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Abstract: We discover the quantum analog of the well-known classical maximum power transfer
theorem. Our theoretical framework considers the continuous steady-state problem of coherent
energy transfer through an N-node bosonic network coupled to an external dissipative load.
We present an exact solution for optimal power transfer in the form of the maximum power
transfer theorem known in the design of electrical circuits. Furthermore, we introduce the
concept of quantum impedance matching with Thevenin equivalent networks, which are shown
to be exact analogs to their classical counterparts. Our results are applicable to both ordered
and disordered quantum networks with graph-like structures ranging from nearest-neighbor to
all-to-all connectivities. This work points towards universal design principles adapting ideas
from the classical regime to the quantum domain for various quantum optical applications in
energy-harvesting, wireless power transfer, and energy transduction.
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1. Introduction

In classical electrical circuit design, the maximum power transfer theorem states that in order
to deliver maximum power to a load from a source with finite internal impedance, Zs, the load
must be designed to have an impedance, Zl, that is equal to the conjugate impedance of the
source, Zl = Z∗

s . This concept known as conjugate impedance matching ensures maximum power
delivery to the load. For a classical circuit consisting of a source, an internal network, and a load,
Thevenin’s theorem can be used to replace the entire network by a single effective source with
an effective internal impedance, Zth, resulting in the conjugate impedance matching condition,
Zl = Z∗

th. This theorem is a textbook example of an engineering principle that guides the design
of electrical circuits, transmission lines, and classical wireless communication networks [1–3].
This principle is often used to maximize the transmission of classical information through a
communications network since optimal signal delivery requires a signal with maximum strength
at the receiving end. It is natural to ask whether similar guiding principles exist for quantum
and nanoscopic systems. In this work, we answer this question affirmatively showing that this
engineering principle, typically used in classical circuit design, is also applicable for a wide range
of bosonic quantum systems, e.g. photons, phonons, and magnons. This points to important
universal design principles for different types of networks, including networks of donors and
acceptors in QED chemistry [4–14] and quantum optical networks of optical fiber cavity [15,16]
with applications in energy transduction, energy transport in turbid media, and energy harvesting
[1,2,15–28]. We note that the concept of maximizing energy transfer is different from the widely
studied problem of quantum information transfer from a sender to a receiver with maximum
fidelity [29].

In this work, we develop a unified framework, based on the Lindblad master equation,
describing power delivery in dissipative quantum networks. We introduce an N-node coupled
bosonic system that is coupled to an external dissipative load, shown in Fig. 1, as the quantum
analog of a classical network. Physically, the quantum network can be thought of as a system
of coupled optical cavities or waveguides or, alternatively, as a system of coupled two-level
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systems operating in the single-excitation regime [7,30,31]. The load can be thought of as an
outcoupling fiber, waveguide, or an external detector. We show that the problem of optimizing
the power delivered to the load can be understood through a quantum version of the maximum
power transfer theorem resulting in the intuitive conjugate impedance matching condition with
effective non-Hermitian Hamiltonians as opposed to classical impedances. In simple form, we
state the quantum maximum power transfer theorem as follows:

Fig. 1. Power transfer model through a dissipative quantum network described by non-
Hermitian Hamiltonian Heff (top) with Thevenin equivalent network (bottom). Maximum
power transfer occurs when the non-Hermitian Hamiltonian of the load is conjugately
matched with the Thevenin equivalent Hamiltonian, Hth. The load may represent an
outcoupling fiber, waveguide, or a detector.

A load connected to a linear dissipative quantum network receives maximum power when the
load Hamiltonian HL is conjugately matched to the Thevenin equivalent Hamiltonian Hth of the
network such that, HL = H∗

th.
Our introduction of the Thevenin-equivalent Hamiltonian arises naturally from the bosonic

properties of the network, described by the Hamiltonian in Eq. (1), which contributes to coherent-
like dynamics and power effects. The dissipative, non-Hermitian, contribution is captured by
Lindblad-like dissipative terms in the quantum optical master equation (Eq. (2)). The results of
this manuscript are valid in the weak and strong coupling regimes thereby taking into account the
possibility hybridization between strongly coupled sites. We also show that the theorem applies
to both ordered or disordered networks with graph-like structures ranging from nearest-neighbor
connectivity to all-to-all connectivity applicable in both the incoherent and quantum coherent
energy transfer regimes.

2. Description of dissipative quantum network

We consider a general model of power transfer through a bosonic quantum network described by
the bare Hamiltonian (ℏ = 1),

H =
∑︂

n
(ωn + δωn)â†nân +

∑︂
n,m

Jnmâ†nâm +
∑︂

n
Ωnâneiωd t + h.c. (1)

The bosonic excitation is described by the operator â†n (ân) which creates (destroys) a boson
at site n with frequency ω̃n = ωn + δωn, satisfying the commutation relations, [an, a†m] = δnm.
δωn represents a frequency shift, a so-called Lamb shift, arising from coupling to the load. The
excitation travels through the network with hopping amplitude Jnm between the nth and mth
nodes. The network nodes are driven by a coherent driving field with frequency ωd and drive
amplitudes Ωn.
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Treating dissipation perturbatively in the Born-Markov limit, the time dynamics of the density
operator ρ is described by the Lindblad master equation,

ρ̇ = −i[H, ρ] +DR[ρ] +DL[ρ]. (2)

The first term on the right represents the coherent evolution of the total system. The second
term, DR[ρ], describes undesirable dissipation of the network to a background reservoir. The
last term, DL[ρ], describes dissipation into an external load. Both terms are explicitly written in
terms of the Lindblad superoperators,

DR[ρ] =
∑︂

n
γn(ânρâ†n −

1
2
{â†nân, ρ}), (3)

DL[ρ] =
∑︂

n
Γn(ânρâ†n −

1
2
{â†nân, ρ}). (4)

The decay rate γn refers to the decay rate of the nth node to the undesirable reservoir, while Γn
represents the decay rate from the nth node to the load. Throughout this manuscript, we work
in regimes where γn, Γn ≪ ωn and memory effects in background bath and load reservoir can
be neglected, consistent with the Born-Markov approximation [32]. The derived results for the
maximum power transfer theorem are therefore only valid when these conditions remain true.
Further considerations would be required to account for either strong couplings between nodes
and reservoirs or non-Markovian effects due to the background and load reservoirs.

3. Power and efficiency

The power flow through the system is obtained from the Hamiltonian equation of motion,
∂t⟨H⟩ = tr(Ḣρ) + tr(H ρ̇) = Pin − Pout [33,34] (also see Appendix A). Under steady-state
conditions, ∂t⟨H⟩ = 0, the quantum network satisfies the power balance relation, Pin = Pout. The
input power Pin = tr(Ḣρ) represents power coupled into the network and is given by

Pin = iωd
∑︂

n
[Ωn⟨an⟩eiωd t −Ω∗

n⟨a
†
n⟩e−iωd t]. (5)

The output power is divided into two major contributions, Pout = PR + PL, corresponding to
power dissipated to the background reservoir, PR = tr (HDR[ρ]) and the power delivered to the
load, PL = tr (HDL[ρ]). As shown in the Appendix A, these equations can be written in the
following form,

PR =
1
2

∑︂
n,m

(γn + γm)
[︂
ωnm⟨a†nam⟩ + ∆nm⟨a†n⟩⟨am⟩

]︂
, (6)

PL =
1
2

∑︂
n,m

(Γn + Γm)
[︂
ωnm⟨a†nam⟩ + ∆nm⟨a†n⟩⟨am⟩

]︂
, (7)

where ∆nm = δnm(ωd − ω̃n + Jnm) − Jnm. We emphasize that the equations above are more general
than typical power expressions derived from classical coupled mode theory. Classical power
typically depends only on the squared amplitude of a particular mode; these expressions include
the contribution from off-diagonal coherences (n ≠ m) [35]. The above equations represent
one of the major contributions of this paper and will be subject to further investigation in the
future. In the following, we consider power transfer in the absence of either dephasing or an
incoherent pump such as a thermal bath. The coherent drive implies the factorization condition,
⟨a†nam⟩ = ⟨a†n⟩⟨am⟩, is exact under steady-state conditions. This can be readily confirmed by
comparing Eqs. (29) and (30) in Appendix B. In this limit, all relevant observables can be written
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in terms of the field amplitudes, ⟨an⟩. Accordingly, the radiated and load power simplify to (see
Appendix B for more details)

PR = ωd
∑︂

n
γn⟨a†n⟩⟨an⟩, (8)

PL = ωd
∑︂

n
Γn⟨a†n⟩⟨an⟩. (9)

As expected from the dynamics of classically coupled harmonic oscillators, the radiated and
load power are proportional to the driving frequency. Finally, we define the energy transfer
efficiency as

η =
PL

Pin
=

PL

PL + PR
, (10)

representing the percentage of power transferred into the load.

4. Thevenin equivalent network

We now show that when a single node, denoted as the Nth node, is connected to the load with all
other nodes having zero coupling to the load, it is possible to rewrite the equations of motion
for the N-node network as a single-node Thevenin equivalent equation of motion. As we show
in the next section, this will allow the solution of the maximum power transfer problem to be
understood as an intuitive impedance matching condition. To demonstrate the existence of a
Thevenin equivalent network, we first write the equations of motion for the field amplitudes in
matrix form (see Appendices B and C),

iΩ∗ = (H̃R +HL)ã, (11)

where the matrix elements of the non-hermitian matrix H̃R are [H̃R]nm = iδnm(ωd −ωn + Jnm) −

iJnm − δnmγn/2, Ω∗ = (Ω∗
1, . . . , 0)T , and ã = (⟨ã1⟩, . . . , ⟨ãN⟩)

T . Here, the tilde represents a
transformation into the rotating frame of the driving laser field. We also introduce HL as a
diagonal matrix representing the non-Hermitian coupling from the Nth node to the load with a
single non-zero diagonal element, [HL]NN = −iδωN − ΓN/2. Equation (11) can be derived from
the Lindblad master Eq. (2) (see Appendices B and C for derivations). In Eq. (11), dissipation into
the environmental bath and load reservoir is contained in H̃R and HL respectively. Repetitive
back substitution in this matrix equation produces the following steady-state equation for the
N-th node,

iΩ(N)

th = H̃th⟨ãN⟩ + [HL]NN ⟨ãN⟩. (12)

This equation defines the Thevenin equivalent representation of the quantum network. H̃th is
interpreted as the Thevenin equivalent energy of the network (as seen the Nth node). Using the
Sherrman-Morrison formula [36], the explicit expression for the Thevenin equivalent energy may
be written as:

H̃th = −iδω̃th − Γth/2 = (eT
NH̃

−1
R eN)

−1. (13)

Interestingly, this shows how the non-Hermitian Hamiltonian of open quantum systems plays
an analogous role to complex impedance in macroscopic electrical circuits. The Thevenin
equivalent energy is the quantum network generalization of the Thevenin impedance.

We also define the Thevenin equivalent drive amplitude, Ω(N)

th , as

Ω
(N)

th =
eT

NH̃
−1
R Ω∗

eT
NH̃

−1
R eN

, (14)

representing the effective amplitude that drives the Nth node. In the equations above, we
introduced the unit vector eN = (0, 0, . . . , 1)T for the last node.
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In summary, we have shown that the quantum network can be re-written as an equivalent
single-node network with equivalent driving field (Thevenin drive amplitude) and equivalent
non-Hermitian Hamiltonian (Thevenin energy) for the Nth node. These results are applicable to
driven-dissipative N-node quantum networks with arbitrary couplings and graph-like structures.

5. Maximum power transfer theorem

Following the results from the previous two sections, the power delivered to the load is:
PL = ωdΓN ⟨a†N⟩⟨aN⟩. The Thevenin equivalent representation implies the general solution for
the power delivered to the load is:

PL = ωdΓN
|Ωth |

2

|H̃th +HL |2
. (15)

The maximum power delivered to the load is then found by optimizing the load’s induced
frequency shift δωN and decay rate ΓN , using ∂PL

∂δωN
= 0 and ∂PL

∂ΓN
= 0. After some algebra, we

find that the maximum power that can be delivered to the load occurs when

δωN = −δω̃th and ΓN = Γth, (16)

or equally,
HL = H̃ ∗

th. (17)

This condition is the quantum generalization of conjugate impedance matching that is well-
known in circuit theory. Note that the quantum impedance matching condition depends only
on the non-Hermitian Hamiltonian parameters of the quantum network and is not dependent on
the driving field Rabi frequency, Ω1, due the linearity of the quantum network. When quantum
conjugate impedance matching is satisfied, the maximum power delivered to the load is found to
be exactly equal to:

PL,max = ℏωd
|Ωth |

2

Γth
. (18)

Equations (17) and (18) form the main results of this manuscript. From this expression, it
is clear that quantum networks with a large Thevenin Rabi frequency Ωth and small Thevenin
dissipative term, Γth, are ideal for enabling large power transfer rates. This can be used as an
important rule of thumb for the efficient design of quantum power networks.

6. Energy transfer efficiency

While the conjugate impedance matching condition Eq. (17) ensures maximum power transfer, it
does not guarantee maximum energy transfer efficiency. This result is exactly analogous to the
classical case in electrical circuits. The exact form for the energy transfer efficiency is given by:

η =
ΓN |⟨aN⟩|

2∑︁
n γn |⟨an⟩|2 + ΓN |⟨aN⟩|2

. (19)

It is worth noting that we could not find a simple expression for the energy transfer efficiency in
terms of the single-node Thevenin equivalent network representation. Instead, we introduced an
equivalent two-node representation between the first and Nth node of the network (see appendix
for details). In the limit of large effective coupling, H1N , between the first and last nodes, the
energy transfer efficiency is limited primarily by the intrinsic dissipative loss of the Nth node, γN .
Perhaps more importantly, it is also possible to prove that the energy transfer efficiency, when the
impedance matching condition is satisfied, will always be less than or equal to fifty percent. This
demonstrates the existence of a fundamental trade-off between the maximum power that can be
delivered to the load and the energy transfer efficiency.
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7. Discussion

In Fig. 2, we present full numerical simulations for three distinct quantum networks including:
(a) a simple 2-node network, (b) a 50-node 1-dimensional chain with nearest-neighbor coupling,
and (c) a 50-node network with random all-to-all connectivity. The hopping parameters Jnm of
the 50-node random network are sampled from a normal distribution with zero mean Javg = 0
and standard deviation Jstd = 2γo. To characterize different quantum networks, we use the
network spectral density, S(ωd) = Im[tr(ωd −H)−1], which is closely related to the transmission
amplitude which is well-known in input-output theory [37]. Ordered and disordered quantum
networks can have distinct distributions of multiparty entanglement, which are closely related to
the capacity of information transmission [38,39]. Here, we show that our theorem is applicable
to ordered and disordered quantum networks with graph-like structures in Fig. 2.

Fig. 2. Demonstration of quantum maximum power transfer theorem for three distinct
networks: (a) 2-node network, (b) 50-node nearest neighbor network, (c) 50-node network
with random all-to-all connectivity. (d)-(f) Network spectral density as a function of the
input drive frequency ω. All nodes are assumed to have resonant frequency ωo. The
network spectral density shows the relative importance of different spectral modes within
the network, and is closely related to the transmission amplitude used in input-output theory.
(g)-(i) Numerical simulations of the load power and efficiency as a function of load decay rate.
Each network is driven by a coherent field with driving frequency, ωd = {ωo + J,ωo,ωo},
denoted by the green stars in (d)-(f). Note the numerical simulations show excellent
agreement with the quantum impedance matching condition Eq. (17).

The network spectral density in Figs. 2(e)-(f) show the relative magnitudes of the network’s
eigenmodes. For the two-node network shown in Fig. 2(a), there exists two dominant modes
known as the symmetric and anti-symmetric modes with resonant frequencies ωo + J and ωo − J
respectively (see Fig. 2(d). Furthermore, a driving field with frequency ωd can be used to couple
to a particular eigenstate of the network. In Figs. 2(g)-(i), we simulate driving the quantum
network with different frequencies for each network, highlighted by the green stars in Fig. 2(d)-(f).
By using the quantum impedance matching condition Eq. (17) as well as the Thevenin equivalent
self-energy Eq. (13), we are able to calculate the optimal load decay rate where maximum power
transfer occurs. The optimal load decay rates predicted by Eq. (13) and Eq. (17) are given by the
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vertical dashed lines in Figs. 2(g)-(i). As expected, the exact analytical expressions match exactly
with full numerical simulations.

8. Conclusion

In summary, we have presented the quantum analog of the maximum power transfer theorem
for an N-node bosonic network. In recent years, research into energy transfer through complex
networks, such as those arising in photosynthesis, have led to the development of reconfigurable
and programmable energy transport simulators [15,16,22,30,31,40,41]. This work can therefore
be tested immediately with reprogrammable photonic networks or other quantum simulators of
bosonic systems. Finally, while this work provides a simple rule of thumb for linear networks,
the role of nonlinearity as seen in Bose-Hubbard Hamiltonian models [42–45] requires additional
considerations which should be studied carefully in the near future.

Appendix A: Power and efficiency

The power flow through the system is obtained from the Hamiltonian equation of motion Eq. (2):

∂t⟨H⟩ = tr(Ḣρ) + tr(H ρ̇) = Pin − Pout, (20)

where ρ is the density matrix of the network and H is given by Eq. (1). The first term is the input
power,

Pin = tr(Ḣρ) = iωd
∑︂

n
[Ωn⟨an⟩eiωd t −Ω∗

n⟨a
†
n⟩e−iωd t], (21)

representing the work done by the driving field. The second term in Eq. (20) represents the
output power,

Pout = −tr(H ρ̇) = −tr(HDR[ρ]) − tr(HDL[ρ]), (22)

representing the total dissipated power of the network. It is possible to decompose the output
power into two contributions. The first part is the power lost to some background reservoir,

PR = −tr(HDR[ρ]) (23)

= 1
2

∑︂
n,m
ωnm(γn + γm)⟨a†nam⟩ +

1
2

∑︂
n
γn(Ωneiωd t⟨an⟩ +Ω

∗
ne−iωd t⟨a†n⟩). (24)

For notational purposes, we have introduced ωnm = ω̃nδnm + Jnm(1 − δnm). The second
contribution corresponds to the power that is dissipated directly into the load,

PL = −tr(HDL[ρ]) (25)

= 1
2

∑︂
n,m
ωnm(Γn + Γm)⟨a†nam⟩ +

1
2

∑︂
n
Γn(Ωneiωd t⟨an⟩ +Ω

∗
ne−iωd t⟨a†n⟩). (26)

In matrix form, these equations may be written as:

PR =
1
2 ã† · (EΓR + ΓRE) · ã + 1

2 (Ω
T · ΓR · ã + ã† · ΓR ·Ω∗), (27)

PL =
1
2 ã† · (EΓL + ΓLE) · ã + 1

2 (Ω
T · ΓL · ã + ã† · ΓL ·Ω∗). (28)

For the rest of this document, we will only consider the steady-state limit, ∂t⟨H⟩ = 0.
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Appendix B: Quantum network equations of motion

To find the steady-state observables ⟨a†nam⟩ss and ⟨an⟩ss, we use Eq. (2) to derive the corresponding
equations of motion,

∂t⟨an⟩ = i
∑︂

k
(Hnk + i

Γn

2
δnk)⟨ak⟩ − iΩ∗

ne−iωd t, (29)

∂t⟨a†nam⟩ = i
∑︂

k

[︃
(Hmk + i

Γm

2
δmk)⟨a†nak⟩ − (H ∗

kn − i
Γk

2
δkn)⟨a†kam⟩

]︃
+ i[Ωne+iωd t⟨am⟩ −Ω

∗
me−iωd t⟨a†n⟩],

(30)

where we have introduced the non-hermitian operator Hnm = −ωnm + iγn
2 δnm. Note that this

notation for the Hamiltonian is different by a factor i from those in the main text. To obtain
the steady-state limit, we transform the equations of motion to the interaction picture using the
substitution,

⟨am⟩ = ⟨ãm⟩e−iωd t, (31)

giving
∂t⟨ãn⟩ = i

∑︂
k
(H̃nk + i

Γn

2
δnk)⟨ãk⟩ − iΩ∗

n, (32)

∂t⟨ã†nãm⟩ = i
∑︂

k

[︃
(H̃mk + i

Γm

2
δmk)⟨ã†nãk⟩ − (H̃ ∗

kn − i
Γk

2
δkn)⟨ã†k ãm⟩

]︃
+ i[Ωn⟨ãm⟩ −Ω

∗
m⟨ã

†
n⟩],

(33)

where H̃nm = Hnm + δnmωd with δnm as the kronecker delta function. In the large time limit,
t → ∞, the steady-state equations are given by,

0 = i
∑︂

k
(H̃nk + i

Γn

2
δnk)⟨ãk⟩ − iΩ∗

n, (34)

0 = i
∑︂

k

[︃
(H̃mk + i

Γm

2
δmk)⟨ã†nãk⟩ − (H̃ ∗

kn − i
Γk

2
δkn)⟨ã†k ãm⟩

]︃
+ i[Ωn⟨ãm⟩ −Ω

∗
m⟨ã

†
n⟩].

(35)

These equations allow further simplification of the radiated and load power. After a bit of
algebra, we obtain Eq. (6,7) in the main text,

PL =
1
2

∑︂
n,m

(Γn + Γm)
[︂
ωnm⟨a†nam⟩ + ∆nm⟨a†n⟩⟨am⟩

]︂
, (36)

PR =
1
2

∑︂
n,m

(γn + γm)
[︂
ωnm⟨a†nam⟩ + ∆nm⟨a†n⟩⟨am⟩

]︂
. (37)

Coherent quantum network

In the absence of dephasing or coupling to a thermal bath, the coherent drive implies the
factorization condition, ⟨a†nam⟩ = ⟨a†n⟩⟨am⟩, is exact. This is readily confirmed by comparing
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Eqs. (29) and (30). In this limit, all relevant observables are obtained by solving Eq. (29) alone.
Accordingly, it is straightforward to show that the radiated and load power simplify to:

PL = ωd
∑︂

n
Γn⟨a†n⟩⟨an⟩, (38)

PR = ωd
∑︂

n
γn⟨a†n⟩⟨an⟩. (39)

Note that both of these expressions are proportional to the driving frequency ωd, which is an
expected result in the classical description of driven harmonic oscillators. In the following
sections, we will provide a proof of the maximum power transfer theorem for this purely coherent
network.

Appendix C: Maximum power transfer

The maximum power transfer condition is derived by maximizing the load power. In matrix form,
the load power is

PL = ωd

(︂
ã†ΓLã

)︂
, (40)

where ã = (⟨ã1⟩, . . . , ⟨ãN⟩)
T is an N × 1 vector representing the node amplitudes in the rotating

frame of the driving field. ΓL is a diagonal matrix representing the dissipative coupling into the
load. In matrix form, the amplitudes are constrained by Eq. (34),

iΩ =H ã, (41)

as well as a positive semi-definite constraint on the load decay rate matrix. We have introduced
the non-Hermitian matrix, H = H̃R +HL, composed of the bare non-Hermitian Hamiltonian
defined in the absence of the load, H̃R, with matrix elements, [H̃R]nm = iδnm(ωd − ωn + Jnm) −

iJnm − δnmγnm/2. We have also defined the non-Hermitian matrix, HL = iΛL − ΓL, which is a
diagonal matrix representing the non-Hermitian coupling to the load. Here, ΛL is a diagonal
matrix representing the Lamb shift [ΛL]nm = −δωnδnm. The matrix form of these equations
simplifies the analysis substantially. For example, the solution of Eq. (41) is given by, ã = iH−1Ω,
resulting in the following form for the load power,

PL = ωd

(︂
Ω†H†−1ΓLH−1Ω

)︂
. (42)

The conditions for maximum power are determined by the stationary points satisfying the
system of equations,

∂PL

∂ωL,i
= 0 and

∂PL

∂ΓL,i
= 0, (43)

where Lamb shiftωL,i = [ΛL]ii and dissipative coupling to the load ΓL,i = [ΓL]ii /2. Equation (43)
may be written explicitly as,

Ω†H†−1

(︄
−
∂H†

L
∂ωL,i

H†−1ΓL − ΓLH−1 ∂HL

∂ωL,i

)︄
H−1Ω = 0, (44)

Ω†H†−1

(︄
−
∂H†

L
∂ΓL,i

H†−1ΓL − ΓLH−1 ∂HL

∂ΓL,i
+
∂ΓL

∂ΓL,i

)︄
H−1Ω = 0. (45)

The matrix derivatives can be written as:

∂HL

∂ωL,i
= iPi ,

∂H†

L
∂ωL,i

= −iPi ,
∂HL

∂ΓL,i
= −Pi ,

∂H†

L
∂ΓL,i

= −Pi ,
∂ΓL

∂ΓL,i
= +Pi , (46)

where Pi is a projection matrix with a single non-zero matrix element in the diagonal, δii,
corresponding the location of the ith node. This allows us to substitute Eq. (44) into Eq. (45),
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resulting in following optimization condition for the ith node,

Ω†H†−1
(︂
2ΓLH−1Pi + Pi

)︂
H−1Ω = 0. (47)

These are the defining set of equations for maximum power transfer. While these equations
can be solved using numerical approaches, we are primarily interested in analytical solutions
which can give rise to physical insights of the system. Generally, we were not able to find an
analytical solution other than the defining case where a single node is coupled to the load.

Solvable conditions

In the single-node case, it is possible to show that a single unique and maximum solution exists.
However, since the optimization problem is non-convex, we do not have any guarantees that
there is a single maximum power transfer solution for the case of k ≥ 1 nodes. This implies
that conjugate impedance matching condition is generally not sufficient for solving this problem
for the multiple node case (k ≥ 1). Note that if the load represents a common reservoir, then it
will induce off-diagonal coupling between the different nodes, implying that it may be possible
to satisfy the maximum power condition. However, if the problem is given by k independent
load reservoirs, then the solvable becomes non-linear and unsolvable using conjugate impedance
matching alone.

Finally, we should point out that these results suggest that a more general load Hamiltonian,
including off-diagonal components, may pave the way towards a solvable result. Physically, a
load Hamiltonian with complex off-diagonal entries arises when multiple nodes are coupled to a
common bath.

Thevenin equivalent network

The above result shows that optimal power transfer occurs when the load parameters are conjugately
matched to the matrix, Hth, however, it remains unclear whether this matrix represents anything
meaningful. In the following, we show that this matrix represents the effective non-Hermitian
Hamiltonian of a k-node network coupled to the load. Starting from Eq. (41), the equation can be
partitioned into the following set of coupled matrix equations:

iΩk′ =HR,k′k′ ãk′ +HR,k′k ãk, (48)

iΩk =HR,kk′ ãk′ + (HR,kk +Hk) ãk. (49)

Here, we have defined the set of indices k that represent the nodes coupled to the load, as
well as indices k′ that represent nodes uncoupled to the load. Here, Ωk and ãk are k × 1 column
vectors while Ωk′ and ãk′ are (N − k) × 1 column vectors. Solving for ãk′ in the first equation and
substituting the result into the second equation,

iΩth = (Hth +Hk) ãk. (50)

This equation is the defining equation for the Thevenin equivalent k-node network. The
renormalized parameters of the Thevenin network are given by:

Ωth = Ωk −HR,kk′H−1
R,k′k′Ωk′ , (51)

Hth =HR,kk −HR,kk′H−1
R,k′k′HR,k′k. (52)

Using well-known results for the inverse of a 2 × 2 block matrix, it is possible to show that
Eq. (49) and Eq. (50) are equivalent.
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Appendix D: Hessian matrix

The maximum power transfer condition is derived by maximizing the load power. In matrix form,
the load power is given by,

PL = ωd

(︂
ã†ΓLã

)︂
= ωd

(︂
Ω†H†−1ΓLH−1Ω

)︂
. (53)

From before, recall that the first order derivatives may be written as,

∂PL

∂ωL,i
= Ω†H†−1

(︄
−
∂H†

L
∂ωL,i

H†−1ΓL − ΓLH−1 ∂HL

∂ωL,i

)︄
H−1Ω, (54)

∂PL

∂ΓL,i
= Ω†H†−1

(︄
−
∂H†

L
∂ΓL,i

H†−1ΓL − ΓLH−1 ∂HL

∂ΓL,i
+
∂ΓL

∂ΓL,i

)︄
H−1Ω, (55)

where we again use:

∂HL

∂ωL,i
= iPi ,

∂H†

L
∂ωL,i

= −iPi ,
∂HL

∂ΓL,i
= −Pi ,

∂H†

L
∂ΓL,i

= −Pi ,
∂ΓL

∂ΓL,i
= +Pi , (56)

where Pi is a projection matrix with a single non-zero matrix element in the diagonal, δii,
corresponding the location of the ith node. This allows us to write the first order derivative with
respect to the decay rate as:

∂PL

∂ΓL,i
= Ω†H†−1

(︂
PiH†−1ΓL + ΓLH−1Pi + Pi

)︂
H−1Ω. (57)

The second order derivative with respect to the decay rate is then given by:

∂2PL

∂ΓL,j∂ΓL,i
=
∂

∂ΓL,j
(Ω†H†−1PiH†−1ΓLH−1Ω

+Ω†H†−1ΓLH−1PiH−1Ω +Ω†H†−1PiH−1Ω)

= Ω†H†−1PjH†−1PiH†−1ΓLH−1Ω +Ω†H†−1PiH†−1PjH†−1ΓLH−1Ω

+Ω†H†−1PiH†−1PjH−1Ω +Ω†H†−1PiH†−1ΓLH−1PjH−1Ω

+Ω†H†−1PjH†−1ΓLH−1PiH−1Ω +Ω†H†−1PjH−1PiH−1Ω

+Ω†H†−1ΓLH−1PjH−1PiH−1Ω +Ω†H†−1ΓLH−1PiH−1PjH−1Ω

+Ω†H†−1PjH†−1PiH−1Ω +Ω†H†−1PiH−1PjH−1Ω.

(58)

Grouping the outer terms, we can write:

∂2PL

∂ΓL,j∂ΓL,i
= Ω†H†−1

(︂
PjH†−1PiH†−1ΓL + PiH†−1PjH†−1ΓL + PiH†−1Pj

+ PiH†−1ΓLH−1Pj + PjH†−1ΓLH−1Pi + PjH−1Pi + ΓLH−1PjH−1Pi

+ ΓLH−1PiH−1Pj + PjH†−1Pi + PiH−1Pj

)︂
H−1Ω.

(59)

The first order derivative with respect to the Lamb shift is given by:

∂PL

∂ωL,i
= iΩ†H†−1

(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1Ω. (60)
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Likewise, the second order derivative with respect to the Lamb shift is given by:

∂2PL

∂ωL,j∂ωL,i
=
∂

∂ωL,j
iΩ†H†−1

(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1Ω

= Ω†H†−1PjH†−1
(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1Ω

+Ω†H†−1
(︂
PiH†−1PjH†−1ΓL + ΓLH−1PjH−1Pi

)︂
H−1Ω

−Ω†H†−1
(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1PjH−1Ω.

(61)

Grouping the outer terms, we can write:

∂2PL

∂ωL,j∂ωL,i
= Ω†H†−1

(︂
PjH†−1PiH†−1ΓL − PjH†−1ΓLH−1Pi

+ PiH†−1PjH†−1ΓL + ΓLH−1PjH−1Pi

− PiH†−1ΓLH−1Pj + ΓLH−1PiH−1Pj

)︂
H−1Ω.

(62)

We now calculate the cross-terms. The first cross-term is given by:

∂2PL

∂ωL,j∂ΓL,i
=
∂

∂ωL,j
Ω†H†−1

(︂
PiH†−1ΓL + ΓLH−1Pi + Pi

)︂
H−1Ω

= iΩ†H†−1PjH†−1
(︂
PiH†−1ΓL + ΓLH−1Pi + Pi

)︂
H−1Ω

+Ω†H†−1
(︂
iPiH†−1PjH†−1ΓL − iΓLH−1PjH−1Pi

)︂
H−1Ω

− iΩ†H†−1
(︂
PiH†−1ΓL + ΓLH−1Pi + Pi

)︂
H−1PjH−1Ω,

(63)

where we factorize some terms to obtain:
∂2PL

∂ωL,j∂ΓL,i
= iΩ†H†−1

(︂
PjH†−1PiH†−1ΓL + PjH†−1ΓLH−1Pi + PjH†−1Pi

+ PiH†−1PjH†−1ΓL − ΓLH−1PjH−1Pi

− PiH†−1ΓLH−1Pj − ΓLH−1PiH−1Pj − PiH−1Pj

)︂
H−1Ω,

(64)

as well as the other cross-term:
∂2PL

∂ΓL,j∂ωL,i
=
∂

∂ΓL,j
iΩ†H†−1

(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1Ω

= −iΩ†H†−1PjH†−1
(︂
PiH†−1ΓL − ΓLH−1Pi

)︂
H−1Ω

+ iΩ†H†−1
(−PiH†−1PjH†−1ΓL + PiH†−1Pj − PjH−1Pi

+ ΓLH−1PjH−1Pi)H−1Ω − iΩ†H†−1
(PiH†−1ΓL − ΓLH−1Pi)H−1PjH−1Ω.

(65)

After factorization, we obtain:

∂2PL

∂ΓL,j∂ωL,i
= iΩ†H†−1

(︂
−PjH†−1PiH†−1ΓL + PjH†−1ΓLH−1Pi

− PiH†−1PjH†−1ΓL + PiH†−1Pj − PjH−1Pi + ΓLH−1PjH−1Pi

− PiH†−1ΓLH−1Pj + ΓLH−1PiH−1Pj

)︂
H−1Ω.

(66)

The only thing remaining here is to group the first and last terms in the last two expressions for
simplification. The big results have been derived.
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Appendix E: Network spectral density

To characterize different quantum networks, we use the network spectral density

S(ωd) = Im[tr(ωd − Heff )
−1]. (67)

Note that this quantity may be related to the transmission,

t = κ⟨a⟩/Ω1 =
κ

i∆ + κ + g2/(i∆ + γ)
, (68)

typically used in input-output theory [37].
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