
Photonic Dirac monopoles and skyrmions:
spin-1 quantization [Invited]

TODD VAN MECHELEN AND ZUBIN JACOB*

Birck Nanotechnology Center and Purdue Quantum Center, Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*zjacob@purdue.edu

Abstract: We introduce the concept of a photonic Dirac monopole, appropriate for photonic
crystals, metamaterials and 2D materials, by utilizing the Dirac-Maxwell correspondence. We
start by exploring the vacuum where the reciprocal momentum space of both Maxwell’s equations
and the massless Dirac equation (Weyl equation) possess a magnetic monopole. The critical
distinction is the nature of magnetic monopole charges, which are integer valued for photons
but half-integer for electrons. This inherent difference is directly tied to the spin and ultimately
connects to the bosonic or fermionic behavior. We also show the presence of photonic Dirac
strings, which are line singularities in the underlying Berry gauge potential. While the results
in vacuum are intuitively expected, our central result is the application of this topological
Dirac-Maxwell correspondence to 2D photonic (bosonic) materials, as opposed to conventional
electronic (fermionic) materials. Intriguingly, within dispersive matter, the presence of photonic
Dirac monopoles is captured by nonlocal quantum Hall conductivity–i.e., a spatiotemporally
dispersive gyroelectric constant. For both 2D photonic and electronic media, the nontrivial
topological phases emerge in the context of massive particles with broken time-reversal symmetry.
However, the bulk dynamics of these bosonic and fermionic Chern insulators are characterized
by spin-1 and spin-1⁄2 skyrmions in momentum space, which have fundamentally different
interpretations. This is exemplified by their contrasting spin-1 and spin-1⁄2 helically quantized
edge states. Our work sheds light on the recently proposed quantum gyroelectric phase of matter
and the essential role of photon spin quantization in topological bosonic phases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Dirac’s pioneering paper [1] showed that if magnetic monopoles are found in nature, their
magnetic charges Q would be quantized in units of the elementary charge e of the electron,

2
eQ
h
∈ Z. (1)

h being the Planck constant. This is the earliest example of topological quantization - fundamen-
tally different from second quantization arising in quantum field theories. Although there exists
no experimental proof of magnetic monopoles [2] to date, there is ample evidence of quantized
topological charges in reciprocal (energy-momentum) space. Specifically, the appearance of
such monopoles in the band structure of solids indicates the presence of quantized topological
invariants, like the Chern number [3] and Z2 index [4]. Ultimately, experimental observables
such as the quantum Hall conductivity can be traced back to the existence of this quantized
topological charge [5, 6].
There have been significant efforts to construct synthetic gauge potentials that mimic these

monopole physics in cold atoms [7] and spin ice [8]. One striking example is the realization
of non-Abelian gauge theories with Yang-Lee monopoles [9]. The topological field theory of
light has surfaced in knotted solutions of Maxwell’s equations [10, 11], as well as the uncertainty
relations for photons [12]. Along side this, there have been important recent developments to
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formulate topological properties for photons utilizing photonic crystals andmetamaterials [13–25].
The pioneering work in topological photonic crystals has shown the existence of edge states
robust to disorder. In the previously explored scenarios, the photonic crystal unit cell is carefully
structured to obtain an additional degree of freedom (artificial gauge field) - quite often realized
on a graphene-like honeycomb lattice. This approach was first implemented by Haldane for
spinless (scalar) electrons in his seminal paper on the parity anomaly [26]. However, it remains
an open question whether robust topological photonic edge states can occur in atomic matter.
The role of photon spin and its quantization is yet another unresolved problem since previous
theories have focused exclusively on pseudo-spin-1⁄2 phenomena [27–30].
Our spin-1 theory [31] is fundamentally different in this respect since we do not ignore the

polarization (spin) state of the photon, which cannot be neglected for a real gauge (vector) field.
In our case, the topological theory is manifestly bosonic as it is connected to the winding of
the gauge field itself - not pseudo-spin degrees of freedom. Another fundamental aspect of our
theory is the inclusion of dispersion within matter, i.e. frequency and momentum dependence of
conductivity, such that topological invariants emerge naturally from the global behavior of optical
constants. For example, it has been shown that nonlocal gyrotropic [32] and magnetoelectric [33]
media will host massless spin-1 quantized edge states with massive-like photons in the bulk.
Thus, it is necessary to understand the concept of bosonic Dirac monopoles and the influence of
integer spin in topological photonic phases of matter.
In this paper, we elucidate the fundamental difference between the magnetic monopoles

appearing in Maxwell’s equations and the Dirac equation. Our work shows that a magnetic
monopole appears for both photons and massless fermions in the reciprocal energy-momentum
space - even for vacuum. Using a Dirac-Maxwell correspondence, we identify the bosonic and
fermionic nature of magnetic monopole charge, which is inherently present in the relativistic
theories of both particles. While the results in vacuum are expected, we apply this topological
theory to 2D photonic (bosonic) materials, in contrast to conventional electronic (fermionic)
materials. The specific 2D photonic materials considered in this paper are gyroelectric which
possess antisymmetric components of the conductivity tensor. We exploit the Dirac-Maxwell
correspondence to show how dispersive gyroelectric media can support topologically massive
particles, which are interpreted as photonic skyrmions. However, the differences in spin between
bosons and fermions alter the behavior of these bulk skyrmions as well as their corresponding
Chern numbers. We then analyze the unique topological edge states associated with nontrivial
spin-1 and spin-1⁄2 skyrmions, which exhibit opposing helical quantization. This clearly shows
how the integer and half-integer nature of monopoles is ultimately tied to the differing bosonic and
fermionic spin symmetries. Our work sheds light on the recently proposed quantum gyroelectric
phase of matter [32] which supports unidirectional transverse electro-magnetic (TEM) edge
states with open boundary conditions (vanishing fields at the edge) - unlike any known phase of
matter till date.

In the context of geometric phases, the concept of magnetic charges has a rich history starting
from the pioneering works of Pancharatam, Berry, Chiao and Wu [34]. Unification of these
geometric phases for bosons and fermions was shown for massive 3D particles using a relativistic
quantum field theory [35]. In this paper, our focus is massless 3D particles and topologically
massive 2D particles [36–38], as well as the direct demonstration of gauge discontinuities
in Maxwell’s and Weyl’s equations. Our derivation does not utilize quantum field theoretic
techniques and appeals only to the spin representation of the two particles. We note that spin
quantization is fundamentally different from topological charges encountered in real space for
OAM beams [39, 40], polarization singularities [41] and polarization vortices [42]. This is
due to the central concept of gauge discontinuity in magnetic monopole quantization, which is
related to the topological field theory of bosons and fermions. We function in momentum space
of Maxwell’s equations as opposed to real space so our work is specifically suited to develop
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topological invariants in the band structure of photonic crystals and wave dispersion within
metamaterials [43, 44]. One important application of our current technique is in uncovering
unique electromagnetic phases of matter displaying the quantum gyroelectric effect (QGEE) [32].
Our unified perspective also sheds light on recent developments of quantized bosonic Hall
conductivity [45–48] and topological bosonic phases of matter [49, 50], as opposed to fermionic
phases [51].
Skyrmions have a storied past in condensed matter - appearing in both real and momentum

space of topological systems. In real space, these localized topological defects were first
discovered in chiral magnets and quantum Hall ferromagnets but have also been observed in
Bose-Einstein condensates and superconductors [52]. The behavior of these magnetic skyrmions
is intimately tied to the Dzyaloshinskii-Moriya (DM) interaction [53] which generates the
nontrivial winding of the spin structure. In momentum space, skyrmions often characterize the
monopoles arising in the band structure of solids and are emergent phenomena in topological
insulators and superconductors [54]. By contrast, photonic skyrmions are a very recent field of
interest. A classical optical analog of skyrmion-like behavior has been reported using surface
plasmon polaritons [55]. This work focuses on photonic skyrmions in momentum space which
ultimately govern the equations of motion of a topological electromagnetic field. The physics of
these topological fields manifest in nontrivial windings of a spin-1 vector as opposed to a spin-1⁄2
vector.

Note: For clarity, all 3D vectors will be denoted with a vector arrow ®A = (Ax, Ay, Az), while
we reserve boldface for 2D vectors A = (Ax, Ay). The manuscript theme is the Dirac-Maxwell
correspondence which directly compares bosonic and fermionic topological field theories.
Throughout, the subscript s = 1 stands for spin-1 photons and the subscript s = 1/2 denotes
spin-1⁄2 electrons.

2. Three dimensions: massless particles

2.1. Dirac-Maxwell correspondence

The correspondence between Dirac’s and Maxwell’s equations is best expressed in the Riemann-
Silberstein (R-S) basis [56, 57], which utilizes a vector wave function for light. Using this
representation, we develop a topological field theory of the vacuum photon. In the R-S basis, we
combine the electric ®E and magnetic ®H fields into a complex superposition,

®Ψ =
1
√

2
( ®E + i ®H), (2)

where i =
√
−1 is the imaginary unit and the electromagnetic fields are associated with plane

waves. We strongly emphasize that relativity requires vectorial representations for spin-1 bosonic
fields and spinor-1⁄2 representations for fermionic fields. Spin-0 particles constitute scalar fields
while spin-2 particles, such as gravitons, are described by tensor fields. Therefore, to unravel
the topological bosonic properties of light, we cannot work in a restricted subspace ignoring
components of the electromagnetic field. Simultaneously, we do not describe polarizations
separately. In the R-S basis, Maxwell’s equations in vacuum can be combined into a first-order
wave problem as follows,

i®k × ®Ψ = H1 ®Ψ = ω ®Ψ, (3)

which we label as spin s = 1. Here, ω is the frequency of light and we consider dynamical
fields over all frequencies and wave vectors, not simple static fields. We can thus unambiguously
identify a Hamiltonian for light,

H1(®k) = ®k · ®S = kxSx + kySy + kzSz . (4)
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®k = (kx, ky, kz) is the momentum of the plane wave in vacuum and ®S = (Sx, Sy, Sz) are the set
of SO(3) antisymmetric matrices,

Sx =


0 0 0

0 0 −i

0 i 0


, Sy =


0 0 i

0 0 0

−i 0 0


, Sz =


0 −i 0

i 0 0

0 0 0


. (5)

These operators obey the familiar Lie algebra [Si, Sj] = iεi jkSk which encode information about
integer spin. Notice our photonic Hamiltonian H1 = ®k · ®S represents optical helicity, i.e. the
projection of spin ®S along the direction of momentum ®k. This is further clarified on direct
comparison with massless Dirac fermions (Weyl fermions), which are the supersymmetric
partners of the massless photon [58]. The Weyl equation is expressed as,

H1/2ψ = Eψ, (6)

where the massless Dirac Hamiltonian H1/2, corresponding to spin s = 1/2, is identified with
electronic helicity,

H1/2(®k) = ®k · ®σ = kxσx + kyσy + kzσz . (7)

®σ = (σx, σy, σz) are the Pauli matrices of SU(2) and obey the identical Lie algebra [σi, σj] =

2iεi jkσk ,

σx =


0 1

1 0

 , σy =


0 −i

i 0

 , σz =


1 0

0 −1

 . (8)

Both particles are massless and satisfy an analogous helicity equation. However, the critical
difference is revealed in the group operations of the particular particle; encapsulated by the SO(3)
antisymmetric matrices for the spin-1 photon [Eq. (5)] and the SU(2) Pauli matrices for the
spin-1⁄2 Weyl fermion [Eq. (8)].

2.2. Helical eigenstates

We now solve for the eigenstates of the above Hamiltonians. As expected, Maxwell and Weyls’
equations possess two helical degrees of freedom. For the photon [Eq. (4)], these are conventional
right- and left-handed circular polarization,

H1 ®e± = ±k ®e±, ®e±(®k) =
1
√

2
(θ̂ ± iφ̂), (9)

where θ and φ are the spherical polar coordinates of ®k and k = | ®k | is the magnitude of the wave
vector. The photon is massless and therefore linearly dispersing in vacuum ω± = ±k. Similarly,
the eigenstates of the Weyl equation [Eq. (7)] are comprised of two massless helical spinors,
which are represented as,

H1/2ψ± = ±k ψ±, ψ+(®k) =


cos(θ/2)

sin(θ/2)eiφ

 , ψ−(®k) =


sin(θ/2)

− cos(θ/2)eiφ

 . (10)

Indeed, these states are also linearly dispersing E± = ±k. An important observation can be
made in ®e± and ψ±. The eigenstates are ill-defined at the origin of the momentum space ®k = 0,
since they are arbitrarily dependent on θ and φ at this point. In fact, by parameterizing θ as the
inclination from kz , the eigenstates are not well-behaved at the north θ = 0 or south θ = π poles
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Fig. 1. (a) Linear dispersion (light cone) of the 3D massless photon and electron ω± =
E± = ±k. At the origin of the momentum space ®k = 0 sits a magnetic monopole with
quantized charge. This singularity is often called a Weyl point and is quantized to the
spin of the particle Qs = s. Integer and half-integer spin quantization is connected
to bosonic and fermionic statistics respectively. (b) Dirac monopoles (Berry curvature)
®Fs = ®∇k × ®As of the massless electron Q1/2 =

1/2 and photon Q1 = 1 in momentum space.
The monopole charge acts as a source for the magnetic field ®∇k · ®Fs = 4πQsδ

3(®k) and arises
due to the discontinuous behavior in the spin eigenstates. Notice that the flux through any
surface enclosing the monopole is necessarily quantized Qs = (4π)−1‚ ®Fs · d2®k. This
monopole is accompanied by a string of singularities in the underlying gauge potential
®As . Any closed path around the equator of the string produces a quantized Berry phase
γs =

¸
®As · d®k = 2πQs . The accumulated phase in ®k-space is fundamentally tied to the spin

of the particle Rs(2π) = exp(iγs) = (−1)2s .

either - they are multivalued at both points. Such discontinuous behavior is impossible to remove
and results from choosing a particular gauge for the eigenstates. This is the underlying source for
Dirac monopoles and strings. The linear dispersion (light cone) of the massless helical states is
displayed in Fig. 1(a).

2.3. Spin quantization in photonic Dirac monopoles and strings

In vacuum ®k-space, we discover a magnetic Dirac monopole for both Maxwell’s and Weyl’s
equations but with intrinsic differences. This is demonstrated by first defining the magnetic flux
in momentum space - i.e. the Berry curvature. For the photon, the Berry curvature of either
right- or left-handed helicity can be found from the circular eigenstates derived in Eq. (9),

®F±1 = −i ®∇k × [®e∗± · ( ®∇k ®e±)]. (11)

For the massless electron, the analogous Berry curvature is found by evaluating the spinor
eigenstates in Eq. (10),

®F±1/2 = −i ®∇k × [ψ
†
±
®∇k ψ±]. (12)

Here, ®∇k =
∑

j ĵ ∂k j is the gradient operator in 3D momentum space. Note that the Berry
curvature is a vector in three dimensions but a scalar in two dimensions. On evaluating the Berry
curvature for both particles with positive and negative helicities (±), we find that ®F±s = ± ®Fs

possesses a Dirac monopole,
®Fs = Qs

®F . (13)
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®F being the magnetic field of a Dirac monopole in ®k-space,

®F(®k) =
®k
k3 . (14)

Note that Qs in Eq. (13) is the topological magnetic charge which generates the magnetic field.
This quantity is fundamentally different for the two particles,

Qs = s. (15)

s is precisely the spin of the particle, which takes integer s = 1 or half-integer s = 1/2 values for
bosons or fermions respectively. We emphasize that the magnetic monopole charge is naturally
quantized,

Qs =
1

4π

‹
®Fs · d2®k . (16)

The charge is located at the origin ®k = 0 of the momentum space, exactly where the eigenstates
are ill-defined, and acts as a source for the magnetic field ®∇k · ®Fs = 4πQsδ

3(®k). Notice that the
magnetic monopole charge of the photon,

Q1 = 2Q1/2 = 1, (17)

is exactly twice the electron due to integer spin. The monopole charge for each helicity has
opposite signs Q±s = ±Qs . This ensures the net charge vanishes Q+s +Q−s = 0 at the origin ®k = 0;
as expected due to time-reversal symmetry in vacuum [59]. A visualization of the magnetic flux
is shown in Fig. 1(b).
We note that the photonic Dirac monopole is accompanied by a string of singularities in

the underlying gauge potential. This Dirac string is unobservable as it is a gauge dependent
phenomenon but sheds light on the fundamental differences between electrons and photons. The
Berry gauge potential for the massless photon and electron can be evaluated using the eigenstates
in Eq. (9) and (10) respectively,

®A±1 = −i ®e∗± · ( ®∇k ®e±), ®A±1/2 = −iψ†± ®∇k ψ±. (18)

Upon solving for ®A±s = ± ®As , we again find a clear dependence on the magnetic monopole charge
Qs which is different for bosons and fermions,

®As(®k) = Qs
1 − cos θ

k sin θ
φ̂, (19)

and ®Fs = ®∇k × ®As reproduces the Berry curvature in Eq. (13). The gauge potential is singular
along the kz-axis, at θ = 0 and π, where the eigenstates are multivalued. This line singularity that
originates at the monopole and extends to infinity is known as a Dirac string. Fig. 1(b) displays a
visualization of the Dirac monopole and strings for both massless particles. We note that the
above equations are traditionally found in the theory of magnetic charges in real space [2] - not
momentum space. Following this, quantization of magnetic charge naturally emerges from the
requirement of a single-valued wave function in the presence of singular (multivalued) gauge
potentials. Our rigorous derivation is unique as it unifies the momentum space of Maxwell’s
equations and the Weyl equation. This makes it ideally suited for extension to topological theories
of band structure in photonic crystals and wave dispersion in metamaterials.
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2.4. Berry phase

We now provide a detailed comparison of ®k-space Pancharatnam-Berry phase (hereon called
geometric phase) for photons and electrons, that arises from their corresponding spin properties.
The geometric phase calculated for any closed path on the ®k-sphere is gauge invariant,

γs =

˛
®As · d®k =

¨
®Fs · d2®k . (20)

γs is the geometric phase and is equivalent to the flux of Berry curvature ®Fs through a surface
bounded by the path. In this case, we see that

˜
®Fs · d2®k = Qs

˜
dΩ is exactly the solid angle

Ω(C) traced along the ®k-sphere,
γs = QsΩ(C), (21)

where C designates the bounded path. We now consider a closed path around a great circle of the
®k-sphere (eg: the equatorial path kz = 0), which encloses the monopole. For massless particles,
this is equivalent to rotating the fields back into themselves. The accumulated phase must be
quantized,

γs = 2πQs . (22)
This is the momentum space manifestation of Dirac’s quantization condition 2Qs ∈ Z which
ensures the massless particles acquire the same phase under a 2π or −2π rotation. We clearly see
that geometric phases in ®k-space are dependent on the spin of the particle,

exp(iγs) = (−1)2Qs . (23)

Notice that exp
(
iγ1/2

)
= −1 and exp (iγ1) = +1 are antisymmetric or symmetric under a ±2π

rotation depending on the spin Qs = s. Ultimately, the geometric phase of γ1/2 = π or γ1 = 2π
is tied to the fermionic or bosonic statistics of the particle. We note that this geometric phase
γ1/2 = π is routinely encountered for massless Dirac fermions in graphene [60, 61]. However,
the direct correspondence with spin-1 massless photons γ1 = 2π has not been pointed out to
date. Our results suggest that a thin wire supporting Dirac fermions would yield Chiao-Tomita
phases [62] exactly half the value of photons. We also note that spin-momentum locking is a
universal property in photonics [63–65] which arises entirely from the transversality ®k · ®Ψ = 0 of
electromagnetic waves in vacuum. This phenomenon can be explained with causal boundary
conditions on evanescent fields and does not necessarily require topological considerations [66].
For example, conventional surface plasmon polaritons (SPPs) and waveguide modes show
spin-momentum locking but these are not related to any topologically protected edge states or
nontrivial phases.

2.5. Rotational symmetries

The nuance behind integer and half-integer geometric phases [Eq. (22)] is explained more
rigorously by considering the operations of the rotational (spin) groups. Maxwell’s equations
[Eq. (3)] transform under the SO(3) group R1(α) = exp

(
iαn̂ · ®S

)
, where α is the angle subtended

about an axis n̂. This is true for all vector fields. Conversely, the Weyl equation [Eq. (6)]
transforms under the SU(2) group R1/2(α) = exp (iαn̂ · ®σ/2), characteristic of spinors. Although
SO(3) and SU(2) obey the same Lie algebra, the group representations are inequivalent. The
distinction is evident under a cyclic rotation,

Rs(2π) = (−1)2s . (24)

Notice that the accumulated phase is different depending on the particle species. This is due
to the fact that fermions are antisymmetric R1/2(2π) = −1 under rotations, while bosons are
symmetric R1(2π) = +1 and this behavior is guaranteed by the spin-statistics theorem [67]. The
difference fundamentally changes the interpretation of fermionic and bosonic topologies [68].
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3. Two dimensions: topologically massive particles

3.1. Dirac-Maxwell correspondence

Up to this point, we have only considered the 3D dynamics of the vacuum photon and its analogies
with the Weyl fermion. Now we shift to the 2D domain to harness these topological properties
and elucidate the fundamental role of spin in nontrivial phases of matter. Nontrivial 2D materials
are characterized by an integer topological invariant - the Chern number C ∈ Z. In electronics,
these materials are often called Chern insulators [69] because they are insulating in the bulk but
host metallic one-way edge states that are robust to disorder. In the long wavelength limit k ≈ 0,
the simplest fermionic Chern insulator is described by the 2D Dirac equation [54],

H1/2ψ = Eψ, H1/2(k) = v(kxσx + kyσy) + Λ(k)σz . (25)

Equation (25) is essentially identical to the Weyl equation [Eq. (7)] except we have replaced
the z-component of the momentum with a Dirac mass kz → Λ(k). We have also introduced
the Fermi velocity v to characterize the effective speed of electrons within the material. It is
easy to check that Λ(k) breaks time-reversal symmetry but preserves rotational symmetry about
the z-axis, R1/2(α) = exp (iασz/2). The meat of the topological physics lies in this spatially
dispersive Dirac mass [70],

Λ(k) = Λ0 − Λ2k2. (26)
Λ0 = Λ(0) opens a band gap and Λ2 accounts for the curvature of the energy bands. Importantly,
when Λ0Λ2 > 0 there is so-called band inversion [71] and the effective mass changes sign within
the dispersion Λ(ki) = 0, precisely at ki =

√
Λ0/Λ2. The quadratic momentum dependence

k2 = k · k is also crucial to regularize the long wavelength theory [32,72]. This means we can
project the planar momentum space onto the surface of the Riemann sphere R2 ' S2, a necessary
constraint for continuum topological field theories.
We now study the equivalent 2D dynamics of the photon - the bosonic Chern insulator. As

anticipated, the 2D Maxwell theory is the supersymmetric partner of the 2D Dirac theory [32,73]
and takes an analogous form,

H1 ®Ψ = ω ®Ψ, H1(k) = v(kxSx + kySy) + Λ(k)Sz . (27)

Equation (27) is formally equivalent to the 3D Maxwell equation [Eq. (4)] with the substitution
of a mass term kz → Λ(k). Here, v = 1/

√
ε is the effective speed of light which is governed by

the dielectric permittivity ε > 1. Like the Dirac equation [Eq. (25)], time-reversal symmetry
is broken but rotational symmetry is preserved about the z-axis, R1(α) = exp (iαSz). There
is one caveat however; the photonic wave function ®Ψ is slightly altered since we only retain
transverse-magnetic (TM) waves in two dimensions,

®Ψ =
1
√

2

(√
εEx,

√
εEy, iHz

)
=

1
√

2

(√
εE, iHz

)
. (28)

The transverse-electric (TE) component cannot couple to a 2D material as all electrical currents
lie in the x-y plane. Nevertheless, the underlying topological physics remain unchanged.

3.2. Dispersive transverse conductivity

Our central result is that the above mentioned Maxwell Hamiltonian can possess a mass term
arising from dispersion of optical constants. Still, one might question the seemingly ad hoc
insertion of a photonic mass Λ(k) for two reasons: 1. Are Maxwell’s equations still gauge
invariant? 2. Does this mass have any physical origin? The answer is yes to both [73,74]. In
fact, it is nothing but the Hall conductivity [75],

εΛ(k) = σH (k) = σ0 − σ2k2. (29)
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Fig. 2. Spin expectation value M̂z (k) as a function of k. (a) N = 0 skyrmion with no band
inversion Λ0Λ2 < 0. The spin returns to initial state M̂z (0) = M̂z (∞) and the total winding
is trivial. (b) N = 1 skyrmion with band inversion Λ0Λ2 > 0. In this case, the spin flips
direction M̂z (0) , M̂z (∞) and the total winding is nontrivial. ki labels the band inversion
point where M̂z (ki) = 0 passes through zero. This point must occur for the spin to flip
directions and can only be removed at a topological phase transition.

Remarkably, our result shows that the Hall conductivity for 2D photons plays the exact same
role as the Dirac mass for 2D electrons. We note that the Hall conductivity is related to the
anti-symmetric components of the conductivity tensor. σ0 = σH (0) is the conventional static
(DC) component which opens a band gap in the vacuum dispersion. This property of low energy
bandgap is fundamentally similar to the role of the Dirac mass for fermions. σ2 is the nonlocal
(momentum dependent) correction to σH which dictates the curvature of the photonic bands.
Until very recently, the momentum dependence of σH had never been considered for topological
purposes [32]. This type of behavior can also be generalized to its high-frequency (AC) equivalent
in the context of nonlocal gyrotropy, but we restrict ourselves to the low-energy limit ω ≈ 0 for
simplicity. In this limit, nonlocal Hall conductivity defines the quantum gyroelectric phase of
matter.

3.3. Spin-1 photonic skyrmions

The electronic [Eq. (25)] and photonic [Eq. (27)] Hamiltonians can be written in a more suggestive
form by introducing the skyrmion spin vector ®M = (Mx, My, Mz),

H1 = ®M · ®S, H1/2 = ®M · ®σ. (30)

As we can see, this new vector ®M has replaced the original 3D wave vector ®k in the massless
equations and closely resembles the Zeeman interaction [52]. Indeed, the spin precesses about
an axis formed by ®M,

Û®S = −i[ ®S,H1] = g1 ®M × ®S. (31)

It is important to reiterate that ®S represents spin-1 operators while ®σ is spin-1⁄2. This is exemplified
by the fact that bosonic (vector) particles possess gyromagnetic g-factors of g1 = (Q1)

−1 = 1,
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while fermionic (spinor) particles have g-factors of g1/2 = (Q1/2)
−1 = 2,

Û®σ = −i[®σ,H1/2] = g1/2
®M × ®σ. (32)

The Larmor frequency Ωs is fundamentally different between the two. The skyrmions precess at
different rates depending on the spin representation,

Ωs = gsM, gs = (Qs)
−1, (33)

whereM = | ®M| is the magnitude of the skyrmion vector.
Note though, the skyrmion vector ®M(k) is a function of a 2D momentum k and actually

describes a parametric surface ®M(k) =
(
vkx, vky, Λ(k)

)
= (vk, Λ(k)). The eigenstates assume

an identical form with the substitution of ®k → ®M,

H1 ®e± = ±M ®e±, H1/2ψ± = ±M ψ±. (34)

®e± are the right- and left-handed helical eigenstates derived in Eq. (9) and ψ± are the equivalent
spinors in Eq. (10). The dispersion relation for each of the eigenstates reads,

ω±(k) = E±(k) = ±M(k) = ±
√
v2k2 + Λ2(k), (35)

which are clearly gapped sinceM(0) = |Λ0 |. These states have acquired mass in 2D. The critical
difference of these new eigenstates is that the polar coordinate θ no longer parametrizes the
inclination from kz . Instead, it is governed by the spatially dispersive mass tan θ(k) = vk/Λ(k),
which is a function of the in-plane momentum k. We can understand this phenomenon more
clearly by evaluating the spin expectation value along the ẑ direction,

〈Sz〉± = ®e∗± · Sz ®e± = ±Q1M̂z, (36)

where M̂z(k) = Λ(k)/M(k) = cos θ(k) is a normalized vector. Notice the spin comes in units
of bosonic charge Q1 = 1, as we would expect for an integer particle s = 1. Analogously, the
half-integer skyrmion s = 1/2 arises in units of fermionic charge Q1/2 = 1/2,

〈σz/2〉± = ψ
†
±(σz/2)ψ± = ±Q1/2M̂z . (37)

At k = 0, the spin points directly along M̂z(0) = sgn[Λ0]. However, as the momentum increases,
®M tilts away from the z-axis and in some cases can flip directions entirely M̂z(∞) = −sgn[Λ2].

This is a nontrivial topology. A depiction of trivial and nontrivial M̂z(k) as a function of k is
presented in Fig. 2.

An aside: the zero helicity (longitudinal) state

For completeness, there is technically one additional eigenstate associated with the photonic
Hamiltonian [Eq. (27)] - the zero helicity (longitudinal) state,

H1 ®e0 = 0, ®e0 = M̂ = ®M/M . (38)

®e0 is a completely flat band ω0 = 0 and represents the electrostatic limit (irrotational fields). This
band belongs to the Hilbert space but can be removed from the spectrum by enforcing k · D = 0
at zero frequency, which implies there is no static charge present. Moreover, since ®e0 = ®e∗0 can
always be chosen real, the Chern number of this band necessarily vanishes C0 = 0.
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Fig. 3. Left: spin texture M̂(k) as a function of k for trivial and nontrivial skyrmions.
(a) N = 0 skyrmion with no band inversion Λ0Λ2 < 0. As an example, we have let
v = 0.5, Λ0 = 4 and Λ2 = −2. Since the spin returns to initial state within the dispersion
M̂z (0) = M̂z (∞), the total winding is trivial. (b) N = 1 skyrmion with band inversion
Λ0Λ2 > 0. To demonstrate, we have let v = 0.5, Λ0 = 4 and Λ2 = 2. In this case, the spin
flips direction within the dispersion M̂z (0) , M̂z (∞) and the total winding is nontrivial.
Right: spin texture M̂ of the skyrmion projected on the unit sphere. As the momentum
varies over all possible values, M̂(k) can perform either a (c) retracted or (d) full evolution
over the unit sphere. This corresponds to a total solid angle of Ω = 0 or 4π respectively.

3.4. Skyrmion magnetic field

We are now ready to assess the Berry curvature. In two dimensions, the Berry curvature is a
scalar and characterizes the “magnetic” flux through the planar momentum space R2. Since our
long wavelength theory is regularized, this is equivalent to the flux through the Riemann sphere
S2. For the 2D photon, the Berry curvature F ±1 is found by varying the in-plane momentum k of
the right- and left-handed eigenstates ®e±,

F ±1 = −i(∂kx ®e
∗
± · ∂ky ®e± − ∂ky ®e

∗
± · ∂kx ®e±). (39)

The Berry curvature F ±1/2 of the 2D electron ψ± is derived in a similar fashion,

F ±1/2 = −i(∂kxψ
†
±∂kyψ± − ∂kyψ

†
±∂kxψ±). (40)

Just like the 3D massless particles [Eq. (13)], the Berry curvature F ±s = ±Fs comes in units of
quantized magnetic charge Qs = s,

Fs = QsF . (41)

This emergent magnetic field F is generated by the momentum dependent variations in the spin
texture M̂ = ®M/M,

F = M̂ · (∂kxM̂ × ∂kyM̂) = ®F · d
2 ®M . (42)

F is precisely the magnetic field of a skyrmion [53] and has several profound interpretations.
Mathematically, its the Jacobian and dictates the degree of continuous mapping from the
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momentum space (the Riemann sphere) onto the unit sphere M̂, i.e. S2 → S2. In another context,
it tells us the differential flux of the Dirac monopole ®F onto the parametric surface ®M(k),

®F =
®M

M3 , d2 ®M = ∂kx
®M × ∂ky

®M, (43)

where d2 ®M is the surface normal. As the momentum varies over all possible values, the spin
vector ®M(k) can enclose the monopole any number of times. Hence, the total magnetic flux
counts the number of Qs monopoles enclosed by the skyrmion spin vector ®M,

N =
1

4π

¨
R2
F dkxdky =

1
4π

¨
R2
M̂ · (∂kxM̂ × ∂kyM̂)dkxdky, N ∈ Z. (44)

This is known as the skyrmion (or winding) number. Since the momentum space is bounded
on the Riemann sphere R2 ' S2, the skyrmion number N is guaranteed to be an integer. A
visualization of the M̂ unit sphere for trivial and nontrivial skyrmions is displayed in Fig. 3.

3.5. Chern insulators

The Chern number Cs is directly proportional to the skyrmion number N but has a very different
meaning depending on the particle species. It counts twice the total magnetic charge of the
skyrmion,

Cs =
1

2π

¨
R2
Fsdkxdky =

Qs

2π

¨
R2
F dkxdky = 2QsN . (45)

For spin-1⁄2 skyrmions, the Chern number is an integer C1/2 = N ∈ Z and is indistinguishable
from the skyrmion number itself. Spin-1 skyrmions are quite different by comparison; the Chern
number is an even integer C1 = 2N ∈ 2Z. From fermionic Chern arguments, one would expect to
always find an even number of photonic edge states - but this is not the case [45–48]. Although a
widely held belief, the conventional bulk-boundary correspondence fails for spin-1 bosons [76].
We will demonstrate this fact explicitly.

Utilizing our spin vector ®M defined in Eq. (30), the skyrmion magnetic field F in circular
polar coordinates k = k(cos φ, sin φ) reads,

F (k) =
vk[Λ(k) − vkΛ′(k)]
[v2k2 + Λ2(k)]3/2

= sin θ(k)∂kθ(k) = −∂kM̂z(k). (46)

Due to rotational symmetry, F (k) depends only on the magnitude of k. The geometric
interpretation is clear - it describes variations in the solid angle F (k)dkdφ = dΩ(k) traced by
M̂(k). Integrating the magnetic flux over all momenta, we acquire the skyrmion number,

N =
1
2
[cos θ(0) − cos θ(∞)] =

1
2
[M̂z(0) − M̂z(∞)] =

1
2
(sgn[Λ0] + sgn[Λ2]) . (47)

When band inversion is present Λ0Λ2 > 0, the z-component of the spin vector M̂z(0) , M̂z(∞)

flips directions within the dispersion. This represents north θ = 0 and south θ = π poles on the
unit sphere, which means M̂(k) traces out a full solid angle, regardless of the relative magnitudes
of Λ0 and Λ2. This is equivalent to saying the parametric surface ®M(k) always encloses a
monopole N = ±1. In the trivial regime Λ0Λ2 < 0, the z-component M̂z(0) = M̂z(∞) returns
to its initial state at either the north or south poles and ®M(k) never encloses a monopole N = 0.
Consequently, the Chern number in the nontrivial phase equates to Cs = ±2Qs, which is an
integer for the electron C1/2 = ±1, but an even integer for the photon C1 = ±2. In conventional
spin-1⁄2 and pseudo-spin-1⁄2 problems, a large Chern number |C1/2 | > 1 corresponds to multiple
gapless edge states within the bulk topological band gap. This is not true for spin-1 bosonic
particles. For |C1 | = 2 there is a single spin-1 quantized edge state within the topological band
gap which is illustrated in Fig. (4).
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Fig. 4. Dispersion relation of the bulk and gapless edge bands (black lines) of the topologically
massive 2D particles. (a) The conventional fermionic Chern insulator is characterized by a
spin-1⁄2 skyrmion (Dirac equation). (b) The bosonic Chern insulator is described by a spin-1
skyrmion (Maxwell’s equations). The bulk Chern number Cs = 2QsN depends on both the
magnetic charge (spin) Qs = s and the skyrmion number N ∈ Z. This corresponds to integer
phases for electrons C1/2 ∈ Z but even integer phases for photons C1 ∈ 2Z. At low energy, a
band gap is formed at E = ω = 0 by a spatially dispersive effective mass Λ(k) = Λ0 −Λ2k2.
(a) For the 2D electron, this is simply the Dirac mass. (b) For the 2D photon, this mass is
equivalent to a nonlocal Hall conductivity εΛ(k) = σH (k). In the presence of band inversion
Λ0Λ2 > 0, there is a point where the effective mass changes sign Λ(ki) = 0, precisely at
ki =

√
Λ0/Λ2. The massless helically quantized edge states touch the bulk bands at this

point. This is known as the quantum anomalous Hall effect (QAHE) for electrons and the
quantum gyroelectric effect (QGEE) for photons [32]. The flat longitudinal band ω0 = 0 is
shown for completeness and represents the electrostatic limit (irrotational fields). However,
this band can be removed from the spectrum by requiring that all static charges vanish.

3.6. Topological edge states

We now solve for the topology protected edge states of both particles. We stress that for
both spin-1 and spin-1⁄2 phases, there is exactly one unidirectional solution at the edge. This
makes intuitive sense because a single monopole N = ±1 exists in the band structure. A
nontrivial skyrmion N = ±1 corresponds to either a forward or backward propagating edge
state - forward for N = +1 and backward for N = −1. We take the boundary in the x
dimension such that ky is still a good quantum number. We then look for solutions of the form
®Ψe
±(x, y) = ®Ψ

e
±(x)e

ikyy and ψe
±(x, y) = ψ

e
±(x)e

ikyy that satisfy the boundary condition at infinity
®Ψe
±(x = +∞) = ψ

e
±(x = +∞) = 0. We also impose topological open boundary conditions [77,78]

at the interface,
®Ψe
±(x = 0+) = ψe

±(x = 0+) = 0. (48)

If this constraint is satisfied simultaneously, a solution will exist at any interface (even vacuum)
because the edge state is insensitive to fields in the x < 0 region.

Substituting into the Hamiltonians [Eq. (25) and (27)] and applying boundary conditions, the
topological edge states emerge. For photonic spin-1 states we have,

®Ψe
±(x) =


√
εEx

√
εEy

iHz


e

±

= Ψ0


1

0

∓i


(e−η1x − e−η2x) . (49)

Carrying out the same procedure, the electronic spin-1⁄2 states are expressed as,

ψe
±(x) = ψ0


1

±i

 (e−η1x − e−η2x) . (50)
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The wave functions of the spin-1 and spin-1⁄2 particles appear quite similar. The fundamental
difference lies in the fact that ®Ψ is a vector (bosonic) field and its polarization state is defined in
real space. ψ is a spinor (fermionic) field - its polarization state is more abstract as it lives in a
complex space. Notice there are two characteristic decay scales for the edge states η1,2, like a
damped harmonic oscillator, but in spatial frequency. These are the quadratic roots of the secular
equation,

Λ0 + Λ2(η
2 − k2

y) ∓ vη = 0. (51)

If sgn[Λ0] = sgn[Λ2] = +1 the skyrmion number is N = +1 and only a forward propagating
solution (+) exists. On the other hand, if sgn[Λ0] = sgn[Λ2] = −1 the skyrmion is N = −1
and only the backward propagating solution (−) is permitted. η1,2 characterize the degree of
confinement at a particular momentum ky and are solved straightforwardly,

η1,2(ky) =
1

2|Λ2 |

[
v ±

√
v2 + 4Λ2(Λ2k2

y − Λ0)

]
. (52)

The spatial width of the wave packet depends on the size of the band gap formed by Λ0 and Λ2.
However, regardless of their relative magnitudes, as long as Λ0Λ2 > 0 a solution always exists
within the band gap - they are topologically protected.

Intriguingly, the edge waves are also helically quantized along the direction of propagation
k̂ = ŷ,

Sy ®Ψe
± = ±Q1 ®Ψ

e
±. (53)

Note that k̂ · ®S = Sy is the spin-1 helicity operator and the edge photon carries a discrete unit of
bosonic charge Q1 = 1. Likewise, the electronic edge wave carries a discrete unit of fermionic
charge Q1/2 = 1/2,

(σy/2)ψe
± = ±Q1/2ψ

e
±, (54)

where k̂ · ®σ/2 = σy/2 is the spin-1⁄2 helicity operator. For spin-1, helical quantization means the
field is completely transverse to the momentum k̂ · ®Ψe

± = 0 and the edge state behaves identically
to a massless photon. This is known as the quantum gyroelectric effect (QGEE) [32]. Similarly,
the edge electron behaves just like a helical Weyl fermion. Their dispersion relations read,

ω±(ky) = E±(ky) = ±vky, −ki < ky < ki . (55)

No solution exists for ky → −ky and the edge states are back-scatter immune. Notice they are
linearly dispersing (massless) such that the group velocity is constant ∂kyω± = ∂ky E± = ±v.
Moreover, the edge states are gapless and touch the bulk bands precisely at the band inversion
point ki =

√
Λ0/Λ2, where Λ(ki) = 0. At this particular momentum, one of the decay lengths

becomes infinite 1/η(ki) → ∞ and the edge states join the continuum of bulk bands. A diagram
of the bulk and edge dispersion is shown in Fig. 4.

Note: It should be pointed out that the photonic edge states ®Ψe
± are ill-defined in the zero

energy limit ω = ky = 0, which is characteristic of all transverse waves. This is where the
edge dispersion intersects the longitudinal band ω0 = 0. Since this state is removed from the
spectrum (no static charges present), the electromagnetic field vanishes at this point. No zero
modes exist for the photon. On the other hand, the electronic edge states ψe

± have a smooth limit
at E = ky = 0 and zero modes are permitted. This is yet another significant difference between
bosons and fermions which is related to the fact that the Dirac equation can host Majorana bound
modes [79]. Since photons are their own antiparticles, no such Majorana states are possible.

4. Conclusion

In conclusion, we have introduced the concept of a photonic Dirac monopole appropriate for
the field of spin photonics, topological photonic crystals and metamaterials. It shows magnetic
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monopole charge quantization in momentum space arising solely from spin-1 properties of
the photon. We elucidated this phenomenon using a Dirac-Maxwell correspondence in the
Riemann-Silberstein basis and applied this topological theory to 2D photonic materials. These
topologically massive photons are interpreted as spin-1 skyrmions and arise from nonlocal Hall
conductivity. Our work illuminates the role of photon spin in the recently proposed quantum
gyroelectric phase of matter and topological bosonic phases [32, 33]. The edge states of such a
topological phase exhibit spin-1 quantization as opposed to spin-1⁄2 quantization in fermionic
phases of matter. This is ultimately connected to the presence of quantized monopole charges
(bosonic- or fermionic-like [47,48]) in the dispersion of bulk matter. Experimentally probing
monopole charge in momentum space can shed light on fundamental symmetries in topological
electrodynamics of photons and electrons.
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