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Recently, we proposed a paradigm shift in light confinement strategy showing how relaxed total internal reflection
and photonic skin-depth engineering can lead to sub-diffraction waveguides without metal [Optica 1, 96 (2014)].
Here, we show that such extreme-skin-depth (e-skid) waveguides can counterintuitively confine light better than
the best-case all-dielectric design of high index silicon waveguides surrounded by vacuum. We also establish
analytically that figures of merit related to light confinement in dielectric waveguides are fundamentally tied
to the skin depth of waves in the cladding, a quantity surprisingly overlooked in dielectric photonics.
We contrast the propagation characteristics of the fundamental mode of e-skid waveguides and conventional
waveguides to show that the decay constant in the cladding is dramatically larger in e-skid waveguides, which
is the origin of sub-diffraction confinement. We also propose an approach to verify the reduced photonic skin
depth in experiment using the decrease in the Goos–Hanschen phase shift. Finally, we provide a generalization of
our work using concepts of transformation optics where the photonic skin-depth engineering can be interpreted
as a transformation on the momentum of evanescent waves. © 2015 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (160.3918) Metamaterials.
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1. INTRODUCTION

Conventional optical waveguides confine light by total internal
reflection inside a core surrounded by a cladding with lower
refractive index than the index of the core (ncore > ncladding)
[1]. For dense photonic integration applications, it is desirable
to miniaturize the size of such optical waveguides. However,
when the core size decreases, light is confined weakly inside
the core and decays slowly outside, i.e., the skin depth in
the cladding increases. One approach for reducing the skin
depth is to enhance the contrast between the refractive index
of the core and cladding. However, for isotropic claddings, the
lowest refractive index material that can be used is air, whereas
the highest index is that of silicon. Thus, there is a fundamental
limitation to reduce the size of conventional optical wave-
guides. This size limitation can be surpassed using metallic
claddings [2–4] or epsilon-near-zero metamaterials [5,6], but
because of their high optical losses, it is difficult to use them
in dense photonic integrated circuits.

There are two widely used all-dielectric strategies for light
confinement: photonic crystal and slot waveguides. Photonic
crystal waveguides work based on Bragg reflection [7]. The
waveguide modes in such designs are not scattered at sharp
bends and they can be confined within low index cores. Slot
waveguides confine light in a tiny low-index gap surrounded by
high index dielectrics [8]. However, none of these all-dielectric
confinement strategies is suitable for photonic integration
because of the cross talk [9].

We recently showed that, if a dielectric waveguide is sur-
rounded by a transparent anisotropic cladding, the first propa-
gating TM or hybrid mode can be confined tightly inside the
core irrespective of core size [10,11]. The most striking aspect is
that the required anisotropy can be achieved by lossless dielec-
tric media (all-dielectric metamaterials). Therefore, the propa-
gation length is very long, which is one of the most important
figures of merit (FOM) for designing nano-waveguides.
Simultaneously, we showed that sub-diffraction photonic mode
sizes can be achieved and the cross talk between nano-
waveguides can be reduced substantially.

In this paper, we introduce the concept of momentum
transformation based on the rules of transformation optics
(TO) to shed additional light on the phenomenon of relaxed
total internal reflection to confine light (Section 1). We show
that momentum transformations can be applied to a waveguide
with an arbitrarily shaped cross section. Because of this trans-
formation, the guided mode is confined strongly and it is quasi
transverse electromagnetic (quasi-TEM). Unlike other wave-
guides which support TEM modes [12,13], these waveguides
do not need two reflectors or perfect conductors (Sections 2
and 3). We illustrate that even nonmagnetic anisotropic clad-
dings can outperform a vacuum in terms of confinement
(Section 4). We also explore in full detail the properties of
one-dimensional e-skid waveguides (Section 5). Our key result
is that all figures of merit related to light confinement in wave-
guides is connected to the skin depth of light in the cladding,
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a quantity surprisingly unengineered in dielectric photonics.
We calculate the propagation constant and the decay constant
dispersion of an e-skid waveguide to show that the skin
depth in the cladding is reduced dramatically because of the
anisotropy. We present analytical expressions for three well-
known figures of merit to compare e-skid waveguides with
conventional dielectric slab waveguides in terms of light con-
finement (Section 6). Finally, we show that reducing the skin
depth also causes Goos–Hänchen phase shift reduction at the
interface, which is useful for verifying the skin depth experi-
mentally (Section 7).

2. RELAXED TOTAL INTERNAL REFLECTION

We look for the solution for light confinement using the rules
of TO which state that Maxwell’s equations written in a trans-
formed coordinate system preserve their original form if the
material parameters are renormalized [14,15]. We introduce
the concept of transforming optical momentum, the physical
quantity that governs whether a wave propagates or decays
in a medium. We emphasize that this approach, in contrast
with previous approaches which primarily dealt with propagat-
ing waves [15–17], allows control over evanescent waves which
is necessary for waveguiding. If a Cartesian mesh in a region of
empty space is transformed according to x 0 � f 1�x�,
y 0 � f 2�y�, and z 0 � f 3�z�, the optical momentum of propa-
gating or evanescent waves in the region is then transformed to
(see Appendix A)

k2x 0

h2x
�

k2y 0

h2y
� k2z 0

h2z
� k20; (1)

where the coordinate transformation is characterized by the
Jacobian matrix diag�∂f 1∕∂x; ∂f 2∕∂y; ∂f 3∕∂z� � diag�hx 0 ; hy 0 ;

hz 0 �, and the transformed wave vector k⃗ � �kx 0 ; ky 0 ; kz 0 � and
k0 � 2π∕λ � ω∕c is the free space wave vector. The optical
momentum transformation, in comparison with the dispersion
relation for a vacuum, is found to be kx 0 � hxkx , ky 0 � hyky
and kz 0 � hzkz . The transformation of optical momentum is
a general technique and is valid for arbitrary homogeneous
media which support plane wave solutions. However, the
boundary conditions related to continuity of tangential
momenta are sensitive to the curvature and roughness of the
boundary. In this paper, we use the continuity of tangential
momenta across smooth interfaces in both the one-dimensional
and two-dimensional cases.

We now revisit the conventional light guiding mechanism
of total internal reflection at the interface of two dielectrics us-
ing momentum transformations. A plane wave travelling in a
vacuum (region I) is partially reflected back at x � 0 because
there is a discontinuity in the “electromagnetic grid” represent-
ing optical space (Fig. 1). Electromagnetic boundary conditions
require the tangential momentum and, hence, the phase to be
continuous across this interface (kz1 � kz2). For a given wave

incident in a particular direction with k⃗ � �kx1; ky1; kz1�, the
ray can be completely reflected back if the transformed momen-
tum in the tangential direction kz1∕hz exceeds the maximum
possible momentum in the medium (k2z1∕h2z > k20) [Fig. 1(a)].
This causes the wave to decay away along the x-direction in

region x > 0. Since kz1 < k0, we arrive at the condition for
the possibility of total internal reflection that the transforma-
tion should be such that hz < 1. We note that this condition
is different from the well-known condition of n1 > n2 as a
condition for total internal reflection of light moving from
medium 1 to 2. When the second medium is uniaxial and
the optical axis is perpendicular to the interface, the condition
is in fact reduced to

n1 > n2x : (2)

Equation (2) holds for the incident angle (θ) greater than
θc � sin−1�n2x∕n1�, where � n2x n2z n2z � is the refractive
index tensor of the second medium and x axis is normal to
the interface. The interface lies in the y–z plane. We termed
this condition as relaxed total internal reflection (relaxed TIR),
[10] since it leaves a degree of freedom unexplored: the
perpendicular component of the dielectric tensor.

For this set of transformations that cause total internal re-
flection, the wave extends evanescently into the second
medium. Note that the total internal reflection is governed by
the momentum transformation only in the z direction and not
the x direction. Using this additional degree of freedom, we
transform the optical momentum of evanescent waves to lead
to enhanced confinement of the wave in the region with x > 0
[Fig. 1(b)]. We choose a transformation that compresses the
optical grid along the x direction with hx ≫ 1. This increases
the momentum of the wave along the x direction and, hence,
causes a faster decay of evanescent waves in region II. Note that
this momentum transformation is valid for both polarizations,
but requires optical magnetism which is difficult to achieve. For
nonmagnetic media and TM polarized light, we can arrive at an
all-dielectric condition:

n2z ≫ 1; (3)

to increase the momentum of evanescent waves i.e., make
them decay faster confining them very close to the interface
[Fig. 1(b)]. The skin depth for transparent media at TIR in
the second medium is defined as

Fig. 1. Phenomenon of refraction and reflection revisited using
transformation of optical momentum. The rays of light are reflected
and refracted at an interface since the mesh representing electromag-
netic space has a discontinuity. (a) Total internal reflection can be
viewed as a transformation of optical momentum. When grid sizes
in the second medium become large enough, the incident ray is re-
flected totally and evanescently decays in the second medium.
(b) Only one component of the dielectric tensor controls the total
internal reflection condition. By transforming the space in the other
direction, we can control the momentum of evanescent waves and,
consequently, decrease penetration depth in the second medium.
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δ�θ� � 1

k2x
� n2x

n2z

1

2k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n1 sin�θ��2 − n22x

p ; (4)

which immediately reveals that, by increasing n2z , we can con-
fine the evanescent wave decay in the second medium (k2x) and
hence reduce its skin depth (δ).

Note that we have decoupled the total internal reflection
criterion (n1 > n2x � ffiffiffiffiffiffi

ε2x
p

) from the momentum transforma-
tion condition (n2z ≫ 1) so they can be achieved simultane-
ously leading to a fundamentally new approach to light
confinement in transparent media [Fig. 1]. In essence, our
nonresonant transparent medium alters the momentum of light
entering it, and we emphasize that the above set of transforma-
tions can be achieved by all-dielectric media (n > 1).

3. QUASI-TEM WAVEGUIDE

We now apply the momentum transformation to surround an
infinitely long glass rod with arbitrarily shaped cross section
(A ≪ λ2). The electromagnetic grid has a finite width and
ideally needs to achieve hx; hy ≫ 1 and hz < ncore to allow
for the lowest-order mode (HE11) to travel inside the glass core
and bounce off by total internal reflection, but simultaneously
decay away rapidly causing sub-diffraction confinement of the
mode (Fig. 2). This transformation also causes the longitudinal
components of fields, in comparison to the transverse ones, to
go zero. Indeed, the electric and magnetic fields for the trans-
formed waveguide can be related to the untransformed ones as

Ex 0

Ez 0
� hx

hz

Ex

Ez
� γ

Ex

Ez
and

Hx 0

Hz 0
� hx

hz

Hx

Hz
� γ

Hx

Hz
; (5)

and because of the large confinement factor (γ), the longi-
tudinal field components become negligible. Thus, the trans-
formed propagating mode is a quasi-TEM mode and, in
contrast to conventional waveguides at low-frequencies, it does
not need two reflectors or perfect conductor boundaries.
Figures 3(a) and 3(b) show the simulation results of magnetic
and electric field vectors, respectively, for a sub-diffraction
arbitrarily shaped glass waveguide with average radius of

0.1λ covered by a transformed cladding (hx � hy � 5 and
hz � 1.2). The simulations have been done by the finite inte-
gration technique (FIT) commercial software CST Microwave
Studio™ [18]. Note that we have used the relaxed condition
of hz � 1.2, since the inner medium is glass and not air. It
can be seen that fields are concentrated in the low-index
sub-diffraction dielectric. Furthermore, these fields are almost
transverse to the propagation direction which is evident from
the vector directions in Fig. 3.

The class of artificial media that leads to these momentum
transformations will have εx ; εy < εglass and μx ; μy < μglass,
while μz ; εz ≫ 1. Note that we also have εx � μx , εy � μy
and εz � μz , thus allowing single-mode propagation in spite
of the anisotropy. We term this class of artificial media as dual
anisotropic giant birefringent metamaterials. If the waveguide
cross section is circular, the dispersion relation is expressed as
(see supplementary information of [10] for details)8>>><
>>>:

J 0n�u�
uJn�u� � −

�
μ2⊥
μ1

� ε2⊥
ε1

�
γ2K 0

n�w�
2wK n�w�

�
h�

μ2⊥
μ1

− ε2⊥
ε1

�
2
�

γ2K 0
n�w�

2wK n�w�
�
2 � n2β2

ε1μ1k20

�
1
u2 �

�
γ
w

�
2
�
2
i1
2

u2 �
�
w
γ

�
2 � �k0a�2�ε1μ1 − ε2⊥μ2⊥�

; �6�

where a is radius, u � kρ1a, w � kρ2a, μ2⊥ � μ2ρ � μ2ϕ,
ε2⊥ � ε2ρ � ε2ϕ, γ2 � ε2z∕ε2⊥ � μ2z∕μ2⊥, Jn and K n are
nth-order of the Bessel function of the first type and the modi-
fied Bessel function of the second type, respectively, and β is
the propagation constant. Although momentum transforma-
tions, unlike conventional TO applications, can be fulfilled by
homogenous materials, the cladding must be dual-anisotropic
which is very difficult to implement at optical frequencies.
However, general dual-anisotropic structures can be imple-
mented at terahertz or microwave frequencies [19].

With a nonmagnetic cladding, we can transform only the
electric field momentum in the cladding. However, even this
reduced implementation can control the skin depth in the clad-
ding and confine energy inside the core. As we display in the

<1<1hz

hyhx

z
x

y

>>>>1,

Fig. 2. Light confinement inside a low-index two-dimensional
dielectric waveguide using metamaterial claddings; confining a guided
wave inside a transparent low index dielectric with arbitrary cross
section. The momentum transforming cladding surrounding the core
leads to simultaneous total internal reflection and rapid decay of evan-
escent waves outside the core.

Fig. 3. Simulated (a) magnetic and (b) electric fields across the cross
section of the waveguide and along the longitudinal direction. The
core consists of a sub-diffraction fiber glass with an average radius
of 0.1λ covered by a transformed cladding (hx � hy � 5 and) with
a size twice as large as the core size. The results show that the electric
and magnetic components along the waveguide axis are negligible, so
the propagating mode is almost TEM. This is in stark contrast to the
HE11 mode of an optical fiber which has both transverse and longi-
tudinal components of the electric field. The transformed cladding
also causes the power confinement inside the core to increase from
1% to 55%. We have used CST Microwave Studio to obtain simu-
lation results.
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next section, one set of nonmagnetic media which can cause the
momentum transformation are anisotropic homogenous dielec-
tric materials with εx � εy < εcore and εz ≫ 1. The dispersion
relation for circular waveguide with nonmagnetic anisotropic
claddings can be found from [10]8>>>>><
>>>>>:

J 0n�u�
uJn�u� � −

�
γK 0

n

�
w
γ

�
2wK n

�
w
γ

�� ε⊥2γ
2K 0

n�w�
2ε1wK n�w�

�

�
	�

γK 0
n

�
w
γ

�
2wK n

�
w
γ

� − ε⊥2γ
2K 0

n�w�
2ε1wK n�w�

�
2

� n2β2

ε1k20

�
1
u2 �

�
γ
w

�
2
�
2

1

2

u2 � �
w
γ

�
2 � �k0a�2�ε1 − ε⊥2�

: �7�

Using the above dispersion relations along with the waveguide
parameters, we can solve for the fields of a circular waveguide
with anisotropic claddings (see also supplementary information
of [10] for details).

4. BETTER THAN VACUUM?

It is commonly believed that, to confine light inside dielectric
waveguides, we should increase the contrast between indices of
the core and the surrounding medium. At optical communica-
tion wavelengths, silicon has one of the highest refractive in-
dices among lossless dielectrics. Thus, it is widely accepted
that a silicon waveguide in a vacuum can confine light better
than any other lossless waveguide [Fig. 4(a)]. However, if we

cover the silicon core with a transparent anisotropic dielectric as
demonstrated in Fig. 4(b), the waveguide can confine the first
HE mode better than the conventional waveguide. To satisfy
the relaxed TIR condition, we must have εx � εy < εSi and, for
strong confinement, εz should be as large as possible (εz � εSi
in this case). The x component of the electric field of the two
waveguides is compared in Figs. 4(c) and 4(d). It is seen that
the transparent anisotropic cladding outperforms the vacuum
cladding waveguide by a factor of 15 in terms of the mode area.
The radius of the silicon core for both waveguides is the same
(r � 0.07λ). The anisotropic cladding causes increased power
confinement from below 2% to 30%.

5. ONE-DIMENSIONAL EXTREME SKIN-DEPTH
WAVEGUIDE

Skin-depth engineering can also be applied to one-dimensional
dielectric waveguides leading to sub-diffraction light confine-
ment inside the core. If the slab size is small enough, the fun-
damental TE and TM modes propagate with no cutoff. These
modes in conventional waveguides leak considerably into the
cladding and are confined poorly inside the core.

We can implement transparent anisotropic metamaterials
as the cladding of conventional one-dimensional slab wave-
guides to decrease the skin depth in the cladding for the first
TM mode [Fig. 5(a)]. To allow waveguiding by total internal
reflection, the cladding index perpendicular to the propagation
direction (x) must be less than the core index. We can simul-
taneously control the skin depth in the cladding by increasing
the cladding index parallel to propagation direction (z). The
electric field profile of an e-skid waveguide and slab waveguide
operating at telecommunication wavelength (λ � 1550 nm)
are compared in Fig. 5(b). For the slab waveguide, we chose
the highest achievable contrast between the core and the clad-
ding index (inset). We see that a considerable amount of power
lies outside the waveguide because the core is small, compared
to the operating wavelength. However, if we use the anisotropic
cladding, light is strongly confined inside the core. As is shown
in Fig. 6, if we decrease the contrast between the core and clad-
ding indices of a conventional slab waveguide, the power con-
fined in the core is significantly lower. However, if we increase
the cladding index only in the z direction, we can enhance the
confinement. Note that ε2z can even be larger than ε1.

0

0.5

1

Si Si

Vacuum Anisotropic 
Cladding

x

y

(a) (b)

(c) (d)

1.2xx yy Siε ε ε= = <
zz Siε ε=

1ijμ =

Anisotropic 
Cladding

Vacuum

Fig. 4. Is the transparent anisotropic cladding better than vacuum
cladding for confinement? (a) It is known that a silicon waveguide in a
vacuum is the best waveguide for low-loss power confinement at op-
tical frequencies. (b) However, we conclusively prove that, if the clad-
ding is strongly anisotropic, light confinement can be increased
substantially. (c) The x-component of the electric field of HE11 mode
for silicon waveguide in a vacuum. The core radius is r � 0.07λ. Less
than 2% of the power is confined inside the silicon core. (d) The
x-component of the electric field of HE11 mode for the same wave-
guide surrounded by an anisotropic cladding (εx � εx � 1.2 < εSi
and εz � εSi � 12). The cladding helps to confine up to 30% of
the total power inside the core. The figures are obtained from solving
for the fields and the dispersion relation in Eq. (7).

Fig. 5. (a) Schematic representation of a one-dimensional e-skid
waveguide. (b) Normalized electric field of a silicon e-skid waveguide
with a size of 200 nm operating at 1550 nm. The cladding is aniso-
tropic with ε2x � 1.2 and ε2z � 12. Light decays faster in the aniso-
tropic cladding in comparison with air (inset) which has the lowest
refractive index.

Research Article Vol. 32, No. 7 / July 2015 / Journal of the Optical Society of America B 1349



We now contrast the propagation characteristics of e-skid
waveguides with conventional waveguides, emphasizing the
key differences.

A. Propagation Constant

Figure 7(a) displays the propagation constant dispersion for an
e-skid waveguide and a conventional slab waveguide. It is seen
that the dispersion is very similar for the two waveguides. Note
that the propagation constant cannot be larger than the wave
vector in the core (β < k0ncore) because the light is guided in
the core by total internal reflection for both cases. Thus, the
sub-diffraction confinement in e-skid waveguides is fundamen-
tally different from surface wave approaches.

B. Decay Constant

The key aspect of e-skid waveguides is that the decay constant
in the cladding can exceed the maximum value that can be

achieved by an isotropic dielectric cladding. The exact value for
the decay constant in the cladding (k2x) can be calculated from
two coupled nonlinear equations (see Appendix B). However, if
k0a ≪ 1 (a is the core size), k2x can be approximated as

k2x �
1

δcladding
≅
ε2z
ε1

a�ε1 − ε2x�k20; (8)

where ε1 and � ε2x ε2z ε2z � are the permittivity of the core
and cladding, respectively. We see that as the anisotropy in
cladding increases (ε2z ≫ 1), the mode decays faster in the
cladding, and the skin depth (δcladding) decreases. The decay
constant dispersion in the cladding is plotted in Fig. 7(b).
The decay constant in the e-skid cladding is dramatically larger
than the decay constant in the isotropic cladding. This means
that the skin depth is extremely low and, consequently, the
mode can be confined strongly below the diffraction limit of
light inside the core. In the next section, we use three figures
of merit to compare the confinement in e-skid waveguides with
that in conventional slab waveguides.

6. FIGURES OF MERIT

We use three figures of merit for measuring confinement in
one-dimensional e-skid waveguides: mode length, power in
the core, and mode width. Here, we show that, if the core size
is smaller than the skin depth, the confinement in all figures of
merit is proportional to the skin depth in the cladding
(δcladding � 1∕k2x), where k2x is the decay constant of the first
TMmode in the cladding. These three FOMs clearly show that
e-skid waveguides exhibit a larger confinement than conven-
tional waveguides.

A. Mode Length

Mode length is derived from the concept of mode volume in
quantum optics for one-dimensional structures. It is commonly
used for plasmonics and slot waveguides. Mode length is de-
fined as the ratio of the total mode energy and mode energy
density peak [4] as Lm � R

∞
−∞ W �x�dx∕maxfW �x�g, where

W �x� is the time-averaged electromagnetic energy density
(see Appendix B). If k0a ≪ 1, the mode length can be approxi-
mated as

Lm ≅
2δcladding � a�1� ε2x∕ε1�

1� ε2x∕ε1
; (9)

where δcladding is determined from (8). The mode length for an
e-skid waveguide with glass core and anisotropic cladding of
εx � 1.2 and εz � 15 is plotted in Fig. 8(a), in comparison
with a conventional glass slab waveguide and air cladding.
The mode length is normalized to the diffraction limit of light
in the core (λ∕2ncore). It is seen clearly that the diffraction limit
is surpassed because of the extremely small skin depth in the
anisotropic cladding. The numerical calculation of the mode
length for the e-skid waveguide is also plotted, and there is
an excellent agreement with the analytical calculations when
the core size is small enough. If the core size is smaller than
the skin depth, the second term in the numerator vanishes
and the mode length becomes proportional to the skin depth.
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Fig. 6. Power confinement versus cladding index. The core is silicon
(εc � n2c � 12) with a size of 200 nm operating at λ � 1550 nm.
(a) The cladding is isotropic. If the contrast between the core and clad-
ding index increases, a larger fraction of the total power is confined
inside the core. (b) The cladding is anisotropic with εx � 1.2. As
the anisotropy of the cladding is enhanced, more power is confined
inside the core. Thus, the conventional waveguide and e-skid wave-
guide show fundamentally different behavior with increasing cladding
index. The power is defined through the electromagnetic energy den-
sity defined in Appendix B and can be obtained by solving for the
fields of a slab waveguide with anisotropic cladding.
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Fig. 7. (a) Propagation constant (β) dispersion of the first TMmode
normalized to the core size (a). (b) The decay constant dispersion of
the first TM mode in the cladding. The core is glass. The isotropic
cladding is air, and the anisotropic cladding has a permittivity of εx �
1.2 and εz � 15. The propagation constant cannot exceed the light
line in the core and cladding because we are dealing with bulk wave-
guide modes, and not surface modes. Note, however, that the decay
constant in the anisotropic cladding can exceed the upper limit of the
isotropic cladding.
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B. Mode Width

Although the mode length is a good measure of confinement
for comparing waveguides with similar field profiles, it is not a
fair figure of merit to compare different classes of waveguides,
since mode length strongly depends on the peak energy density.
If the field profile is not uniform, the mode length does not give
any information about the size of the mode. For example, in
slot waveguides, the energy density peaks in a very tiny gap
surrounded by high index dielectrics [8], so the mode length
for slot waveguides achieves sub-diffraction values (Lm ∼ 0.1λ∕
2ncore). However, the mode decays very slowly outside. Thus, it
cannot be used in dense photonic integrated circuits because of
the cross talk. Berini [20] has defined mode width as a measure
of confinement for applications where the size of the mode is
important, e.g., photonic integration. Mode width is the width
at which the field intensity falls to 1∕e of the maximum field
intensity:

δw � a� 2∕k2x � a� 2δcladding : (10)

If the skin depth reduces, the mode decays faster in the cladding
and the mode width decreases. The mode width of the e-skid
waveguide is compared with the conventional slab waveguide in
Fig. 8(b). The structure is the same as the structure in Fig. 7(a),
and results are normalized to the diffraction limit of light in

glass. E-skid waveguides have a smaller mode width and can
surpass the diffraction limit.

C. Power in the Core

Another figure of merit for confinement is the fraction of power
in the core. An ideal confinement is when all of the power is in
the core area and the cladding carries no power. If k0a ≪ 1, the
ratio of power in the core and power in the cladding can be
approximated as

Pcore

Pcladding

≅
a

2δcladding

�
1� ε2x

ε1

�
: (11)

As the skin depth decreases, a larger fraction of the total power
is confined inside the core. The ratio of power in the core and
total power (in percent) are plotted in Fig. 8(c) for the e-skid
waveguide and slab waveguide. The numerical calculation of
the power is also plotted for comparison and an excellent agree-
ment is observed.

7. GOOS-HÄNCHEN PHASE SHIFT

The key building block for e-skid photonics is transparent
anisotropic metamaterials. Designs for transparent metamate-
rials utilizing only semiconductors were provided in our
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previous work [10]. Here, we outline how to verify the concept
of extreme skin depth using the Goos–Hänchen phase shift.

Total internal reflection of a beam causes a lateral displace-
ment which is known as Goos–Hänchen phase shift [21]. If
the skin depth at total internal reflection decreases, the Goos–
Hänchen phase shift decreases as well.

If the entire angular spectrum of the beam is above the
critical angle and the center of spectrum is at θ0, the Goos–
Hänchen phase shift can be calculated as [22]

D � −
λ

2π

dφ�θ�
dθ

����
θ�θ0

; (12)

where φ�θ� is the reflection phase of an incident plane wave at
the incident angle of θ. The reflection coefficient is
r � Hr

y∕Hi
y � �k1xε2z − k2xε1�∕�k1xε2z � k2xε1�, where k1x

and k2x are optical momenta normal to the interface between
two dielectrics, and Hi

y and Hr
y are total magnetic field of the

incident and reflected waves, respectively. The reflection am-
plitude and phase at the interface of glass and a transparent
anisotropic metamaterial (ε2x � 1.2 and ε2z � 20) boundary
are compared with that at the interface of glass with an isotropic
low-index dielectric in Figs. 9(a) and 9(b), respectively. Above
the critical angle where k2x is imaginary, if ε2z increases, the
reflection phase reduces because the imaginary part of reflection
coefficient becomes negligible in comparison with the real part.
Thus, according to (12), the Goos–Hänchen phase-shift de-
creases with the skin depth. The Goos–Hänchen phase shift
of a light beam versus ε2z is plotted in Fig. 9(c). We assume
that the center of the incident beam’s angular spectrum is 1%
above the critical angle, and all of the angular spectrum com-
ponents are greater than the critical angle.

8. CONCLUSION

In summary, we have shown that it is possible to reduce the
skin depth using transparent anisotropic metamaterials. Three
figures of merit were calculated analytically to show that e-skid
waveguides outperform conventional waveguides in terms of
light confinement. We showed that the Goos–Hänchen phase
shift is reduced in transparent anisotropic metamaterials, a key
signature for experimental verification of the skin depth. We
also introduced the method of momentum transformations
to explain relaxed total internal reflection. Photonic skin-depth
engineering can emerge as an important design principle for
sub-diffraction optical devices.

APPENDIX A: TRANSFORMING THE
MOMENTUM OF LIGHT

Here, we outline the derivation of the dispersion relation when
the coordinate system is transformed. The time-harmonic
source-free Maxwell’s equations in general coordinate system
can be written as [14](

1
hihj

h
∂
∂ξi

�hjH j� − ∂
∂ξj

�hiH i�
i
� −iωεkEk

1
hihj

h
∂
∂ξi

�hjE j� − ∂
∂ξj

�hiEi�
i
� �iωμkHk

; �A1�

where �ξi ; ξj ; ξk � are generalized coordinate components,
�hi; hj; hk � are dimensionless Jacobian matrix coefficients, Ei

and Hi are electric and magnetic fields vector in ξi direction,
and εi and μi are tensor components of permittivity and per-
meability, respectively. If the material parameters and fields
are changed according to the Jacobian matrix coefficients,
Maxwell’s equations are invariant. This can be used to control
light propagation, also known as transformation optics (TO)
theory [14,15]:

εnewi � hjhk
hi

εoldi ; μnewi � hjhk
hi

μoldi

Enew
i � hiEold

i ; H new
i � hiH old

i : (A2)

Here, we show that when the coordination system is trans-
formed, the dispersion relation which governs optical momen-
tum is also transformed accordingly. This is important for
controlling evanescent waves. We first find the plane wave sol-
ution (i.e., Ei � Ei0ei�kiξi�kjξj�kkξk�, Hi � Hi0ei�kiξi�kjξj�kkξk�)
of (A1): ( ki

hi
H j0 −

kj
hj
H i0 � −iωεkEk0

ki
hi
E j0 −

kj
hj
E i0 � �iωμkHk0

; �A3�

which can be written simply in three sets of independent equa-
tions. Assume that the original system is a vacuum which we
express in terms of regular Cartesian coordinates. The equa-
tions in the new coordinate system �x 0; y 0; z 0� must be in the
following form which leaves Maxwell’s equations invariant:2
66664
k20 −

k2
y 0
h2y
−
k2
z 0
h2z

kx 0 ky 0
h2y

kx 0 kz 0
h2z

kx 0 ky 0
h2x

k20 −
k2
x 0
h2x
−
k2
z 0
h2z

ky 0 kz 0
h2z

kx 0 kz 0
h2x

ky 0 kz 0
h2y

k20 −
k2
x 0
h2x
−
k2
y 0
h2y

3
77775
2
4Ex 00
Ey 00
Ez 00

3
5� 0: (A4)

The determination of the above matrix must be zero for non-
zero fields, which leads to the following dispersion relation:

k2x 0

h2x
�

k2y 0

h2y
� k2z 0

h2z
� k20: (A5)

This equation shows that, when the fields are transformed,
the isofrequency (dispersion) curve is also transformed and
the momentum in the new system is related to the old one
as kx 0 � hxkx , etc. Note that, although constitutive parameters
are anisotropic in general, the momentum transformation for
both polarizations is the same. We term such media as dual
anisotropic i.e., εnewi

εoldi
� μnewi

μoldi
.

APPENDIX B: ONE-DIMENSIONAL E-SKID
WAVEGUIDE

The magnetic field of the fundamental TM mode which prop-
agates in the z direction in a one-dimensional e-skid waveguide
can be written as

Hy � H 0

�
cos�k1xx�eiβz ; jxj < a

2

cos
�
k1x a

2

�
e−k2x jx−

a
2jeiβz ; jxj > a

2

; (B1)

where a is the core size, H 0 is the magnetic field amplitude at
the center, β is the propagation constant, and
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�
β2 � k21x � k20ε1
β2

ε2x
−

k22x
ε2z

� k20
: �B2�

The waveguide is invariant in the y direction. Thus, the electric
field in the x and z directions can be calculated as

Ex �
1

iωε0εx

∂Hy

∂z

� βH 0

ωε0

� 1
ε1

cos�k1xx�eiβz ; jxj < a
2

cos �k1x a2�
ε2x

e−k2xjx−a2jeiβz ; jxj > a
2

(B3a)

Ez �
−1

iωε0εz

∂Hy

∂x

� H 0

iωε0

� k1x
ε1

sin�k1xx�eiβz ; jxj< a
2

sgn�x� k2x cos�k1x
a
2�

ε2z
e−k2x jx−

a
2jeiβz ; jxj> a

2

: (B3b)

If we apply a boundary condition at x � a∕2 and eliminate
β from Eq. (B2), we can derive the wave vectors using the
following coupled nonlinear equations:�

k2xa � ε2z
ε1
k1xa tan�k1xa�

�k1xa�2 � ε2x
ε2z

�k2xa�2 � �k0a�2�ε1 − ε2x� ; �B4�

which can be solved numerically. However, if k0a ≪ 1, we can
approximate k2x as Eq. (6) and the time-averaged electromag-
netic energy density as

W � 1

2
�B:H	 � D:E	�

≅
1

2
H 2

0

(
μ� β2

ω2ε0ε1
; jxj < a

2�
μ� β2

ω2ε0ε2x

�
e−2k2xjx−a2j; jxj > a

2

: (B5)

Since k0a ≪ 1, the mode is guided weakly by the core. Hence,
we can approximate the propagation constant as β ≅ k0

ffiffiffiffiffiffi
ε2x

p
.
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