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Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in
relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency
modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal
negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic
waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and
the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can
occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency
plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of
PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in
novel photonic systems.
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I. INTRODUCTION

Systems with PT -symmetric Hamiltonians have invoked
interest in recent years, primarily because they enable the
extension of quantum mechanical formulation to systems
with complex non-Hermitian Hamiltonians [1]. Bender et al.
discovered that for an energy eigenspectrum to be real,
the stringent condition of Hermiticity of a Hamiltonian can
be replaced by a weaker PT -symmetry condition [2,3]. A
major consequence of this extension of quantum mechanical
framework to non-Hermitian systems is a new class of
optical structures [4] with spatially distributed loss and gain
profiles [5–7]. Such PT -symmetric non-Hermitian optical
systems with complex dielectric profiles find promising appli-
cations in optical components ranging from couplers [8] and
waveguides [9] to microresonators [10,11] and lasers [12–18].

An important characteristic of the PT -symmetric sys-
tems is that they exhibit spectral singularities (zero-width
resonance) [19,20]. The PT -symmetric spectral singularities
have been observed in a variety of systems such as peri-
odic finite-gap systems [21], confined optical potential [22],
and unidirectional singularities in Fano coupled disk res-
onators [23]. Recently, the PT -symmetric singularity in a
graphene metasurface was employed for enhanced sensing
applications [24]. The stabilities and instabilities in a complex
potential system are also related to PT symmetry [25].
Therefore, characterization of the PT symmetry in a complex
Hamiltonian system is important not just to enable consistent
quantum mechanical formulation, but also to identify the
stable and unstable regimes in photonic systems and to predict
singularities.

A moving lossy medium such as a plasma in motion is
known to exhibit electromagnetic instabilities [26]. These
instabilities in a moving medium are caused by the Cherenkov
amplification of negative-energy waves and have been recently
linked to the noncontact vacuum friction [26–30] between me-
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dia at relative motion. Vacuum friction arises from quantum-
fluctuation-induced near-field photonic interactions [31], and
has also been studied in particles moving near surfaces
[32–35] and in rotating bodies [36,37]. The nature of vacuum
friction is to oppose the relative motion, and therefore the
energy spent in maintaining the relative velocities is utilized
in the amplification of vacuum fluctuations, which results
in the instabilities. Recently, Silveirinha [38–40] reported
that these instabilities in moving media occur because of
PT -symmetry breaking. Simultaneously, Guo et al. [41] have
discovered that moving media can support singular resonances,
which are manifested in giant vacuum friction and enhanced
nonequilibrium heat transfer between two moving slabs [42].
However, the origin of these singular resonances in view of
the symmetries present in moving media remains unexplained.
We call this singular resonance in moving media a negative-
frequency resonance.

In this paper, we reveal a PT -symmetric spectral singular-
ity (zero-width resonance) which occurs for bodies in relative
motion. We show that this PT symmetry is a consequence of
a universal frequency-momentum mirror symmetry observed
under the relativistic Lorentz transformations, which has
generally been overlooked. We analyze the case of metallic
media in relative motion and show that the spectral singularity
occurs because of the perfect coupling between positive-
and negative-frequency surface plasmon polaritons. This is
fundamentally different from the case of the balance between
spatially distributed gain and loss profiles known in conven-
tional PT -symmetric systems. These PT -symmetric spectral
singularities are manifested at the transition between stable
regions (loss-dominant regime) and region of instabilities
(gain-dominant regime) in the dispersion of a moving system.
Our work explains the underlying cause of a giant enhancement
in all phenomena related to vacuum and thermal fluctuations
in moving media, e.g., vacuum forces and radiative heat
transfer. We show that the giant enhancement is caused
by the universal phenomena of coupling between negative
and positive frequencies in the near field. We expect our
work to motivate studies of this negative-frequency resonance
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in acoustic systems [43], hydrodynamic flows [44], and
experiments on Coulomb drag [45].

II. FREQUENCY-MOMENTUM MIRROR SYMMETRY

In this section, we show the existence of a frequency-
momentum mirror symmetry in the Lorentz transformation
laws. The time-dependent electromagnetic field solutions to
Maxwell’s equations are real variables. Thus the spectral
decomposition of modes necessarily consists of positive and
negative frequencies which are complex conjugates of each
other. For the dispersion relation in the ω-k plane, this implies
that positive-frequency branches are necessarily accompanied
by a symmetric negative-frequency branch. Under stationary
conditions, the positive-frequency components alone contain
all the physics in the system, and therefore it generally suffices
to restrict our analysis to the positive frequencies. However,
both the positive- and negative-frequency solutions become
relevant when there is a relative translatory motion in the
system. This is because the Doppler shifts are velocity depen-
dent, causing the symmetry between forward and backward
traveling waves and positive and negative frequencies to be
broken.

The transformation of frequency (ω) and momentum (kx)
from a stationary frame of reference S to an inertial frame of
reference Sm, under the relativistic Doppler shift, is governed
by [46]

km
x = γ

(
kx − βx

ω
c

)
, (1)

ωm = γ (ω − kxβxc), (2)

where ωm and km
x are the frequency and the propagation

constant, respectively, as seen in the transformed frame of
reference Sm moving with a velocity vmotion. βx = vmotion/c

is the normalized velocity of translation, γ = 1/(1 − β2
x )1/2,

and c is the velocity of light in vacuum. For simplicity, we
have considered translatory motion along the x axis only.
The central theme of this paper is the unique relativistic
transformation from positive frequencies to an equal and
opposite frequency given by

ωm = −ω. (3)

Note that the momentum of waves is invariant to this
transformation and is conserved,

km
x = kx. (4)

This unique transformation is satisfied by the equation of a
line,

kx = γβx

c(γ − 1)
ω. (5)

We call this the frequency-mirror symmetry condition, on
which the frequency flips its sign in a transformed frame of
reference while maintaining its momentum.

On similar lines, it can be shown that another special rela-
tivistic transformation exists which maps the wave momentum
in the stationary frame to an equal and opposite momentum in
the moving frame, i.e.,

km
x = −kx. (6)

This is satisfied on the line

ω = γβxc

γ − 1
kx. (7)

Note that in this case, the frequency is invariant to the Lorentz
transformation,

ωm = ω. (8)

We call this the momentum-mirror symmetry condition.
Thus, the fundamental Lorentz transformation equations (1)

and (2) have universal symmetry properties in the ω-kx plane
such that for a given velocity vmotion, there exists the following:

(i) A line given by Eq. (5) on which the momentum
is conserved (km

x = kx) while the frequency flips its sign
(frequency-mirror symmetry, ωm = −ω).

(ii) A line given by Eq. (7) on which the frequency
is conserved (ωm = ω) while the momentum flips its sign
(momentum-mirror symmetry, km

x = −kx).
These two symmetry conditions in the ω-kx plane are shown

in Figs. 1(a) and 1(b), respectively. The dotted black lines in
the figure represent the light lines. In Fig. 1(a), the solid red
line represents Eq. (5) for βx = 0.3, in the stationary frame of
reference denoted by S. The line then transforms to the dashed
line in the moving frame of reference denoted by Sm.

It can be seen that a positive-frequency mode satisfying
Eq. (5) transforms to its negative-frequency counterpart while
the momentum is invariant, i.e., it exhibits frequency-mirror
symmetry. Similarly, Fig. 1(b) shows the transformation of a
momentum-mirror symmetry line. It should be noted that while
the momentum-mirror symmetry line lies inside the light line,
the frequency-mirror symmetry condition can be satisfied only
outside the light line, i.e., when the phase velocity is lower than
the velocity of light.

The frequency-mirror symmetry condition with its flipped
frequency and invariant momentum [shown in Fig. 1(a)] is of
particular interest because it enables the observation of the
negative-frequency electromagnetic response of a medium at
positive frequencies. Thus, an electromagnetic (EM) mode at
(ω,kx) on the frequency-mirror symmetry line will be trans-
formed to (−ω,kx) in a moving medium and, consequently, its
negative-frequency response will be observed in the stationary
frame of reference.

III. NEGATIVE-FREQUENCY RESPONSE AT
POSITIVE FREQUENCIES

Our mirror symmetry arguments are completely general and
apply in the relativistic case. Here, we show a practical scenario
where this symmetry is manifested. First, we provide a
physical interpretation of negative-frequency modes followed
by the role of the universal symmetry described above. The
electromagnetic properties of a metal slab in relative motion
with a velocity vmotion, as observed in the stationary laboratory
frame of reference, are governed by the Lorentz transformation
of constitutive relations. However, at low velocities ((vx/c)2 �
1) under the first-order Lorentz transformation (FOLT) limit,
the dielectric response of the slab as seen from the stationary
laboratory frame is εr ≈ εm

r (ωm) [46], where εm
r is the

dielectric response of the metal and ωm is the frequency as seen
in its proper frame of reference. ωm is obtained by transforming
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FIG. 1. (a) The frequency-mirror symmetry condition for βx =
0.3. The equation of the line satisfying frequency-mirror symmetry
condition (5) in frame Sm is shown by the solid red line, while the
corresponding Lorentz transformed line in the frame of reference Sm

is shown by the dashed red line. It can be seen that the frequency
(ω) flips its sign, while the momentum kx is conserved. (b) The
momentum symmetry condition (7), where the solid red line is the
momentum-mirror symmetry line in the S frame of reference which
transforms to the dashed red line the moving frame of reference Sm. It
can be seen that the momentum (kx) changes its sign, while frequency
ω is conserved.

ω as per Eq. (2), which simplifies to ωm = ω − kxvmotion

under the FOLT limit. The dielectric response as seen in the
laboratory frame of reference is then given by

εr = εr (ω − kxvmotion). (9)

It can be seen that the dielectric response of a moving
metal slab is not just dependent on frequency, but also
on the propagation constant and the velocity of motion.
As a consequence, an incident wave of frequency ω and

propagation constant kx will observe a negative-frequency
dielectric response of the metal when

ωm = ω − kxvmotion < 0, (10)

vmotion > vp. (11)

This is the Cherenkov condition at which the velocity of
motion is greater than the phase velocity (vp = ω/kx) of the
wave [47,48].

The condition of vmotion > vp can be physically satisfied
only when vp � c. This requires the momentum to be larger
than the free-space wave vector kx > k0 = ω/c causing the
waves to decay in vacuum. Thus the negative-frequency
transformation for a metallic slab in motion can only occur for
near-field evanescent waves. We now analyze the reflection
properties of such evanescent waves at the vacuum-metal
interface. The origin of such evanescent waves could be
quantum emitters or another stationary slab in the near field
of the moving slab. The normal component of Poynting vector
(Sz) of an evanescent wave absorbed at the metal interface
is proportional to the imaginary component of the reflection
coefficient (r ′′

p) [41],

Sz ∝ r ′′
p. (12)

Therefore, the reflection coefficient of a semi-infinite Drude
metal [εr = 1 − ω2

p/(ω2 + iω�)] slab sheds light on the
absorption and amplification characteristics of the medium.
Note that the tangential boundary conditions and hence the
Snell’s reflection law at moving media interface are valid
when the motion is in the plane of the interface [46] (see
Appendix A).

The sign of the imaginary component of the reflection
coefficient (r ′′

p) is representative of the loss in the metal
slab and its peak follows the dispersion curves of a surface
plasmon polariton (SPP). For any lossy metal, r ′′

p is positive.
However, this is strictly true only at positive frequencies. At
negative frequencies, the dielectric response and the reflection
coefficient are the complex conjugate of its respective positive-
frequency values [ε(−ω) = ε∗(ω)].

Figure 2(a) shows the dispersion of the p-polarized plas-
monic mode in the ω-kx plane. It can be seen that the SPPs
have positive peaks in r ′′

p for positive frequencies (ω > 0
region) and negative peaks for negative frequencies (ω < 0
region). The negative-frequency region actually corresponds
to the complex-conjugate part of the electromagnetic field
solution. The mode solutions have phase fronts which are
forward propagating when kx and ω have the same sign,
while the mode is backward propagating when they have
opposite signs. Therefore, the complete representation of a
forward-propagating mode includes the first and third quadrant
solution, while that of a backward-propagating mode includes
the second and fourth quadrants. It should also be noted
that in the stationary case, the dispersion characteristics are
symmetric for the forward (kx > 0) and the backward (kx < 0)
propagation as well as positive and negative frequencies.

The motion of the slab breaks the symmetry of the disper-
sion relation since the Lorentz transformation of frequency and
momentum (or, equivalently, the fields) is velocity dependent.
In the extreme case, when the slab is moving with velocity
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FIG. 2. Imaginary part of reflection coefficient for (a) stationary
metallic slab and (b) slab moving with velocity vx = 0.1c in the
four quadrants of the ω-kx plane. The p-polarized plasmonic mode
is considered such that rp = ε1kz1−ε2kz2

ε1kz1+ε2kz2
. Here, kz1 = √

ε1k
2
0 − k2

x ,

kz2 = √
ε2k

2
0 − k2

x , and the dielectric response is governed by the

Drude model ε1(ω) = 1 − ω2
p

ω2+i�ω
. It can be seen that the peak in

r ′′
p follows the dispersion curve of the surface plasmon polaritons.

The r ′′
p is proportional to the normal component of the Poynting

vector in the evanescent plasmonic wave and is representative of
the loss in the slab. For a lossy medium, r ′′

p is positive for positive
frequencies and negative for negative frequencies, as depicted in
(a). For a moving slab, in the region where kxvmotion > ω, the
negative-frequency mode (represented by the blue peak in r ′′

p) is
dragged into the positive-frequency quadrant, which exhibits gain
at positive frequencies. Therefore, in a moving slab, there are two
forward-propagating modes in the positive-frequency region: one
is the positive-frequency lossy mode represented by positive peaks
in r ′′

p , while the other is the gain mode with negative r ′′
p in the

positive-frequency region.

above the Cherenkov limit, the negative-frequency mode from
the fourth quadrant is dragged into the positive-frequency
region. Note that the phase of the wave is an invariant of motion
and the condition for real EM fields holds true in all reference
frames. The symmetry breaking in the dispersion relation
due to motion is shown in Fig. 2(b). The negative-frequency
mode which is dragged into the positive-frequency region
has negative r ′′

p , implying gain characteristics in the positive-
frequency domain. A slab moving above the Cherenkov
limit has two forward-propagating modes and no backward-
propagating mode. One of the forward-propagating modes is
an ordinary lossy mode (shown by positive peak in r ′′

p), while
the other mode is amplified (growing mode shown by negative
peak in r ′′

p). The motion of the dielectric slab results in the
violation of time-reversal symmetry,

ω(kx) �= ω(−kx). (13)

FIG. 3. Metal slabs separated by a distance d at relative motion
interact via near-field evanescent waves. When the velocity of
motion is greater than the Cherenkov velocity (vmotion > ω/kx), the
interaction is between positive frequencies of the stationary slab and
negative frequencies of the moving slab. This can result in a perfect
coupling between positive- and negative-frequency modes, which we
call a negative-frequency resonance. When the velocity of motion
is exactly twice the Cherenkov limit (vmotion = 2ω/kx), the dielectric
response of the two slabs becomes complex-conjugate pairs, resulting
in PT -symmetric spectral singularity. The PT symmetry is achieved
as a consequence of the negative-frequency-mirror symmetry.

We would like to emphasize that the above argument is valid
even at relativistic velocities, even without FOLT approxima-
tions.

Note the existence of a special frequency-mirror symmetry
when the observed response of the moving slab is the exact
complex conjugate of its stationary value. This is shown by the
starred point in the ω-kx plane. While the dielectric response
at this frequency-mirror symmetry point is εr (ω,kx) for a
stationary slab, it is εr (−ω,kx) = ε∗

r (ω,kx) for the moving slab.
If we now consider two identical parallel slabs (see Fig. 3),
one in relative motion to the other, our analysis shows the
existence of a unique velocity at which the dielectric response
of the moving slab is the complex conjugate of the stationary
slab. This occurs for a specific frequency and momentum wave
vector dictated by two conditions—the dispersion relation of
surface waves on the slab and the frequency-momentum mirror
symmetry condition.

IV. PT -SYMMETRIC RESONANCE IN A MOVING
MIM WAVEGUIDE

Here, we show how the relativistic negative-frequency-
mirror symmetry is connected to the achievement of parity-
time symmetry in a moving system. Note that our work in
this section is connected to the mirror symmetry condition and
not the instabilities or spontaneous PT -symmetry breaking in
moving media [40]. If we place a stationary and a moving metal
slab close enough to allow evanescent wave interactions, they
form a metal-insulator-metal (MIM) waveguide structure. In
this structure, the stationary slab will have a dielectric response
ε1(ω) and the moving slab will exhibit dielectric response
of ε3(ω) = ε1(ωm). This is shown in Fig. 3. The separation
between the slabs is d. The overall dielectric distribution of
the waveguide as a function of z is then written as

ε(z,ω) =

⎧⎪⎨
⎪⎩

ε1(ω), z < −d/2

ε2 = 1, −d/2 < z < d/2

ε1(ωm), d/2 < z.

(14)

The dielectric function of the waveguide is complex
in the region z < −d/2 and z > d/2. To investigate the
PT -symmetry properties of this complex dielectric system,
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we write the Hamiltonian formulation for a plane-wave
propagation (eikxx) along the x̂ direction [9,46],

Ĥem�kx
(z) = k2

x�kx
(z), (15)

where eigenfunctions �kx
can be either 	E(y,z) or 	H (y,z) and

k2
x is the eigenvalue. Assuming nonmagnetic media and in the

FOLT limit, Ĥem can be written as

Ĥem(z,ω) = ∇2
t + ω2ε0μ0ε(z,ω), (16)

in which ∇2
t = x̂ × ∇2. Equation (15) will be PT symmetric

with real eigenvalues and unitary time evolution if �kx
is the

eigenfunction of the PT operator and

[Ĥem,PT ] = 0. (17)

From the properties of the P and T operators, it is
straightforward to show that (see Appendix B)

PĤem(z,ω) = Ĥem(−z,ω)P, (18a)

T Ĥem(z,ω) = Ĥ ∗
em(z,ω)T . (18b)

Combining Eqs. (18a) and (18b) together, we conclude that
the Hamiltonian is PT symmetric if Ĥem(z,ω) = Ĥ ∗

em(−z,ω).
This means that the condition of PT symmetry on the
dielectric function, as obtained from Eq. (16), is the well-
known condition [8]

ε(−z,ω) = ε∗(z,ω). (19)

Using Eq. (14) and the fact that the imaginary part of the
dielectric response is an odd function of frequency [49], the
condition for PT symmetry in the moving system translates
to

ε1(ω) = ε1(−ωm). (20)

This condition is only met when ωm = −ω for the same
value of kx in the stationary as well as moving frame of
reference, i.e., on the frequency-mirror symmetry line of
Eq. (5). This is a unique case where the system response is
PT symmetric only for a specific electromagnetic mode. Our
moving-slab systems do not possess time-reversal symmetry
or parity symmetry individually for any mode. In the FOLT
limit, the frequency-mirror symmetry line simplifies to (see
Appendix C)

kx = 2
ω

vmotion
. (21)

We will henceforth refer to this line as the PT -symmetry
line along which the Hamiltonian [Eq. (16)] is PT symmetric
or [PT ,Ĥem] = 0. Note that this condition is independent of
the separation d, but the spectral singularity depends on the
gap distance. A mode of the system on the PT -symmetry line
will not undergo attenuation or amplification because at this
condition the loss in the stationary slab is perfectly balanced
by the gain in the moving slab.

V. CHERENKOV AMPLIFICATION

We emphasize that the parametric amplification of vacuum
fluctuations is well known for the phenomenon of vacuum
friction which occurs for bodies in relative motion [27]. The

parametric nature arises since the evanescent wave on reflec-
tion is amplified without change in frequency or momentum.
Similarly, growing electromagnetic waves and instabilities
in moving plasmas and their connection to negative-energy
waves have been well studied [26]. However, the role of the
frequency-momentum mirror symmetry condition in Lorentz
transformations, i.e., the perfect coupling of positive and
negative frequencies in the near-field and PT -symmetric
spectral singularity, has not been pointed out.

We note that gain in the moving system arises from
Cherenkov amplification, also known as the anomalous
Doppler effect [48], which is fundamentally different from
conventional PT -symmetric systems. The slabs in relative
motion experience a noncontact frictional drag, which opposes
the relative motion. Work done in moving the slab at constant
velocity against the frictional force is the ultimate source of the
gain. The Cherenkov amplification occurs for electromagnetic
field fluctuations with phase velocity smaller than the velocity
of motion of the slab. These growing waves in moving media
can be seeded by vacuum fluctuations. We note that unlike
the classical Cherenkov radiation where charged particles are
necessary, this effect only requires the motion of neutral
polarizable particles or harmonic oscillators with internal
degrees of freedom. The classical dispersion relation of modes
enters the classical thermal fluctuations and quantum vac-
uum fluctuations through the fluctuation-dissipation theorem
(FDT) [50],

〈Ej (	r,ω)E∗
k (	r ′,ω)〉 = ω

2πc2ε0
	(ω,T )Im

{
GE

jk(	r,	r ′; ω)
}
,

(22)

where ĵ and k̂ represent the three spatial orthogonal coor-
dinates (ĵ ,k̂ ∈ {x̂,ŷ,ẑ}). 	(ω,T ) is the energy of a quan-
tum oscillator at equilibrium, given by 	(ω,T ) = h̄ω/2 +
h̄ω/(eh̄ω/(KBT ) − 1), and Gjk is an element of the electric
field Green’s tensor. We note that the FDT formalism ensures
that the classical mode structure affects the noise properties
and effects such as Casimir forces [51], near-field heat
transfer [52], and vacuum friction [27].

VI. PT -SYMMETRIC SPECTRAL SINGULARITY

In this final section, we show that the spectral singularity
associated with PT -symmetric systems is manifested in the
perfect coupling of positive- and negative-frequency branches
in moving plasmonic media. This perfect coupling occurs at
a critical velocity and gap distance when negative-frequency
mirror symmetry is achieved for surface wave solutions. We
call this a negative-frequency resonance. Note that even though
PT symmetry is satisfied on all points of the PT -symmetry
line, not all (ω,kx) on the line are valid waveguide modes.
This is because a mode has to satisfy additional boundary
conditions at the interfaces, which also makes the solution
gap-size (d) dependent. To get the precise location of a mode
on the PT -symmetry line, we compute the full dispersion
curve for an MIM waveguide with one moving slab by solving
the dispersion relation,

e−2ikz2d = kz2/ε2 + kz1/ε1

kz2/ε2 − kz1/ε1

kz2/ε2 + kz3/ε3

kz2/ε2 − kz3/ε3
, (23)
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FIG. 4. Dispersion curves for plasmonic MIM waveguide in four quadrants of the ω-kx plane for (a) stationary slabs and (b) slabs with
relative velocity of 0.2c. Solid colored lines represent the real part of propagation constant k′

x , while the dash-dotted lines represent the imaginary
part k′′

x of the respective mode. Black dotted lines represent the light cone. In (b), the dispersion curve lying below the PT -symmetry line is the
negative-frequency mode which is dragged into the first quadrant. This is the gain mode. The gain and loss modes merge at the intersection of
the PT -symmetry line with the imaginary component of the propagation constant equal to zero at the intersection point. At this point, loss in
the stationary metal slab is exactly compensated by gain in the moving metal slab. All points on the dispersion curve below the PT -symmetry
line have gain, while all the points above have loss. The inset shows the Hz mode profile at (b1) loss, (b2) gain, and (b3) PT -symmetric points.
The magnetic field profile in the lossy region of the dispersion curve (b1) attenuates as it propagates along the x direction, and amplifies in
the gain region (b2). On the PT -symmetry point of the dispersion curve, the field profiles propagate without any attenuation or gain. Drude
metal with plasma frequency ωp = 1014 Hz; collision frequency � = 0.05ωp is considered in the simulation. The separation between the slabs
is d = 25 nm.

in the full ω-kx plane. Here, kzj =
√

(εj k
2
0 − k2

x), j ∈ {1,2,3};
ε1 is the Drude dielectric response, ε2 = 1 (or a constant),
and ε3 = ε1(ω − kxvmotion). We consider p-polarized (Hy �= 0)
wave propagation as it alone supports plasmonic modes.

Figure 4 contrasts the computed dispersion curves of the
MIM waveguide with stationary slabs [Fig. 4(a)] and one
slab moving with vmotion = 0.2c [Fig. 4(b)]. Background color
(shade) in the plot indicates the sign of the imaginary part
of the dielectric response of the two slabs (ε1 and ε3). In
Fig. 4(a), the dark yellow background (region marked as #1)
represents the region where ε′′

1 and ε′′
3 are positive, while dark

green (region marked as #2) represents the region where both
the constants are negative. For a lossy medium, ε′′ is positive
for positive frequencies and negative for negative frequencies.
Thus both slabs (ε1 and ε3) are lossy in the stationary
case.

When one of the slabs starts moving, its dielectric re-
sponse transforms according to ε(ω − kxvmotion). Above the
Cherenkov limit of vmotion > ω/kx , negative-frequency char-
acteristics are dragged into the positive-frequency region as
shown by the overlap of the light green and light yellow region
(marked as #3) in Fig. 4(b). In this overlap region, medium-1 is
lossy, while medium-3 exhibits amplifying characteristics. The
PT -symmetry line lies in this overlap region and forms the
diagonal to the rhombus formed between the region ε1 < −ε2

and ε3 < −ε2. The condition ε1 = ε∗
3 is satisfied at all points

on the PT -symmetry line, which implies that the moving-slab
dielectric response is the complex conjugate of the stationary
slab.

In Fig. 4, the real component of the propagation constant
(k′

x) is represented by solid lines and the imaginary component
(k′′

x ) is shown by the dashed line of corresponding color (and

marker style). For the stationary MIM waveguide [Fig. 4(a)],
both positive as well as negative momentum waves attenuate as
they propagate in either direction, as indicated by the same sign
of k′

x and k′′
x for all positive frequencies (the signs are opposite

in the complex-conjugate region of negative frequencies).
However, when one slab is moving, we notice two unique
modes in the first quadrant: one is a lossy mode (k′

x and
k′′
x have the same sign) and another is a mode exhibiting

gain (k′
x and k′′

x have opposite signs). These two modes are
shown by red (with circle marker) and blue (solid line without
marker) colors in Fig. 4(b), respectively. The gain mode in the
first quadrant arises from the negative-frequency component
of the backward-propagating mode which is dragged to the
positive-frequency region from the fourth quadrant. The lossy
and amplified modes converge and meet on a point on the
PT -symmetric line (shown by a magenta colored line with
star marker). We emphasize that the propagation constant at
this point of intersection is purely real, k′′

x = 0. At this point
on the dispersion curve, the PT symmetry is achieved and
the wave propagates without any attenuation. All points on the
dispersion curve above the PT -symmetry line are lossy, while
those below exhibit gain as shown by the Hy mode profile in
the inset. It can also be seen that in contrast to the station-
ary case, the dispersion diagrams becomes unsymmetrical,
ω(kx) �= ω(−kx).

The dispersion curve and the PT -symmetry line intersect
when the phase velocity (vp) of the mode is equal to half
the slab velocity. Figure 5(a) shows the phase velocity of
points along the dispersion curve when vmotion = 0.2c. The
corresponding dispersion curve in the first quadrant of the ω-kx

plane is shown as an inset in Fig. 5(b). All the points on the
dispersion curve with phase velocity higher than vmotion/2 are
lossy, while those with lower phase velocity exhibit gain. Thus
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FIG. 5. (a) Phase velocity along the dispersion curve as a
function of frequency when vmotion = 0.2c. The gain and loss regions
of the dispersion curve are separated by the PT -symmetry line
with vmotion/2. The mode intersects the PT -symmetry line when
vmotion = 2vp . (b) Q factor of the resonance as a function of the ratio
vmotion/2vp . The mode exhibits spectral singularity as vmotion → 2vp ,
at the intersection of the PT -symmetry line and dispersion curve.

the Cherenkov limit for amplification for the MIM waveguide
with one moving slab is modified to

vmotion > 2vp. (24)

The more stringent condition for amplification arises from
the fact that the gain in the moving slab has to compensate
for the loss in the stationary slab, and therefore to achieve
net gain the slab velocity has to be twice the conventional
Cherenkov limit. The PT -symmetry condition lies at the
boundary of stability (loss-dominant regime) and instability
(gain-dominant regime).

A mode at the PT -symmetry condition (vmotion = 2vp)
exhibits zero-width resonance, as depicted by the Q factor of
resonance in Fig. 5(b). The Q factor is defined as a ratio k′

x/2k′′
x

(see Appendix D). It can be seen that at the PT -symmetry
condition, the Q factor tends to infinity, indicating zero-width
of resonance or spectral singularity. Note that nonequilibrium
phenomena such as radiative heat transfer and vacuum friction
will exhibit a giant enhancement when the velocity and gap
size are tuned to achieve this resonance [42]. Our future work
will focus on theoretical work beyond linear response theory
to regularize the fluctuations near this spectral singularity.

VII. CONCLUSION

In this paper, we have shown the existence of universal
frequency- and momentum-mirror symmetry conditions in
relativistic Lorentz transformations. We have shown that
frequency-mirror symmetry is the fundamental origin of the
PT -symmetry condition in the case of metallic slabs in relative

motion. We show that the PT -symmetry condition is achieved
only on a line which satisfies frequency-mirror symmetry. Our
work provides a clear connection between negative-frequency
resonances and PT -symmetric spectral singularity in moving
media. We have considered two metallic slabs in motion to
show how the spectral singularity results from perfect coupling
of positive- and negative-frequency surface plasmon polariton
branches. The challenge of observing the negative-frequency
resonance can potentially be realized in a concentric rotating
cylinder system as linear translation at high velocities is
difficult to achieve. Similar effects would also be observed
in a cloud of fast-moving polarizable molecules, interacting
with the evanescent surface waves near a metal interface. Once
electromagnetic retardation effects are taken into account (i.e.,
beyond the electrostatic limit), Coulomb drag experiments in
semiconductor and two-dimensional material systems can also
manifest the negative-frequency resonance [45]. Our work on
the coupling of negative and positive frequencies in the near
field is a universal phenomenon and can lead to similar effects
being discovered in acoustic systems [43] and hydrodynamic
flows [44] and experiments on Coulomb drag [45].

APPENDIX A: BOUNDARY CONDITIONS IN MOVING
MEDIA INTERFACE

The generalized boundary conditions at moving media
interface are derived in Kong’s book [46]. For completeness,
we restate these conditions and show that they simplify to
stationary boundary conditions in our configuration.

At the moving interface, the electric and magnetic boundary
conditions are not decoupled [46],

n̂ × ( 	E1 − 	E2) − (n̂ · 	vmotion)( 	B1 − 	B2) = 0, (A1)

n̂ × ( 	H1 − 	H2) + (n̂ · 	vmotion)( 	D1 − 	D2) = 	Js, (A2)

where n̂ is the normal to the interface. In our case, the vmotion is
along the interface with n̂ ⊥ 	v. Therefore, the coupled terms
with n̂ · 	v have zero contribution and the boundary conditions
simplify to

( 	Etangential1 − 	Etangential2) = 0, (A3)

( 	Htangential1 − 	Htangential2) = 	Js. (A4)

The boundary conditions on 	D and 	B derived from the
divergence equations remain unaltered for moving media.
Therefore, the Snell’s law is valid when the motion is in the
plane of the interface. The reflection properties can then be
computed by Lorentz transforming the material properties
of the moving medium to a stationary frame of reference
and applying the boundary conditions for stationary interface.
Alternatively, the same reflection properties can be obtained
by solving the boundary conditions in the proper frame of
reference of the moving medium followed by Lorentz trans-
formation of the solution to a stationary frame of reference.
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APPENDIX B: PARITY AND TIME-REVERSAL
OPERATION

Parity-reversal operation P performs r → r ′ on the system.
Therefore, P acting on the Hamiltonian of Eq. (16) gives

PĤem(z,ω) = P
[∇2

t + ω2ε0μ0ε(z,ω)
]

(B1)

⇒ PĤem(z,ω) = [(−∇t )
2 + ω2ε0μ0ε(−z,ω)]P (B2)

⇒ PĤem(z,ω) = Ĥem(−z,ω)P. (B3)

The time-reversal operator T is defined to reverse the
direction of time by performing t → −t and i → i∗ on the
system. Therefore, T acting on the Hamiltonian of Eq. (16)
gives

T Ĥem(z,ω) = T
[∇2

t + ω2ε0μ0ε(z,ω)
]

(B4)

⇒ T Ĥem(z,ω) = [∇2
t + ω2ε0μ0ε

∗(−z,ω)
]
T (B5)

⇒ T Ĥem(z,ω) = Ĥ ∗
em(z,ω)T . (B6)

APPENDIX C: FREQUENCY-MIRROR SYMMETRY IN
FIRST-ORDER LORENTZ TRANSFORM (FOLT) LIMIT

The frequency-mirror symmetry line for a given βx is

kx = γβx

c(γ − 1)
ω. (C1)

Substituting the value γ = 1/
√

1 − β2
x , we get

kx = ω

c

βx

1 − √
1 − β2

x

. (C2)

Using the binomial expansion,(
1 − β2

x

)1/2 = 1 − 1
2β2

x + 1
2

1
2

(
1
2 − 1

)
β4

x + · · · . (C3)

In the first-order Lorentz transform limit, β2
x � 1, and

therefore we neglect the higher powers of βx . Substituting
Eq. (C3) in Eq. (C2) and simplifying, we get

kx = 2
ω

vx

. (C4)

APPENDIX D: Q FACTOR OF A PROPAGATING
WAVE RESONANCE

The linewidth of resonance in a system is characterized by
its Q factor, defined as

Q = ω
Average stored energy (W )

Average power dissipated (P )
. (D1)

The linewidth is inversely proportional to the Q value and
there is singularity in the spectrum when Q → ∞.

The average stored energy in the system for time harmonic
fields propagating in the x direction is

W =
∫

v

	E(x,t) · 	E∗(x,t)d(v) +
∫

v

	H (x,t) · 	H ∗(x,t)d(v),

(D2)

where v is the volume.
The electric and magnetic fields of a mode in one-

dimensional propagation can be written as

	E(x,t) = 	Eei(k′
xx−ωt)e−k′′

x x, (D3)

	H (x,t) = 	Hei(k′
xx−ωt)e−kx ′′x, (D4)

where the complex propagation constant kx = k′
x + ik′′

x .
From (D2)–(D4), the average stored energy in the mode is

W =
∫

v

	E · 	E∗e−2k′′
x xd(v) +

∫
v

	H · 	H ∗e−2k′′
x xd(v). (D5)

The average power dissipated by the mode as it propagates
a distance ∂x in time ∂t is

P = − ∂

∂t
(W ). (D6)

Substituting (D5) in (D6),

P =
∫

v

	E · 	E∗e−2k′′
x x

(
2k′′

x

∂x

∂t

)
d(v)

+
∫

v

	H · 	H ∗e−2k′′
x x

(
2k′′

x

∂x

∂t

)
d(v). (D7)

Since a phase front (k′
xx − ωt = const) travels ∂x distance in

time ∂t , we have

∂x

∂t
= ω

k′
x

. (D8)

From (D5), (D7), and (D8), the average power dissipated is
given by

P = 2
k′′
x

k′
x

ωW. (D9)

From (D9) and (D1), we get the Q factor of the propagating
mode as

Q = k′
x

2k′′
x

. (D10)
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