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Abstract: We derive a unified quantum theory of coherent and incoherent energy transfer
between two atoms (donor and acceptor) valid in arbitrary Markovian nanophotonic environments.
Our theory predicts a fundamental bound ηmax =

γa
γd+γa

for energy transfer efficiency arising from
the spontaneous emission rates γd and γa of the donor and acceptor. We propose the control of
the acceptor spontaneous emission rate as a new design principle for enhancing energy transfer
efficiency. We predict an experiment using mirrors to enhance the efficiency bound by exploiting
the dipole orientations of the donor and acceptor. Of fundamental interest, we show that while
quantum coherence implies the ultimate efficiency bound has been reached, reaching the ultimate
efficiency does not require quantum coherence. Our work paves the way towards nanophotonic
analogues of efficiency-enhancing environments known in quantum biological systems.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Using quantum coherence and correlations as a resource has become a fundamental topic of
research in recent years [1,2]. In quantum metrology, quantum correlations are used to go beyond
classical noise measurement limits [3–5]. In quantum thermodynamics, the use of quantum
coherence has been proposed to go beyond the Carnot efficiency limit of classical heat engines
[6–8]. And in quantum biology, landmark experiments have shown long-lived coherence on
the order of hundreds of femtoseconds, suggesting its role in the near-unity energy transfer
efficiency of photosynthetic systems [9–11]. The idea of quantum coherence playing a role in
photosynthesis is intriguing because it indicates that many-body quantum correlations can exist
in ambient conditions with the potential for a wide range of technological applications [12,13].

Energy transfer is typically distinguished as incoherent Förster-type resonance energy transfer
(FRET), or coherent excitation energy transfer. The two regimes occur in the limits, JDD/γtot ≪ 1
and JDD/γtot ≫ 1, involving the ratio of the electronic dipole-dipole coupling JDD to the total
linewidth γtot of each molecule. The total linewidth is a measure of the coupling strength to the
bath’s spin, vibrational or electrodynamic degrees of freedom. In photosynthetic systems, the
system-bath coupling is primarily dominated by vibrations. The complex nature of photosynthetic
systems results in electronic and vibrational coupling strengths varying greatly between the
incoherent and coherent coupling limits. Understanding the role of the environment from the
weak-to-intermediate-to-strong coupling regimes has been an important topic of interest required
to explain experimental observations [14]. In this regard, there has been tremendous progress
in the development of a wide variety of open quantum system frameworks (modified-Redfield,
Hierarchical equations of motion, Polaron-modified master equation) [15–21] that operate under
a wide range of coupling strengths. While a complete understanding of photosynthetic energy
transfer has not been achieved [22], there has been a lot of progress outlining how the environment
can positively influence energy transfer efficiency [15–21,23–27]. Understanding the role of
quantum coherence remains an open problem in photosynthesis, and it is still not clear whether
it does play a role [28,29]. It is possible that other guiding principles give rise to near-unity
efficiencies in photosynthesis.
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Precise control of resonance energy transfer has also emerged as a fundamental topic of
interest in the nanophotonic community. There has been a multitude of theoretical [30–34]
and experimental [35–41] work proposing and demonstrating nanophotonic control of energy
transfer with plasmonic, optical waveguides, and cavity-based systems. Unlike work in the
photosynthetic community, most nanophotonic theories of energy transfer have relied on classical
electrodynamic descriptions or perturbative approaches based on Fermi’s golden rule. While
some authors have provided rigorous quantum electrodynamic formulations, the final analytical
expressions are typically valid in either the weak or strong coupling regimes [42–44]. Moreover,
a unified definition of efficiency has been lacking in nanophotonics where most results use
Förster’s perturbative expression.

In this article, we combine ideas from both communities to develop an exactly solvable
theory for resonance energy transfer from first-principles. We derive a quantum master equation
providing a unified picture of energy transfer dynamics in the coherent and incoherent coupling
regimes applicable in arbitrary Markovian nanophotonic environments. We then solve the model
exactly to derive an analytical expression for the energy transfer efficiency. Our result provides
insight into the role of finely-tuned coupling strengths, dephasing rates, and detuning between
the donor and acceptor required to achieve near-unity energy transfer efficiencies. The central
result of this article is the ultimate efficiency of

ηmax =
γa

γd + γa
. (1)

This provides a fundamental limit to the energy transfer efficiency between two atoms regardless
of coupling strength, quantum coherence and spectral overlap. It also implies the condition
γa ≫ γd is required to achieve near-unity efficiency with the corollary that two identical atoms
will have a maximum efficiency of 50%. To the best of our knowledge, this surprisingly simple and
intuitive result has not been discussed nor derived in the resonance energy transfer literature. We
emphasize this fundamental bound will also apply to quantum transport in the two-chromophore
system relevant to many biological systems.

Interestingly, this bound suggests that the acceptor spontaneous emission rate can be used as a
new degree of freedom to control energy transfer. To illustrate the interplay of these effects, we
predict an experiment to control the efficiency between two atoms above a mirror. We also show
that while quantum coherence implies the ultimate efficiency bound has been reached, reaching
the ultimate efficiency does not require quantum coherence. Ultimately, these results will enable
the design of nanophotonic systems which can mimic quantum biological environments to
enhance energy transfer efficiency.

2. Perturbative energy transfer efficiency

We first briefly describe the expression of perturbative energy transfer efficiency for incoherent
Förster-type resonance energy transfer. This forms a comparison with the unified nonpertubative
definition valid in the weak and strong coupling regimes presented in the next section. The
efficiency of Förster resonance energy transfer is conventionally defined as the ratio of the energy
transfer rate Γda to the total dissipation rate of the donor,

ηet =
Γda

Γda + γd
. (2)

In free-space, the spontaneous emission rate of the donor is γd = d2
dω

3/(3πℏϵoc3). The
energy transfer rate is Γda =

2π
ℏ2 |VDD |

2Jda where Jda is the spectral overlap integral of the
donor emission and acceptor absorption. The resonant dipole-dipole interaction (RDDI),
VDD = ℏ(−JDD + iγDD/2) = ω2

ϵoc2 da · G(ra, rd,ω) · dd, defines the magnitude of the dipole-
dipole coupling. The results are written in terms of the dyadic Green function G(ra, rd,ω)
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containing both near-field Coulombic and far-field radiative contributions. These definitions of
the spontaneous emission and energy transfer rates are based on Fermi’s Golden rule valid in
the incoherent limit. From these relations, we observe that increasing dipole-dipole coupling
(|VDD | → ∞) results in a near-unity energy transfer efficiency, and therefore no fundamental
bound exists for Eq. (2). However, it is worth noting that JDD/γtot ≪ 1 is required in the weak
coupling regime.

3. Non-perturbative energy transfer efficiency

In this article, we follow the extensive work of photosynthetic excitation energy transfer [45,46]
and use the following definition for the energy transfer efficiency,

ηet = γa

∫ ∞

0
ρaa(t)dt, (3)

valid for non-stationary processes such as when the donor is initially in its excited state. This result
is general enough to work in the weak and strong coupling regimes between two atoms. Here,
the energy transfer efficiency is proportional to the time-integrated luminescence originating
from the acceptor. ρaa(t) is the time-dependent density matrix population of the acceptor in the
excited state. More discussions about this definition of energy transfer efficiency can be found in
Appendix B. For many applications, this is a much more useful and intuitive definition for energy
transfer efficiency.

In Appendix A and Supplement 1, we derive the RDDI master equation for two non-identical
atoms of the form, ∂

∂t ρ = i[ρ, Hcoh] + L[ρ], from first principles. The first term involves
the coherent dynamics due to dipole-dipole coupling JDD. The second term is a Lindblad
superoperator describing the incoherent dynamics due to spontaneous emission and pure
dephasing of the donor and acceptor respectively. For the rest of this article, we will ignore
non-local cooperative decay γDD typically associated with superradiant and subradiant effects.
We will explore these effects in a future paper. Our results are general enough to work in any
Markovian bath with a correlation time τc that is much smaller than the relaxation times of
the atoms, τ−1

c ≫ γd, γa, Γda. This extends the range of applicability of this approach beyond
the vacuum case, allowing the consideration of more complicated nanophotonic environments.
Based on derivations in Appendix B, we obtain the following fundamental relation from the
RDDI master equation:

γd

∫ ∞

0
ρdd(t) dt + γa

∫ ∞

0
ρaa(t) dt = 1, (4)

where ρdd(t) is the time-dependent density matrix population of the donor in the excited state.
Physically, this equation determines the probability of detecting a single photon from the two-atom
system, which must equal one in the long-time limit. Equation (4) can be understood as that,
without cooperative decay, this single-photon emission originates from the spontaneous decay of
either the acceptor (with probability γa

∫ ∞

0 ρaa(t) dt) or the donor (with probability γd
∫ ∞

0 ρdd(t) dt).
This result is applicable when a single excitation is initially present in the system. We also
assume that both atoms only decay through the emission of a photon, and contributions arising
from the cooperative decay are negligible. Equation (4) and the RDDI master equation provide
one important insight into the differences between energy transfer efficiency defined in Eq. (2)
and Eq. (3). The perturbative definition in Eq. (2) is only valid for irreversible energy transfer
from the donor to the acceptor in the weak-coupling limit. In contrast, in Eq. (3), the energy
transfer efficiency is defined as the total probability of an acceptor emitting the initial excitation
as opposed to the donor. Since the acceptor and donor are treated symmetrically in time evolution
governed by the RDDI master equation (with different initial conditions, see Appendix A and B),
the definition in Eq. (3) is still valid when reversible energy transfer between acceptor and donor
is taken into account in the strong coupling regime.

https://doi.org/10.6084/m9.figshare.20533446
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Using the RDDI master equation, we are able to find the integrated population
∫ ∞

0 ρaa(t)dt and
simplify Eq. (3) (derivations in Appendix B). A central result of this article is the exact analytical
expression of the energy transfer efficiency Eq. (3) valid in the coherent and incoherent coupling
regimes,

ηet =
Γ̃da

Γ̃da + γd
, (5)

where we define the renormalized energy transfer rate,

Γ̃da =
γaΓda

γa + Γda
. (6)

Surprisingly, we recover the same functional form of Förster’s perturbative energy transfer
rate, Γda =

2π
ℏ2 |VDD |

2Jda, however, the master equation approach allows for an exact solution of
the spectral overlap integral,

Jda =
(γd + γφ,d + γa + γφ,a)/(2π)

(ω̃d − ω̃a)2 + (γd + γφ,d + γa + γφ,a)2/4
. (7)

The overlap integral Jda is equal to the integral of two Lorentzians with resonant frequencies
ω̃d = ωd + δωd, ω̃a = ωa + δωa and linewidths γd + γφ,d, γa + γφ,a respectively. Here, we
introduce γφ,i as the phenomenological dephasing rate for each atom accounting for fluctuations
in the transition frequency. The dephasing rate contributes to an observable linewidth broadening
dominant in ambient temperatures where γφ,i ≫ γi.

While the functional form for the energy transfer rate Γda is similar to conventional FRET
theory, this approach goes beyond the perturbative result by taking into account the modification
of the resonant frequency and linewidth of each atom, δωi = − ω2

ℏϵoc2 di · Re G(ri, ri,ω) · di and
γi =

2ω2

ℏϵoc2 di · Im G(ri, ri,ω) · di, resulting in modified non-perturbative emission and absorption
spectra for the donor and acceptor respectively. In general, the dyadic Green function consists
of vacuum and scattered contributions, reinforcing the applicability of this approach to more
complicated nanophotonic environments.

4. Maximum energy transfer efficiency

The renormalized energy transfer rate (6) arises from the exact non-stationary solution for two
non-identical atoms. The perturbative expression for the FRET efficiency can be recovered
when Γda ≪ γa. This condition suggests Förster’s result is only valid when the acceptor has
a fast enough dissipation rate to ensure irreversible energy transfer. In realistic systems, the
finite dissipation rate of the acceptor will result in a bottleneck effect. The renormalized energy
transfer rate can not exceed the dissipation rate of the acceptor. In the limit of large dipole-dipole
coupling, |VDD | → ∞, the renormalized transfer rate is bounded, Γ̃da → γa. The ultimate bound
(1) for the energy transfer efficiency immediately follows.

The results for the non-perturbative efficiency ηet and the renormalized transfer rate Γ̄da are
shown in Fig. 1 for two atoms in vacuum as a function of separation distance. The renormalized
transfer rate Γ̄da has a r−6 inverse power law dependence until it reaches the bottleneck limit of
γa, at which point the energy transfer efficiency reaches the fundamental bound. For comparison,
we plot the energy transfer efficiency as would be predicted through Förster’s expression (black
line).

In Fig. 2, we provide numerical evidence of the robustness of this bound to atom-atom detuning
∆ = ω̃d − ω̃a as well as dephasing. It is shown that the fundamental efficiency bound can be
approached in the limit of zero detuning, ∆→ 0. For large detuning, the energy transfer rate will
decrease due to poor spectral overlap in the absence of dephasing. As dephasing is increased
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Fig. 1. (a) A donor initially in its excited state will either transfer energy to an acceptor,
or spontaneously emit light with rate γd . Once the energy is transferred to the acceptor,
the energy can either return to the donor or escape into the vacuum with rate γa. The
energy transfer efficiency is defined as the total probability of an acceptor emitting the
initial excitation as opposed to the donor. (b) Using this metric, we find the energy transfer
efficiency will have a fundamental bound as the separation distance between two atoms
decreases (orange curve), in stark contrast to the conventional definition for the FRET
efficiency (black curve). (c) The result can also be understood in terms of the renormalized
transfer rate Γ̃da (orange curve) having a fundamental bound as compared to the energy
transfer rate Γda. We take γa = 2γd giving an ultimate efficiency of ηmax = 2/3.

(see Fig. 2(a)), the energy transfer efficiency reaches a maximum when the following condition is
satisfied

(ω̃d − ω̃a)
2 = (γd + γa + 2γφ)2/4. (8)

Fig. 2. Energy transfer efficiency as function of (a) dephasing rate γφ and (b) atom-atom
detuning ∆ = ω̃d − ω̃a. Note the energy transfer efficiency always remains below the
fundamental bound regardless of coupling strengths, spontaneous emission, dephasing or
detuning. This bound may be reached asymptotically for the case of two atoms with zero
detuning in the limit of small dephasing (green curve left). Black arrow denotes (a) increased
detuning and (b) increased dephasing.
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Here, we have assumed equal dephasing for both atoms, γφ = γφ,d = γφ,a. Condition (8)
corresponds to the optimal emission-absorption spectral overlap. The use of dephasing to enhance
efficiency is often referred to as environment assisted quantum transport (ENAQT).

5. Role of quantum coherence

In general, quantum coherence occurs in the strong coupling regime, |VDD | ≫ γd, γa, γφ. The
strong coupling condition coincides with the condition, |VDD | → ∞, required to achieve the
fundamental bound; therefore, any system with strong coupling and quantum coherence will
operate at an efficiency equal to the fundamental bound (1). However, we emphasize the opposite is
not true: operating near the fundamental bound does not imply the system has quantum coherence.
To demonstrate this effect, we show the population dynamics and efficiency of two distinct systems.
We use Wootter’s concurrence [47], C = max[0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4], to measure quantum

entanglement. Here, λi are the eigenvalues of the operator ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) in descending

order. A concurrence of 1 implies maximally entangled states while a concurrence of zero implies
separable states with zero entanglement. Interestingly, for the non-stationary energy transfer
problem the concurrence is exactly equal to the off-diagonal coherence, C = 2|ρad |, therefore
it serves as a measure of both coherence and entanglement. In Fig. 3(a), the system consists
of a perfectly tuned donor-acceptor pair, ∆ = 0, with zero dephasing. This system achieves
the ultimate efficiency of ηmax = 2/3. The time-dependent concurrence (bottom plot) clearly
shows quantum coherence is present in this system. In Fig. 3(b), we have two detuned atoms
∆/(2π) = 10 THz with large dephasing γφ/(2π) = 4 THz close to the necessary condition (8) for
optimal spectral overlap. Interestingly, the second system exhibits irreversible energy transfer
with negligible concurrence and therefore lacks quantum coherence but nevertheless reaches an
efficiency that lies within 1 percent of the fundamental bound. The clear advantage of quantum
coherence is that it reaches ηmax for longer distances, r = 45 nm, while the detuned system
requires a separation distance of r = 4.5 nm.

Fig. 3. Population dynamics of donor (blue) and acceptor (orange) as well as concurrence
(bottom) used as a measure of quantum coherence. (a) Quantum coherent energy transfer
between two atoms (r = 45 nm) operating at the ultimate efficiency ηmax = 2/3. (b) Irre-
versible energy transfer between two atoms (r = 4.5 nm) operating within 1 percent of the
ultimate efficiency exhibiting negligible quantum coherence.

6. Nanophotonic control of energy transfer efficiency

The fundamental bound (1) suggests a new design strategy for increasing the energy transfer
efficiency based on the control of donor and acceptor spontaneous emission rates. In Fig. 4,
we present a canonical example illustrating how a nanophotonic environment can positively
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influence the energy transfer efficiency between two atoms using a non-resonant silver mirror
eliminating the need for high-Q cavities. Here, we consider donor and acceptor with spontaneous
emission rates in vacuum γ0,a = 2γ0,d = 4πGHz, transition frequencies ωa/(2π) = 545 THz and
ωd/(2π) = 550 THz, and dephasing rates γφ,a = γφ,d = 4π THz. A Drude model with the plasma
frequency ωp/(2π) = 2000 THz and the damping factor λ = 0.005ωp is used for the dielectric
properties of the silver mirror. The basic idea is to use an orientation-dependent Purcell effect
close to the mirror, understood through an image dipole model (inset). A parallel dipole close to a
mirror will form an image dipole with the opposite orientation suppressing spontaneous emission,
while a perpendicular dipole close to a mirror will form a collinear image dipole enhancing
spontaneous emission. This suggests an ideal configuration where the donor is parallel and the
acceptor is perpendicular to the mirror surface (orange curve). The mirror-enhanced efficiency
bound only depends on spontaneous emission rates of the donor and acceptor and can be reached
at approximately 10 nm from the mirror. Note that this configuration is typically forbidden in
free-space, but becomes possible due to image dipole formation.

Fig. 4. Nanophotonic control of energy transfer between two atoms above a silver mirror.
Here, we provide an example of how the environment can positively or negatively influence
the energy transfer efficiency based primarily on the transition dipole moment orientation.
We consider two atoms with spontaneous emission rates γa = 2γd corresponding to a
vacuum bound of ηmax = 2/3. To overcome the vacuum bound, we propose using the
orientation dipole moments of each atom relative to the mirror to control spontaneous
emission rates. The ideal configuration corresponds to a donor parallel to a mirror and an
acceptor perpendicular to a mirror, as it achieves the condition γa ≫ γd around 10 nm from
the mirror. In this scenario, the environment modifies the fundamental bound of the energy
transfer efficiency resulting in an overall enhancement. The opposite configuration (blue)
will decrease the fundamental bound, suppressing the overall energy transfer efficiency.
Results are calculated with the full dyadic Green function for two atoms r = 10 nm apart.

7. Conclusion

To conclude, we derive a fundamental efficiency bound for resonance energy transfer between
two atoms arising in the limit of large dipole-dipole coupling. We use the bound to derive
design principles for controlling energy transfer in nanophotonics and present an exactly solvable
canonical example to illustrate the interplay of these effects. We emphasize this bound ignores the
role of the cooperative decay rate γDD; therefore, future work should focus on its role in altering
the efficiency of energy transfer. Our results pave the way towards a critical understanding of
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the role of the environment in resonance energy transfer using nanophotonic and metamaterial
approaches [48–50]. Future work will focus on developing a rigorous non-Markovian theory
(e.g., see [51]) of energy transfer with wider applicability.

Appendix A: Quantum electrodynamic theory of energy transfer

We use a quantum electrodynamic (QED) theory to describe the interaction between two neutral
atoms in an arbitrary nanophotonic environment. In the dipole approximation, the multipolar
Hamiltonian is composed of three components, H = Hs + Hb + Hint, where

Hs =
∑︂
n=g,e

ℏωn,d |nd⟩⟨nd | +
∑︂
n=g,e

ℏωn,a |na⟩⟨na |,

Hb =

∫
d3r

∫ ∞

0
dω ℏω f̂†(r,ω)f̂(r,ω),

Hint = −d̂d · Ê(rd) − d̂a · Ê(ra),

(9)

Hs describes the two-atom system, Hb the electrodynamic bath, and Hint the electric-dipole inter-
action between each atom’s electric dipole moment d̂k = d̂k

egσ
+
k + d̂k

geσ
−
k and the electrodynamic

field respectively, k = {d, a}. We assume each atom only has two electronic energy levels while
also ignoring multipolar and spin contributions. This Hamiltonian has been derived previously
by several authors and forms the basis of an effective-field/macroscopic quantum electrodynamic
theory valid in arbitrary dissipative media satisfying Kramers-Kronig causality relations [44,52].
Here, f̂†(r,ω)/f̂(r,ω) represent the creation/annihilation operators of the elementary excitations
of matter. In vacuum, f̂†(r,ω) describes the creation of a photon. In macroscopic matter, it
describes the creation of a polariton. These operators satisfy

f̂(r,ω)|{0}⟩ = 0 and f̂†(r,ω)|{0}⟩ = |1(r,ω)⟩,

as well as

[f̂(r,ω), f̂†(r′,ω′)] = δ(r − r′)δ(ω − ω′) and [f̂(r,ω), f̂(r′,ω′)] = 0.

In dissipative quantum electrodynamics, the electric field is defined as

Ê(r,ω) = i

√︄
ℏω4

πϵoc4

∫
d3r′

√︁
ϵ , (r′,ω)G(r, r′,ω)f̂(r′,ω), (10)

written in terms the imaginary part of the inhomogeneous and frequency dependent permittivity,
ϵ(r,ω) = ϵ ′(r,ω) + iϵ ′′(r,ω), as well as the classical dyadic Green function G(r, r′,ω). We
provide exact expressions for the Green function in Appendix D. The electric field is decomposed
in terms of positive-frequency and negative-frequency components, Ê(r) = Ê(+)(r) + Ê(−)(r),
where Ê(+)(r) =

∫ ∞

0 dω Ê(r,ω), while also satisfying the condition [Ê(−)(r)]† = Ê(+)(r). In the
following, we derive the quantum master equation describing the atom-atom dynamics arising
from the Hamiltonian Eq. (9). While such a master equation has been derived before, it is worth
re-visiting the derivation to account for inconsistencies between different models. We will discuss
this subtle point later on. To obtain a closed-form solution without the use of the rotating wave
approximation, we truncate the Hilbert space to the following states,

|d⟩ ≡ |ed, ga, {0}⟩, |a⟩ ≡ |gd, ea, {0}⟩, |g⟩ ≡ |gd, ga, 1(r,ω)⟩, |e⟩ ≡ |ed, ea, 1(r,ω)⟩,

corresponding to an excited-state donor with acceptor and field in the ground-state, an excited-state
acceptor with donor and field in ground-state, a single-excitation in the field with both atoms in
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the ground state, and finally a single field excitation with both atoms in the excited-state. Due to
truncation of the Hilbert space, this approach is not fully non-perturbative and will fail to describe
higher-order multi-photon effects that occur in the ultra-strong coupling regime. In the truncated
Hilbert space, the temporal evolution of the system is captured by the total wavefunction

|ψ(t)⟩ = d(t)|d⟩ + a(t)|a⟩ +
∫

d3r
∫

dω g(r,ω, t)|g⟩ +
∫

d3r
∫

dω e(r,ω, t)|e⟩. (11)

Using the Schrodinger equation, iℏ ∂
∂t |ψ(t)⟩ = H |ψ(t)⟩, we obtain the dynamical equations for

the probability amplitudes,

iℏ
∂d
∂t
= ℏ(ωg,a + ωe,d)d(t) +

∫
d3r

∫
dω

[︁
g(r,ω, t)Vdg + e(r,ω, t)Vde

]︁
, (12)

iℏ
∂a
∂t
= ℏ(ωg,d + ωe,a)a(t) +

∫
d3r

∫
dω

[︁
g(r,ω, t)Vag + e(r,ω, t)Vae

]︁
, (13)

iℏ
∂g
∂t
= ℏ(ωg,a + ωg,d + ω

′)g(r′,ω′, t) + Vgdd(t) + Vgaa(t), (14)

iℏ
∂e
∂t
= ℏ(ωe,a + ωe,d + ω

′)e(r′,ω′, t) + Vedd(t) + Veaa(t), (15)

where we define Vkn = ⟨k|Hint |n(r,ω)⟩ as the interaction coupling coefficient with k = {a, d} and
n = {g, e}. In the following, we present the exact analytical response for the case of two atoms in
a Markovian nanophotonic environment.

Probability amplitude equations of motion. In Supplement 1, we provide the detailed
derivation of obtaining probability amplitude equations of motion for d(t) and a(t) from
Eq. (12)–(15). After simplifying the equations with properties of creation and annihilation
operators and employing Markov approximation, we obtain the following set of coupled differential
equations for the probability amplitudes in the Schrodinger picture,

iℏ
∂d
∂t
= −

[︁
Σ̃e,d + Σ̃g,a

]︁
d(t) − Vdaa(t), (16)

iℏ
∂a
∂t
= −Vadd(t) −

[︁
Σ̃g,d + Σ̃e,a

]︁
a(t). (17)

We have written everything in terms of a modified excited-state self-energy Σ̃e,k = −ℏωe,k+Σe,k,
modified ground-state self-energy Σ̃g,k = −ℏωg,k + Σg,k, and resonant dipole-dipole interaction
(RDDI) Vkk′ = ℏ(−Jkk′ + iγkk′/2), taking into account the bare transition frequencies of both
atoms (k, k′ = {a, d}). The excited-state self-energy is Σe,k = ℏ(−δωe,k + iγk/2), where

δωe,k =
P

ℏϵoπ

∫ ∞

0
dω

ω2

c2

dk
eg · ImG(rk, rk,ω) · dk

ge

ωk − ω
, (18)

γk =
2ω2

k
ℏϵoc2 dk

eg · ImG(rk, rk,ωk) · dk
ge. (19)

The ground-state self-energy is Σg,k = −ℏδωg,k, where

δωg,k = −
P

ℏϵoπ

∫ ∞

0
dω

ω2

c2

dk
ge · ImG(rk, rk,ω) · dk

eg

ωk + ω
. (20)

The resonant dipole-dipole interaction (RDDI) Vkk′ is

γkk′ =
2ω2
+

ℏϵoc2 dk
eg · ImG(rk, rk′ ,ω+) · dk′

ge, (21)

https://doi.org/10.6084/m9.figshare.20533446
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Jkk′ = −
ω2
+

ℏϵoc2 dk
eg · ReG(rk, rk′ ,ω+) · dk′

ge, (22)

Vkk′ = ℏ(−Jkk′ + iγkk′/2) =
ω2
+

ϵoc2 dk
eg · G(rk, rk′ ,ω+) · dk′

ge. (23)

Detailed derivations of Eq. (18)–(23) can be found in Supplement 1. These coupled differential
equations form the main result of this sub-section.

RDDI quantum master equation. Using (16), (17), we find the following set of coupled
differential equations for the populations and coherences,

∂

∂t
|d |2 =

2
ℏ

Re
[︁
i(Σ̃e,d + Σ̃g,a)|d |2 + iVdaad∗

]︁
, (24)

∂

∂t
|a|2 =

2
ℏ

Re
[︁
iVadda∗ + i(Σ̃g,d + Σ̃e,a)|a|2

]︁
, (25)

∂

∂t
(da∗) =

1
iℏ

[︁
−(Σ̃e,d + Σ̃g,a)da∗ − Vda |a|2 + V∗

ad |d |
2 + (Σ̃g,d + Σ̃e,a)

∗da∗
]︁

. (26)

Using the definition of the density matrix ρ = |ϕ⟩⟨ϕ|, it is straightforward to show that these
equations are equivalent to the RDDI quantum master equation,

∂

∂t
ρ = −

i
ℏ
[Hcoh, ρ] −

∑︂
k,k′

γkk′

2
[σ†

kσk′ρ − 2σk′ρσ
†

k + ρσ
†

kσk′], (27)

where the first term contains the coherent Hamiltonian, Hcoh =
∑︁

n=g,e(ωn,d + δωn,d)σ
†

dσd +∑︁
n=g,e(ωn,a+δωn,a)σ

†
aσa+

∑︁
k≠k′ Jkk′σ

†

kσk′ , while the second term contains the relevant dissipative
terms. The RDDI master equation has been derived here for two non-identical atoms. We
emphasize this equation describes coherent coupling between two atoms in a Markovian reservoir
but cannot describe non-Markovian dynamics or multi-photon effects arising from strong-coupling
between the atoms and the electrodynamic bath. In other words, it must operate in a regime where
the frequency shifts and dipole-dipole couplings are much smaller than the transition frequencies
of the atoms (δωk, Jkk′ ≪ ωk,ωk′). Going beyond this regime requires an expansion of the
Hilbert space and corresponds to the ultra-strong coupling regime. To recover the semi-classical
Förster regime, we must include a phenomenological dephasing term for each atom described by
the super-operators, γφ,dLφ,d + γφ,aLφ,a. These terms describe fluctuations in the energy levels
resulting in linewidth broadening and loss of coherence. Explicitly, the dephasing super-operators
acting on the density operator in the single-excitation, excited-state sub-space are

Lφ,d = L[σ̂†

d σ̂d]ρ = −
1
2
⎛⎜⎝

0 ρda

ρad 0
⎞⎟⎠ , Lφ,a = L[σ̂†

a σ̂a]ρ = −
1
2
⎛⎜⎝

0 ρda

ρad 0
⎞⎟⎠ .

Combining the results above, we find the single-excitation populations satisfy

ρ̇dd =
i
ℏ
(Vdaρad − V∗

daρda) − γdρdd, (28)

ρ̇aa =
i
ℏ
(Vadρda − V∗

adρad) − γaρaa, (29)

while the coherences obey

ρ̇da = +iω1ρda +
i
ℏ
(Vdaρaa − V∗

adρdd), (30)

https://doi.org/10.6084/m9.figshare.20533446


Research Article Vol. 30, No. 19 / 12 Sep 2022 / Optics Express 34735

ρ̇ad = −iω∗
1ρad −

i
ℏ
(V∗

daρaa − Vadρdd). (31)

To simplify the equations, we defined ω1 = ∆1 + iγ1, with ∆1 = (ω̃a − ω̃d) and γ1 =
(γd + γφ,d + γa + γφ,a)/2. We have also defined ω̃a = ωa + δωa = (ωe,a −ωg,a)+ (δωe,a − δωg,a),
and ω̃d = ωd + δωd = (ωe,d − ωg,d) + (δωe,d − δωg,d) for notational simplicity.

Appendix B: Non-stationary energy transfer efficiency

In this section, we derive the fundamental relation that provides a unified treatment of the energy
transfer efficiency in the coherent and incoherent coupling regimes. The non-stationary energy
transfer efficiency is obtained by integrating the population Eqs. (28), (29) from 0 to ∞,

ρdd(∞) − ρdd(0) = −1 =
i
ℏ

Vda

∫ ∞

0
ρad(t) dt −

i
ℏ

V∗
da

∫ ∞

0
ρda(t) dt − γd

∫ ∞

0
ρdd(t) dt, (32)

ρaa(∞) − ρaa(0) = 0 =
i
ℏ

Vad

∫ ∞

0
ρda(t) dt −

i
ℏ

V∗
ad

∫ ∞

0
ρad(t) dt − γa

∫ ∞

0
ρaa(t) dt. (33)

We have assumed the donor is initially in the excited state, ρdd(0) = 1, with the acceptor in the
ground state, ρaa(0) = 0. In the long-time limit, the initial excitation leaves the donor-acceptor
system resulting in ρdd(∞) = ρaa(∞) = 0. As adding the population Eqs. (32), (33) yields the
fundamental relation (note that when the cooperative decay is neglected, Vda and Vad are real)
Eq. (4). Physically, this equation determines the probability of detecting a single photon from the
two-atom system, which must equal one in the long-time limit. This result is applicable when
a single excitation is initially present in the system. We also assume that both atoms have unit
quantum efficiency and only decay through the emission of a photon. We emphasize this result is
based on the assumption that contributions arising from the cooperative decay are negligible,
i.e. γda = 0. Neglecting the cooperative decay rate recovers many of the photosynthetic energy
transfer models used in the literature. We will discuss this assumption more thoroughly in a
future manuscript. From Ref. [45], the energy transfer efficiency is defined as Eq. (3), which is
valid in both the coherent and incoherent coupling limits.

Exact solution to the energy transfer efficiency. There are two approaches to finding the
integrated population

∫ ∞

0 ρaa(t′)dt′. The first approach finds the expression for ρaa(t′), then
performs the time integral analytically. We introduce a second approach here. Integrating the
coherence differential equations, (30), (31), from 0 to ∞, we substitute the result into (32), (33),

−1 = −(γ̃d + Γda)ρ̄dd + Γda ρ̄aa, (34)

0 = −(γ̃a + Γda)ρ̄aa + Γda ρ̄dd, (35)
where we have defined ρ̄kk =

∫ ∞

0 ρkk(t′)dt′ for the donor and acceptor respectively k = {d, a}.
We also introduce the bare energy transfer rate,

Γda =
|VDD |

2

ℏ2
(γd + γφ,d + γa + γφ,a)

(ω̃d − ω̃a)2 + (γd + γφ,d + γa + γφ,a)2/4
, (36)

where |VDD |
2 = |Vda |

2. Solving for ρ̄aa, the non-perturbative expression for the efficiency is

η =
Γ̃da

Γ̃da + γd
, (37)

where Γ̃da is the renormalized energy transfer rate

Γ̃da =
γaΓda

γa + Γda
, (38)

as shown in the main paper. This modified energy transfer rate is one of the major results of the
paper highlighting the drastic modification of the energy transfer efficiency compared to previous
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theoretical models. These results imply a fundamental bound for the energy transfer rate and
efficiency as discussed in the main manuscript. Note we have also derived the same analytical
expression using the first approach, i.e. analytically evaluating the time-integral.

Appendix C: Quantum correlations in energy transfer

In the following, we introduce Wooter’s definition of concurrence [47] to describe quantum
entanglement between two qubits.

Concurrence. The general wavefunction describing 2 qubits is

|ψ⟩ = α |ed, ea⟩ + β |ed, ga⟩ + γ |gd, ea⟩ + δ |gd, ga⟩. (39)

An appropriate measure of entanglement, given by the concurrence, is C = 2|αδ − γβ | ≥ 0.
A concurrence of 1 refers to a maximally-entangled state, while C = 0 refers to separable
states. In the energy transfer problem with a single excitation (α = 0), the concurrence is
simply given by C = 2|βγ |. Using the notation of section 1, the time-dependent concurrence is
C(t) = 2|d(t)a(t)|. The result is easily generalized for a density operator describing mixed states.
Here, the concurrence is defined as

C = max[0,
√︁
λ1 −

√︁
λ2 −

√︁
λ3 −

√︁
λ4], (40)

where λi are the eigenvalues of the operator ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) in descending order. For

the non-stationary energy transfer problem where the donor is initially in the excited-state, the
eigenvalues are readily solved analytically giving the final result

C = 2|ρda |, (41)

and is therefore exactly dependent on the coherence between both atoms in the site basis.
Concurrence provides a measure of entanglement as well as coherence, making it an appropriate
choice for studying non-classicality in the energy transfer problem.

Appendix D: Two atoms above a mirror

Free-space Green function. Here, we provide the full Green function expression for two atoms
above a mirror. The dyadic Green function in a bulk medium with refractive index n =

√
ϵ

satisfies the vector wave equation,

∇ × ∇ × Go(r, r′;ω) − ϵ ω
2

c2 Go(r, r′;ω) = 1δ(r − r′). (42)

The homogeneous Green function has a well-known solution (k =
√
ϵ ω/c):

Go(r) =
[︃

1
k2 ∇ ⊗ ∇ + I

]︃
eikr

4πr
(43)

=
eikr

4πk2r3

[︁
(k2r2 + ikr − 1)I + (3 − 3ikr − k2r2)r̂ ⊗ r̂

]︁
−

1
3k2 δ(r)I, (44)

containing both Coulombic near-field (kr ≪ 1) and radiative far-field (kr ≫ 1) components. We
use this result for plotting Fig. 1.

Scattered Green function. In the following, we provide the scattered Green function for
two atoms above a mirror defined through the normal unit vector n = êz. The scattered Green
function is found self-consistently through the use of electrodynamic boundary conditions. It is
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possible to show, upon simplification, that the scattered Green function takes the following form
in cylindrical coordinates [43]

Gs
xx(r) =

i
8πk2

1

∫
dkρ

kρ
kz

e2ikzd
[︁
k2

1J+rs − k2
z J−rp

]︁
, (45)

Gs
xz(r) =

i
8πk2

∫
dkρ

kρ
kz

e2ikzd
[︁
−2ikρkzJ1(kρρ)rp

]︁
, (46)

Gs
zx(r) =

i
8πk2

∫
dkρ

kρ
kz

e2ikzd
[︁
+2ikρkzJ1(kρρ)rp

]︁
, (47)

Gs
zz(r) =

i
8πk2

∫
dkρ

kρ
kz

e2ikzd
[︁
2k2

ρJo(kρρ)rp
]︁

, (48)

where d is the distance of the donor and acceptor from the mirror interface, and ρ is the lateral
separation distance between the donor and acceptor. We also introduced J± = Jo(kρρ) ± J2(kρρ),
where Jn(kρρ) is the cylindrical Bessel function of order n. The Fresnel reflection coefficients for
p and s polarized light are:

rp =
ϵ2kz − ϵkz2
ϵ2kz + ϵkz2

and rs =
kz − kz2
kz + kz2

, (49)

with z-component wavevectors, kz =
√︂
ϵ ω2/c2 − k2

ρ and kz2 =
√︂
ϵ2 ω2/c2 − k2

ρ. The full Green
function integral is evaluated numerically using an adaptive Gauss-Kronrod quadrature. A Drude
model with the plasma frequency ωp/(2π) = 2000 THz and the damping factor λ = 0.005ωp has
been used for the dielectric properties of the silver mirror.
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