B. We run QLatentSearch for 500 iterations
each time. We use the conditional mutual information threshold of 0.05. In other words,
of the algorithm outputs for the 100 β values used, we pick the smallest entropy W dis-
covered by the algorithm among those that ensure I(X;Y |W ) ≤ 0.05. Table 9 summarizes
the results for different S(W ) threshold that is determined by θ = αmin{S(X), S(Y )}. For
different values of α = 0.7, 0.8, 0.9, 1, the results are the same, and are given in Table 2.
We let q = 0.4. In the Table, T means that QInferGraph (Algorithm 4) identifies the latent
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Figure 4: 2-bit non-Binary symmetric channel.

Table 2: Validation of Latent Graph in Model 1 (Part I) for α = 0.7, 0.8, 0.9, 1, and β ∈
(0.7, 0.8) via QInferGraph.

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F T T T F F F F
0.1 F F F F T T T F F F F
0.2 F F F T T T T T F F F
0.3 F T T T T T T T T T F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F T T T T T T T T T F
0.8 F F F T T T T T F F F
0.9 F F F F T T T F F F F
0.99 F F F F T T T F F F F

graph correctly. But, F means that the algorithm fails to identify the latent graph. For very
small or very large pi’s the case of latent confounder or direct graph are hard to separate,
while the proposed algorithm works well in most other cases.

Now, if we apply InferGraph (Algorithm 2) on p(X,Y ) with α = 0.8, as suggested in
(Kocaoglu et al., 2020), and two different β parameters: (1) the same as one that we used
in Table 2 in QInferGraph, i.e., β ∈ (0.7, 0.8), and (2) the same as one that suggested in
(Kocaoglu et al., 2020), i.e., β ∈ (0, 0.1), we obtain the results summarized in Table 3.

Some highlights for results in Part I: (1) Note that where the probability of errors i.e.,
p1 and p2 are very small, the latent confounder Z is hardly distinguishable from X (or Y )
and QInferGraph fails to discover the latent graph. (2) Note that QLatentSearch tries to
find the stationary point(s) of the loss function L in Equation (2), and there is no guarantee
to find the global optimum. However, the performance of QInferGraph in this case is ac-
ceptable: true positive rate (recall) = 0.6, false positive rate (fall-out) = 0, false negative rate
(miss rate) = 0.4, accuracy = 0.6. (3) The hyperparameter α does not affect significantly
on the quality of results in our experimental settings that indicates QInferGraph is not very
sensitive to hyperparameters. (4) Although InferGraph (Algorithm 2) perfectly identifies
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Table 3: Validation of Latent Graph in Model 1 (Part I) via classical causal inference
(Algorithm 2), and α = 0.8.

(a) β ∈ (0, 0.1)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

(b) β ∈ (0.7, 0.8)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 T F F F F T F F F F T
0.1 F F F F F T F F F F F
0.2 F F F F F T F F F F F
0.3 F F F F F T F F F F F
0.4 F F F F F T F F F F F

p1 0.5 T T T T T T T T T T T
0.6 F F F F F T F F F F F
0.7 F F F F F T F F F F F
0.8 F F F F F T F F F F F
0.9 F F F F F T F F F F F
0.99 T F F F F T F F F F T

latent graphs in Model 1 (Part I), it fails to identify latent graphs in many cases (about
80%). (5) It seems that the classical causal inference algorithm, i.e., InferGraph (Algo-
rithm 2) outperforms QInferGraph in classical data. However, as we will see in Part II of
Model 1, the performance of the classical algorithm is not consistent (no longer outperform
QInferGraph), where there is no latent confounder.
Part II: Direct Graph. Assume that there is a 2-bit symmetric noisy channel, where there
is no latent common cause, i.e., there is an input X and an output Y , as shown in Figure
4, with the same properties explained in Part I. The results of applying QInferGraph and
InferGraph on p(X,Y ) and ρXY are summarized in Table 4 and 5, respectively. T means
that QInferGraph (Algorithm 4) identifies the direct graph correctly. But, F means that
the algorithm fails to identify the direct graph.

Table 4: Validation of Direct Graph in Model 1 (Part II) via QInferGraph.

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 T T T T F T F T T T T
0.8 T T T T F T F T T T T

α 0.9 T T T T F T F T T T T
1 T T T T F T F T T T T

Table 5: Validation of Latent Graph in Model 1 (Part II) via classical causal inference
(Algorithm 2).

(a) β ∈ (0, 0.1)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 T T T F F T F F T T T
0.8 F F F F F T F F F F F

α 0.9 F F F F F T F F F F F
1 F F F F F T F F F F F

(b) β ∈ (0.7, 0.8)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F T T T T T T T T T F
0.8 F T T T T T T T T T F

α 0.9 F T T T T T T T T T F
1 F T T T T T T T T T F

Some highlights for results in Part II: (1) Note that when p = 0.5, X and Y are
uncorrelated and then X and Y are not cause and effect. In this case, T means that both
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quantum and classical algorithms identify that X and Y are not cause and effect, as we
expected. (2) Although the performance of the classical algorithm (Algorithm 2), where
β ∈ (0, 0.1), is perfect for Model 1 (Part I), its performance for Model 1 (Part II), where
there is no confounder, is not acceptable.

In conclusion, results from Part I and II, indicate that QInferGraph is a more consistent
and less sensitive to the change of parameters than its counterpart in the classical causal
inference, even for the classical data.

Next, we apply our proposed approach on a quantum (non-classical) model, as explained
in Model 2, where mixed entangled quantum subsystems are used for which subsystems are
communicated over noisy channels (e.g., optical fiber) to create a coexisting set of quantum
systems.

Model 2 (Depolarizing Quantum Channel: Latent Graph and Direct Graph)
Part I: Latent Graph. Assume that there are real numbers γ1, γ2, λ1, and λ2 such that
γ21 + λ21 = 1 and γ22 + λ22 = 1. We consider a joint entangled system (of three qubits) as the
mixture of the following pure density matrices:{

[(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)][(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)]† q
[(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)][(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)]† 1− q

In other words, the system considered has density matrix q[(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)(γ1|0〉+
λ1|1〉)][(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)]†+(1−q)[(γ2|0〉+λ2|1〉)(γ2|0〉+λ2|1〉)(γ2|0〉+
λ2|1〉)][(γ2|0〉 + λ2|1〉)(γ2|0〉 + λ2|1〉)(γ2|0〉 + λ2|1〉)]†. The system is a mixture of two pure
density matrices. This quantum system has entanglement among the three quantum bits.
Let the second quantum bit is transmitted over a quantum depolarizing channel with error
probability p1, and the third quantum bit is transmitted over a quantum depolarizing chan-
nel with error probability p2. Note that the depolarizing channel with error probability p has
no error with probability 1 − p, and each of the phase-flip, bit-flip, or the combination of
phase-flip and bit-flip errors with probability p/3 (Nielsen and Chuang, 2002). With this

setup, the joint density matrix is given as ρZXY = qργ1,λ1ZXY + (1 − q)ργ2,λ2ZXY , where ργ,λZXY is
given as the mixture of the following pure density matrices:



[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)]† (1− p1)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)
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We note that X and Y coexist, thus we can find joint density matrix of X and Y by
tracing out Z in ρZXY . Then, we apply QInferGraph (Algorithm 4) on ρXY to verify
that X and Y are confounded by a latent variable. For this purpose, we use the same
parameters specification as explained in Model 3, and q = 0.4. Table 6 summarizes the
results for different entropy threshold of the latent confounder that is determined by θ =
αmin{S(X), S(Y )}, where α = 0.7, 0.8, 0.9, 1. T means that QInferGraph (Algorithm 4)
identifies the latent graph correctly. But, F means that the algorithm fails to identify the
latent graph. The results confirm our observations that we made in Model 1 (Part I).
However, in this case QInferGraph has a higher performance quality. For example, for
α = 0.7, 0.8, 0.9, 1 we have: true positive rate (recall) = 1, false positive rate (fall-out) = 0,
false negative rate (miss rate) = 0, accuracy = 1.

Table 6: Validation of Latent Graph in Model 2 (Part I) for α = 0.7, 0.8, 0.9, 1, and β ∈
(0.7, 0.8) via QInferGraph, and with the density matrix obtained from 0.6ρ

1/
√
2,1/
√
2

ZXY +

0.4ρ0.6,0.8ZXY via tracing out Z.

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Part II: Direct Graph. Assume that there are real numbers γ1, γ2, λ1, and λ2 such
that γ21 + λ21 = 1 and γ22 + λ22 = 1. We consider a joint entangled system (of two qubits) as
the mixture of the following pure density matrices:{

γ21 |00〉+ γ1λ1|01〉+ γ1λ1|10〉+ λ21|11〉 q
γ22 |00〉+ γ2λ2|01〉+ γ2λ2|10〉+ λ22|11〉 1− q

The system is a mixture of two pure density matrices. This quantum system has en-
tanglement among the two quantum bits. Let the second quantum bit is transmitted over a
quantum depolarizing channel with error probability p. With this setup, the joint density
matrix is given as ρXY = qργ1,λ1XY + (1− q)ργ2,λ2XY , where ργ,λXY is given as the mixture of the
following pure density matrices:

γ2|00〉+ γλ|01〉+ γλ|10〉+ λ2|11〉 1− p
γ2|00〉 − γλ|01〉+ γλ|10〉 − λ2|11〉 p/3
γλ|00〉+ γ2|01〉+ λ2|10〉+ γλ|11〉 p/3
−γλ|00〉+ γ2|01〉 − λ2|10〉+ γλ|11〉 p/3
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We note that X and Y coexist in the quantum system, and thus the joint density matrix
has been obtained. We already know that X is the cause of Y in this scenario, i.e., X →
Y is the corresponding directed graph. To verify this, we use Algorithm 3 and 4 as we
explained earlier in this model. The results are summarized in Table 7. T means that
QInferGraph (Algorithm 4) identifies the direct graph correctly. But, F means that the
algorithm fails to identify the direct graph. In all cases the probability of X be in state X1

is q = 0.4. Results show that the best performance belongs to α = 0.9 with only one false
positive case. In general, in quantum noisy channels with very small probability of errors,
QInferGraph very likely fails to draw the right conclusion about the identification of latent
confounders.

Table 7: Validation of Direct Graph in Model 2 (Part II) with joint density matrix ρXY =

0.4 ∗ ρ0.6,0.8XY + 0.6 ∗ ρ1/
√
2,1/
√
2

XY .

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F F T T T T T T T T T
0.8 F F T T T T T T T T T

α 0.9 F T T T T T T T T T T
1 F F T T T T T T T T T

5. Why Should We Not Map Quantum to Classical Directly?

Here, we show why classical common entropy approach do not directly apply to the quantum
case. We emphasize that although a joint density operator (matrix) can be converted
to a joint probability distribution (as explained in Example 1), we lose some quantum
information due to the loss of entanglement. We give an example that shows converting
a joint density matrix ρXY directly to a joint probability distribution p(X,Y ), and then
applying classical common entropy approach on p(X,Y ) will not lead to the correct results.

Algorithm 5: Rotational procedure for computing the joint probability distribu-
tion of a joint density matrix

Input: Joint density matrix of quantum systems X and Y i.e., ρXY .
Output: Joint probability distribution p(X,Y ) corresponding to the joint density matrix ρXY .
/* Compute eigenvalues and eigenvectors of ρX . */

1 [V1, D1] = eig(ρX);
/* Compute eigenvalues and eigenvectors of ρY . */

2 [V2, D2] = eig(ρY );
/* Rotational procedure */

3 U = V1 ⊗ V2;
4 ρ′XY = U†ρXY U ;
5 return p(X,Y ) as the entries on the main diagonal of ρ′XY .

Example 1 (Counter Example) Assume the depolarizing channel as described in Model
2, Part II. We already know that X causes Y in this model. To convert the joint density
matrix ρXY , we use a rotational procedure explained as follows: Assume that ρXY is rotated
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using a unitary matrix U . Let us say ρXY = Uρ′XY U
†. So, the joint density matrix ρ′XY is

computed as ρ′XY = U †ρXY U . To compute the unitary matrix U for a given ρXY we use the
eigenspaces of ρX and ρY , where ρX = TrY (ρXY ) and ρY = TrX(ρXY ) are computed by
tracing out Y and X, respectively. This simple observation enables us to design a procedure
that converts a joint density matrix ρXY to a joint probability distribution p(X,Y ) in a way
that it takes into account the rotation. This procedure is formally described in Algorithm
5. By converting the joint density matrix ρXY directly to a joint probability distribution
p(X,Y ), using Algorithm 5, and then applying classical entropic causal inference, i.e., Al-
gorithm 2 on p(X,Y ) we obtain the results represented in Table 8 which are opposite to
the expected results in all cases. This confirms that classical statistics are not adequate for
identification of cause–effect relations in quantum systems due to accessibility of a richer
spectrum of causal relations in quantum scenarios.

Table 8: Classical Approach to Identify Direct Graph for Model 2 does not work.

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F F F F F F F F F F F
0.8 F F F F F F F F F F F

α 0.9 F F F F F F F F F F F
1 F F F F F F F F F F F

Conclusions and Future Work

This paper provides a new approach for quantum entropic causal inference in the presence
of hidden common causes. As a part of the approach, an iterative algorithmic solution is
provided for the optimization problem that deals with the trade-off between the entropy of
the latent quantum system and the quantum conditional mutual information of the observed
quantum systems. The approach is validated on quantum noisy link, where the approach
detects the expected causal relation. The extension of the problem to general quantum
causality graph relations between multiple variables is an open problem for the future.
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Appendix A. Evaluation on Quantum Causal Synthetic Data:
Generalized Quantum Symmetric Channel (Model 3)

In this section, we apply QInferGraph to a generalized version of binary symmetric channel,
as explained in Model 3, where a qubit is transmitted over a binary symmetric channel (to
illustrate the case of no confounder), or a qubit is transmitted over two separate channels
(to illustrate the case of latent confounder). To build the model, we follow the same scheme
that we explained in Model 1.

Model 3 (Generalized Quantum Symmetric Channel: Latent and Direct Graph)
Part I: Latent Graph. Assume that there are real numbers γ and λ such that γ2+λ2 = 1,
and X1 = Y1 = Z1 = γ|0〉 + λ|1〉, and X2 = Y2 = Z2 = γ|0〉 − λ|1〉. Let Z be in the mixed
state |Z1〉|X1〉|Y1〉 with probability q, and |Z2〉|X2〉|Y2〉 with probability 1− q. We consider a
generalization of Quantum Symmetric Channel in the following model, in which the phase
of the qubit is reversed with certain probability. The second and third qubits are transmitted
over two separate quantum symmetric channels with error probability p1 and p2, respectively,
and are labeled X and Y , respectively. Thus, the joint density matrix of X,Y and Z, ργ,λZXY ,
can be written as mixtures of the following pure density matrices:

|Z1〉|X1〉|Y1〉(|Z1〉|X1〉|Y1〉)† q(1− p1)(1− p2)
|Z1〉|X1〉|Y2〉(|Z1〉|X1〉|Y2〉)† q(1− p1)p2
|Z1〉|X2〉|Y1〉(|Z1〉|X2〉|Y1〉)† qp1(1− p2)
|Z1〉|X2〉|Y2〉(|Z1〉|X2〉|Y2〉)† qp1p2
|Z2〉|X1〉|Y1〉(|Z2〉|X1〉|Y1〉)† (1− q)p1p2
|Z2〉|X1〉|Y2〉(|Z2〉|X1〉|Y2〉)† (1− q)p1(1− p2)
|Z2〉|X2〉|Y1〉(|Z2〉|X2〉|Y1〉)† (1− q)(1− p1)p2
|Z2〉|X2〉|Y2〉(|Z2〉|X2〉|Y2〉)† (1− q)(1− p1)(1− p2)

Now, we trace out Z to obtain the density matrix for the latent graph X ↔ Y . Then,
we apply QInferGraph (Algorithm 4) on ρXY to verify that X and Y are confounded by
Z. For this purpose, we use QLatentSearch (Algorithm 3) on 50 different values of β,
uniformly spaced in the interval (0.7, 0.8). More results for β ∈ (0.2, 0.3), β ∈ (0.6, 0.7),
and β ∈ (0.8, 0.9) can be found at the end of this section. We run QLatentSearch for 500
iterations each time. We use the conditional mutual information threshold of 0.05. In other
words, of the algorithm outputs for the 50 β values used, we pick the smallest entropy W
discovered by the algorithm among those that ensure I(X;Y |W ) ≤ 0.05. Table 9 summarizes
the results for different S(W ) threshold that is determined by θ = αmin{S(X), S(Y )}. For
different values of α = 0.7, 0.8, 0.9, 1, the results are the same, and are given in Table 9.
We let q = 0.4. In the Table, T means that QInferGraph (Algorithm 4) identifies the latent
graph correctly. But, F means that the algorithm fails to identify the latent graph. For very
small or very large pi’s the case of latent confounder or direct graph are hard to separate,
while the proposed algorithm works well in most other cases.

Some highlights for results in Part I: (1) Note that where the probability of errors
i.e., p1 and p2 are very small, the latent confounder Z is hardly distinguishable from X (or
Y ) and QInferGraph fails to discover the latent graph. (2) Note that QLatentSearch tries
to find the stationary point(s) of the loss function L in Equation (2), and there is no
guarantee to find the global optimum. However, the performance of QInferGraph in this

17



Javidian and Aggarwal and Jacob

Table 9: Validation of Latent Graph in Model 3 (Part I) for α = 0.7, 0.8, 0.9, 1 with the

density matrix obtained from ρ
1/
√
2,1/
√
2

ZXY via tracing out Z.

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

case is acceptable: true positive rate (recall) = 0.77, false positive rate (fall-out) = 0,
false negative rate (miss rate) = 0.23, accuracy = 0.77. (3) The hyperparameter α does
not affect significantly on the quality of results in our experimental settings that indicates
QInferGraph is not very sensitive to hyperparameters.

Part II: Direct Graph. We consider a generalization of Quantum Symmetric Channel
in the following model, in which the phase of the qubit is reversed with certain probability.
We consider a mixed state |X1〉|Y1〉 with probability q, and |X2〉|Y2〉 with probability 1− q.
Further, the second qubit is transmitted over the quantum symmetric channel with the error
probability p. After the transmission, the two qubits are labeled X and Y , respectively. Thus,
the joint density matrix of X and Y is the mixture of the following pure density matrices:

|X1〉|Y1〉(|X1〉|Y1〉)† q(1− p)
|X1〉|Y2〉(|X1〉|Y2〉)† qp
|X2〉|Y1〉(|X2〉|Y1〉)† (1− q)p
|X2〉|Y2〉(|X2〉|Y2〉)† (1− q)(1− p)

We already know that X is the cause of Y in this scenario, i.e., X → Y is the corresponding
directed graph. To verify this, we use Algorithm 3 and 4 as we explained earlier in this model.
The results are summarized in Table 10 for q = 0.4. T means that QInferGraph (Algorithm
4) identifies the direct graph correctly. But, F means that the algorithm fails to identify the
direct graph. In all cases for the different values of α considered, the results show that there
is no false positive in this case indicating the desired causal inference.

Figure 5 illustrates the trade-off between the von Neumann entropy of the latent common
cause and the conditional quantum mutual information of the observed systems for two
examples of Model 3 in Part I and Part II. The conditional quantum mutual information
between 0 and 0.05 in the I-S plot indicates that the suitable conditional quantum mutual
information threshold for this setting is ≈ 0.05.

Remark 1 Note that the generalized quantum symmetric channel is a rotated version of
the classical binary symmetric channel. So, in this case we can convert the joint density
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Table 10: Validation of Direct Graph in Model 3 (Part II) with the density matrix ρ
1/
√
2,1/
√
2

XY .

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T

α 0.9 T T T T T T T T T T T
1 T T T T T T T T T T T

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2

I-S Plane

I
Q
(X;Y |Z  )

S
(Z

)

Figure 5: Trade-off curve discovered by QLatentSearch for: (i) Model 3 (Part I) with
q = 0.4 and p = 0.1 [right-side curve], (ii) Model 3 (Part II) with q = 0.4, p1 = 0.2, and
p2 = 0.3 [left-side curve].

matrix to a joint probability distribution using the rotational procedure in Algorithm 5, we
discuss this procedure later in Example 1. Then, we can apply the classical causal inference
algorithm i.e., Algorithm 2 to identify latent confounders. However, our results in Table
11 and 12 indicate that even in this classical scenario our quantum approach outperforms
the classical causal inference method. Note that there always exist a trade off for choosing
α = 0.7, 0.8, 0.9, 1 (and hence the H(Z) threshold). As suggested and verified in (Kocaoglu
et al., 2020), α = 0.8 seems an appropriate value for α in practice. Our results verifies this
suggestion as well.
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Table 11: Validation of Latent Graph in Model 3 (Part I) via classical causal inference
(Algorithm 2).

(a) α = 0.7

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F F T T T T T F F F
0.3 F T T T T T T T T T F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F T T T T T T T T T F
0.8 F F T T T T T T F F F
0.9 F F F T T T T T F F F
0.99 F F F F T T T F F F F

(b) α = 0.8

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) α = 0.9

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(d) α = 1

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Table 12: Validation of Direct Graph in Model 3 (Part II) via classical causal inference
(Algorithm 2).

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 T T T T F F F T T T T
0.8 T T T F F F F F T T T

α 0.9 T T T F F F F F T T T
1 F F F F F F F F F F F
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To find the best choice of hyper-parameters in QInferGraph i.e., α and β, we evaluate
the performance of QInferGraph for causal structure discovery in Model 3 by considering
different intervals for the value of β and different values of α. Then, we will discuss the best
choice of α and β in these settings.

Part I: Latent Graph. In this part, we evaluate the performance of QInferGraph for the
identification of latent graphs in Model 3 (Part I) as follows. We run QLatentSearch (Al-
gorithm 1) on 50 different values of β uniformly spaced in the intervals (0.2,0.3), (0.6,0.7),
(0.7,0.8), and (0.8,0.9), respectively. QInferGraph (Algorithm 2) calls QLatentSearch, and
for each β the algorithm QLatentSearch is executed for 500 iterations. For different values
of α = 0.7, 0.8, 0.9, 1 the results are summarized in the following tables (Table 13, 14, 15,
and 16), respectively. In the tables, T means that QInferGraph (Algorithm 2) identifies the
latent graph correctly. But, F means that the algorithm fails to identify the latent graph.
For very small or very large pi’s (probability of errors, see Model 3 for details) the case of
latent confounder or direct graph are hard to separate, while the proposed algorithm i.e.,
QInferGraph works well in most other cases where β is in (0.6,0.7), (0.7,0.8), and (0.8,0.9).

Table 13: Validation of Latent Graph in Model 3 (Part I) via QInferGraph, where α =
0.7, 0.8.

(a) β = (0.2, 0.3)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F F F F F F F F
0.1 F F F F F F F F F F F
0.2 F F F F F F F F F F F
0.3 F F F F F F F F F F F
0.4 F F F F F F F F F F F

p1 0.5 F F F F F F F F F F F
0.6 F F F F F F F F F F F
0.7 F F F F F F F F F F F
0.8 F F F F F F F F F F F
0.9 F F F F F F F F F F F
0.99 F F F F F F F F F F F

(b) β = (0.6, 0.7)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) β = (0.7, 0.8)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(d) β = (0.8, 0.9)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F T T T F F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 F T T T T T T T T T F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F T T T T T T T T T F
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F F T T T F F F F
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Table 14: Validation of Latent Graph in Model 3 (Part I) via QInferGraph, where α = 0.9.

(a) β = (0.2, 0.3)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F F F F F F F F
0.1 F F F F T T T F F F F
0.2 F F F F T T T F F F F
0.3 F F F T T T T T F F F
0.4 T T T T T T T T T T F

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F F F T T T T T F F F
0.8 F F F F T T T F F F F
0.9 F F F F T T T F F F F
0.99 F F F F F T F F F F F

(b) β = (0.6, 0.7)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) β = (0.7, 0.8)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(d) β = (0.8, 0.9)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F T T T F F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 F T T T T T T T T T F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F T T T T T T T T T F
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F F T T T F F F F

Table 15: Validation of Latent Graph in Model 3 (Part I) via QInferGraph, where α = 1.

(a) β = (0.2, 0.3)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F F F F F F F F
0.1 F F F F F F F F F F F
0.2 F F F F F F F F F F F
0.3 F F F F F F F F F F F
0.4 F F F F F F F F F F F

p1 0.5 F F F F F F F F F F F
0.6 F F F F F F F F F F F
0.7 F F F F F F F F F F F
0.8 F F F F F F F F F F F
0.9 F F F F F F F F F F F
0.99 F F F F F F F F F F F

(b) β = (0.6, 0.7)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) β = (0.7, 0.8)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F T T T T T T T T T F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F T T T T T T T T T F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(d) β = (0.8, 0.9)

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 F F F F T T T F F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 F T T T T T T T T T F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F T T T T T T T T T F
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F F T T T F F F F
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Part II: Direct Graph In this part we consider direct graphs in Model 3 (Part II), and
we use the same parameters explained in Part I of this section. In all cases for the different
values of α considered, the results show that there is no false positive in this case indicating
the desired causal inference.

Table 16: Validation of Direct Graph in Model 3 (Part II) for β uniformly spaced in the
intervals (0.2,0.3), (0.6,0.7), (0.7,0.8), and (0.8,0.9).

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T

α 0.9 T T T T T T T T T T T
1 T T T T T T T T T T T
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Appendix B. Evaluation on Quantum Causal Synthetic Data:
Depolarizing Quantum Channel (Model 2)

To find the best choice of hyper-parameters in QInferGraph i.e., α and β, we evaluate
the performance of QInferGraph for causal structure discovery in Model 2 by considering
different intervals for the value of β and different values of α. Then, we will discuss the best
choice of α and β in these settings.

Part I: Latent Graph. In this part, we evaluate the performance of QInferGraph for the
identification of latent graphs in Model 2 (Part I) as follows. We run QLatentSearch (Al-
gorithm 1) on 50 different values of β uniformly spaced in the interval (0.2,0.3), (0.6,0.7),
(0.7,0.8), and (0.8,0.9), respectively. QInferGraph (Algorithm 2) calls QLatentSearch, and
for each β the algorithm QLatentSearch is executed for 500 iterations. For different values
of α = 0.7, 0.8, 0.9, 1 the results are summarized in Table 17. In the table, T means that
QInferGraph (Algorithm 2) identifies the latent graph correctly. But, F means that the al-
gorithm fails to identify the latent graph. Our proposed algorithm i.e., QInferGraph works
well where β is in (0.2,0.3), (0.6,0.7), (0.7,0.8), and (0.8,0.9). The results confirm our obser-
vations that we made in Model 3 (Part I). However, in this case QInferGraph has a higher
performance quality, in almost all cases.

Table 17: Validation of Latent Graph in Model 2 (Part I) via QInferGraph, where α =
0.7, 0.8, 0.9, 1 and β ∈ (0.2, 0.3), (0.6, 0.7), (0.7, 0.8), (0.8, 0.9).

p2
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Part II: Direct Graph In this part we consider direct graphs in Model 2 (Part II),
and we use the same parameters explained in Part I of this section. In all cases for the
different values of α considered, the results show that there is no false positive in this case
indicating the desired causal inference. The results, Table 18, indicates that in quantum
noisy channels with very small probability of errors, QInferGraph very likely fails to draw
the right conclusion about the identification of latent confounders.
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Table 18: Validation of Direct Graph in Model 2 (Part II).

(a) β = (0.2, 0.3)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F T T T T T T T T T T
0.8 T T T T T T T T T T T

α 0.9 F T T T T T T T T T T
1 F T T T T T T T T T T

(b) β = (0.6, 0.7)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F F T T T T T T T T T
0.8 T F F T T T T T T T T

α 0.9 F F T T T T T T T T T
1 F F F T T T T T T T T

(c) β = (0.7, 0.8)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F F T T T T T T T T T
0.8 F F T T T T T T T T T

α 0.9 F T T T T T T T T T T
1 F F T T T T T T T T T

(d) β = (0.8, 0.9)

p
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.7 F T F T F T T T T T T
0.8 F T T T T T T T T T T

α 0.9 F F T T T T T T T T T
1 F T T F T T T T T T T
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