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The discovery of photonic hyperbolic dispersion surfaces in certain van der Waals bonded solids, such as
hexagonal boron nitride and bismuth selenide (a topological insulator), offers intriguing possibilities for creating
strongly modified light-matter interactions. However, open problems exist in quantifying electromagnetic field
fluctuations in these media, complicating typical approaches for modeling photonic characteristics. Here, we
address this issue by linking the identifying traits of hyperbolic response to a coupling between longitudinal and
transverse fields that cannot occur in isotropic media. This description allows us to formulate a gauge theoretic
description of the influence of hyperbolic response on electromagnetic fluctuations without explicitly imposing
a characteristic size (model of nonlocality)—leading to formally bounded expressions so long as material
absorption is included. We then apply this framework to two exemplary areas: the optical sum rule for modified
spontaneous emission enhancement in a general uniaxial medium and thermal electromagnetic field fluctuations
in hexagonal boron nitride and bismuth selenide. We find that while the sum rule is satisfied, it does not constrain
the enhancement of light-matter interactions in either case. We also show that both hexagonal boron nitride and
bismuth selenide possess broad spectral regions where the magnitude of electromagnetic field fluctuations are

over 120 times larger, and over 800 times larger along specific angular directions, than they are in vacuum.
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I. INTRODUCTION

In 1987, Yablonovitch conceived the photonic crystal [1,2]
as a means of physically forbidding electromagnetic field fluc-
tuations over a finite bandwidth to improve the performance of
semiconductor lasers and solar cells. Variations of this idea,
tracing back as far as Purcell’s pioneering work on nuclear
magnetic resonance [3], appear ubiquitously in contemporary
optics. Manipulation of a system’s field fluctuations character-
istics (the photonic density of states, two-point correlations,
etc.) provides a means of controlling an extensive list of phe-
nomena, including field enhancement [4,5], subwavelength
confinement [6-8], thermal properties [9-11], spontaneous
[12—-14] and coherent emission [15,16], and atom-atom in-
teractions [17,18]. This strong relation between fluctuational
properties and system response has naturally led to reciprocal
forms of the problem originally proposed by Yablonovitch
[19-23]. Namely, to what extent can electromagnetic field
fluctuations inside a system be enhanced over a given spec-
tral bandwidth? Remarkably, realizable complements of the
photonic bandgap, media in principal offering unbounded
enhancement, do exist. Hyperbolic (indefinite [24]) media are
widely stated to posses a broadband photonic dispersion sin-
gularity [25,26] leading to electromagnetic field fluctuations
of magnitude bounded only by second-order effects.

Yet, while this picture of singular (indefinite) field fluctu-
ations has been highly successful for interpreting functional
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applications of hyperbolic media, spanning the domains of
imaging [27-29], nanophotonics [30-35], and certain semi-
classical [36-39] and thermal interactions [40—45], there are a
number of situations of interest where it cannot be easily ap-
plied. In particular, an unbounded magnitude of electromag-
netic fluctuations presents difficulties for connecting semi-
classical and quantum optical processes with existing results
in macroscopic quantum electrodynamics [46—48] when the
fields inside a hyperbolic media must be described directly.
[As opposed to situations where boundary conditions can
be used to reformulate all quantities of interest in terms
of external fields.] With the growing realization that many
natural materials intrinsically exhibit high-quality hyperbolic
response [49-55], there are at least two motivations for reex-
amining this issue. First, there is interest in exploring whether
hyperbolic response could be useful in proposed technologies
relying on quantum optical effects [56-59], which would
benefit from a simplified description. [For example, recent ex-
perimentally confirmed long-range dipole-dipole interactions
mediated by hyperbolic response [18,32,60-62].] Second, as
all hyperbolic media transition smoothly between frequency
windows of hyperbolic and (normal) elliptic or isotropic re-
sponse, the lack of a single, transparently consistent, formula-
tion to simultaneously treat both settings is bothersome.
Significant steps have been made toward this goal since
the start of the decade. In 2011, Maslovski and Silveirinha
[63] (wire metamaterial) and Poddubny er al. [64] (general
hyperbolic media) showed that the observable effects of the
fluctuation singularity are smoothed once the emitter (atom)
is given a finite size. Like the more familiar longitudinal
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fluctuation divergences encountered in isotropic media, it was
found that considering field interactions with a spatially finite
charge distribution leads to bounds proportional to 1/a* and
1/a specific to the hyperbolic regime, with a denoting the
characteristic size. (For later reference, it is worthwhile to
note that the particular form of the distribution was observed
to have a weak influence on these terms.) This was shortly
followed by the work of Potemkin et al. [65], formally red-
eriving the functional structure of the Green function in real
space [66,67], in principle setting hyperbolic and isotropic
media on equal footing. The singular terms found in this work
(6 distribution terms) corrected earlier simplified guesses at
the Green function singularity for uniaxial media given by
Weiglhofer [68]. Nearly concurrently, studies by Poddubny
et al. [69] and Yan et al. [70] explored the influence of
microscopic models. Considering a cubic lattice of hyperbol-
ically polarizable dipoles, and the interlaced metal dielectric
multilayer structures frequently used for creating hyperbolic
metamaterials, respectively, both investigations found that
nonlocal response strongly altered results based on homoge-
neous approximations. Of particular relevance to this article,
the later study showed that nonlocality in the polarization
response produces another mechanism bounding fluctuations
in hyperbolic media, leading to a proportionality of 1/83,
with S representing the length scale of nonlocality. (This
form matches what we find for the purely longitudinal contri-
bution, but misses the polaritonic characteristics. Additional
discussion of these developments are given in the review by
Poddubny et al. [71]. Note that the language used in these
studies, which is conventional, denotes what we will refer
to as the magnitude of fluctuations or fluctuation density,
as the Purcell factor or photonic density of states. It is our
belief, at least in the context of this article, that this alternate
terminology will help avoid potential confusion.)

Nevertheless, while these findings do in fact contain all
the ingredients required to characterize a general uniaxial
medium, they remain unsatisfactory in practice. Most impor-
tantly, there is no directly calculable quantity that qualifies
the singular nature of the fluctuation density in the hyperbolic
case, nor is there any obvious connection with the widely
successful intuitive understanding of these media. This in-
formation is unequivocally contained in the real space Green
function as it has been previously presented, but it is not easily
accessible. (Recovering the results we will present here from
real space Green function requires conscientious treatment
of the formally singular parts of this expression.) The two
finite-size normalization approaches face similar difficulties.
While technically accurate, fluctuations in hyperbolic media
appear to become inextricably tangled with the characteristic
length scale. This is both a clear break from isotropic media,
where (as we will review) the transverse fluctuation density
is directly determined from the permittivity parameters, and a
cumbersome impediment for performing calculations in natu-
ral hyperbolic media, as in most cases only local permittivity
data is readily available.

Here, we confront these shortcomings, consider in the
plasma physics community as early as 1962 [72,73], through a
gauge theoretic description of the coupling between transverse
and longitudinal electric elds that arises in any anisotropic
medium. This routinely overlooked connection allows us to

produce a characteristic regularized field fluctuation density
bounded by material absorption, even in the hyperbolic case;
and to analytically link the polariton excitations [74] known
to occur in hyperbolic media with the near-field optical and
thermal properties that they exhibit. We then apply this frame-
work to study two areas of interest. The first of these is the
optical sum rule for modified spontaneous emission enhance-
ment. This general result states that the frequency integrated
transverse fluctuation density is a constant of any photonic
system. (For instance, in photonic crystals the suppression of
fluctuations in the band gap is compensated by a correspond-
ing enhancement at the band edge van Hove singularities.)
Based on previously reported descriptions of the uniaxial
Green function, it is not clear why this well established results
continues to hold in the presence of hyperbolic response. The
second application is a calculation of the thermal fluctuation
density (total electromagnetic energy density) for hexagonal
boron nitride and bismuth selenide. In these investigations,
we find that while the sum rule is valid, it does not extend
to the polariton modes that define hyperbolic response. We
also observe that both hexagonal boron nitride and bismuth
selenide have broad spectral regions where the fluctuation
density is over 120 times larger, along specific directions over
800 times larger, than it is in vacuum. [Momentum-resolved
electron energy loss spectroscopy, using a transmission elec-
tron microscope, can plausibly probe these bulk excitations
and verify the above predictions [75].]
From the fluctuation dissipation theorem [76,77],

o O(w,T)

(E(r, ») @ E*(r', w)) = Im{G(r, v, w)}, (1)

and our stated objective amounts to regularizing the fluctua-
tion density (FD):

F(w) = Tr[Im{G(r, ¥, )}]
=/dmemw““”mhwm, )

for hyperbolic media. (Where ®(w, T') is the energy of a har-
monic oscillator at frequency w and temperature T, G(r,r, w)
the dyadic Green function of the medium, Q (k, w) it’s Fourier
transform, [ dVi an integral over reciprocal space and Im{...}
the imaginary part.) The text is organized into five sections.
The first three cover our theoretical work leading to Egs. (27),
(34), (39), and (40), along with brief reviews of relevant
background information. The last two explore our chosen
applications.

II. POLARITON EXCITATIONS IN ANISOTROPIC MEDIA
We begin by decomposing the Maxwell equations in terms

of a chosen direction in reciprocal space vector k. Letting
w, = (k®k)w, (3a)
w, =l -k®kw (3b)

be the projection of a vector w along k, and onto the plane per-
pendicular to k, respectively, any vector w can be represented
as

wW=w, +Ww, (3o)
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where w, and w, are referred to as the longitudinal and
transverse components. From these definitions,

kxw, =0, (4a)
k-w, =0, (4b)

so that the Maxwell equations in vacuum separate to become

k-E, (k) = —ipk, o)/e, (52)

B, (k,w) =0, (5b)

k x E, (k, w) = 0 B, (k, ), (5¢)
ik x B, (k, ) = —iw E, (k, 0) + j, (K, »)/e,,

iw E, (K, ) = j,(k, 0)/e,, (5d)

with €, and p, denoting the permittivity and permeability
of vacuum, p(k, w) the charge density, j(k, ) the current
density, B(k, w) the magnetic field, and E(k, w) the electric
field. Assuming that the relative permeability is negligibly
different than vacuum, fi(k, ) = I, as we will throughout,
macroscopic averaging of Egs. (5a)—(5d) produces

k-D,(k, 0) = —ips(k, ®)/e,, (62)

B, (k, w) =0, (6b)

k x E, (k,w) = 0 B, (k, »), (60)
ic’k x B, (k, w) = —iw D, (k, w) + js (k, ®)/e,,

ioD,(k, ) = jg (K, 0)/€, (6d)

where D(k, w) = é(k, w)E(K, w) is the electric displacement
field, and the f subscript is introduced as a shorthand to mark
that the quantity is free, i.e., separate from the microscopic
densities that have been averaged over in producing Eqs. (6a)—
(6d) from Egs. (5a)—(5d). The overline X serves as a similar
reminder that the electric and magnetic fields appearing in
Eqgs. (6a)-(6d) are spatially averaged, and not equivalent to
the identically named fields in Egs. (5a)—(5d).

A. Microscopic densities

The microscopic Eqgs. (5a) and (5b) show that the longitu-
dinal electric and magnetic fields are entirely determined by
their respective charge densities,

E, (k, ) = —ip(k, w)k/(€ k%), (7a)
B, (k, ) =0, (7b)

so that they vanish in the absence of charge. (Since the
most important properties related to these quantities are the
Coulomb self-energy and charge momentum [78], we inter-
changeably refer to them as Coulombic.) A homogeneous
solution to Egs. (6a)—(6d) is hence purely transverse, and from
Eq. (6¢), determined by E, (k, w). (We alternatively refer to all
such quantities that define homogeneous solutions as normal
variables.)

B. Isotropic media

A treatment of isotropic media follows largely by analogy.
From the relation between D(k, w) and E(k, w), defined by
the scalar relative permittivity €(k, w) = €(k, w)I for consis-

tency the longitudinal electric and magnetic fields are
E, (k, w) = —ips(k, 0)k/[K*€e(k, )], (8a)
B, (k,w) = 0. (8b)

Therefore, so long as €(k, w) # 0, the normal variables of
an isotropic medium are again transverse and equivalent to
E, (k, ).

The caveat to this congruence is the appearance of the
polarization condition

etk,w)=0 )

in Eq. (6a). When this condition is met, the displacement
field may be zero even if the longitudinal electric field is
not. As the remaining macroscopic equations do not depend
on the longitudinal electric field, these Coulombic modes
evolve independent of the transverse electromagnetic solu-
tions [79-81]. Averaging Eq. (5a) directly,

bk, 0) = ie,k - E, (k, w), (10)

showing that each Coulombic solution is a mechanical macro-
scopic oscillation of the microscopic charge density, mediated
by the electric field.

The appearance of these Coulombic solutions make
Egs. (6a)-(6d) fundamentally different than a scaled vacuum.
The fact that € (k, w) exists because of the presence of charges
is inescapable, even after macroscopic averaging. However,
the effects resulting from the two solution types can usually
be treated independently as they tend to exhibit markedly
different behavior.

C. Anisotropic (uniaxial) media

For anisotropic media the relative permittivity tensor,
é(k, w), cannot be simplified and a more careful analysis is
required. Rewriting Egs. (6a)—(6d) in the Coulomb gauge,

E,(k, o) = ioA, (k, ), (11a)
E, (k, ) = —ik V(k, 0), (11b)
B, (k, ») = ik x A, (k, w), (11c)
a homogeneous solution requires both
o[Bk* —k @k — k2 é(k, w)]A, (K, w)
+k2é(k, )k V(k, w) =0 (12)

and
k é(k, w)[w AT k,w) —k V(k,w)] =0, (13)

with k, = w/c, A(k, w) standing for the electromagnetic vec-
tor potential and V (k, @) standing for the scalar potential. To
satisfy Eq. (13) there are three distinct possibilities.

(O): If in addition to being perpendicular to k, AT k, w)
is constrained to directions perpendicular to k é(k, ), then
V(k, w) = 0. As in the microscopic picture, the normal vari-
ables are then transverse. Evaluating Eq. (12), simplifying
to a uniaxial response as we will throughout, produces the
s-polarized, or ordinary, wave condition,

k= /e (k, o)k, (14)
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FIG. 1. Wave conditions and fluctuation density. In isotropic media, the magnitude of fluctuations in the electromagnetic field are
proportionally related to the magnitude of the wave condition k = /e (k, w) w/c. By inference, the p-polarized wave condition for uniaxial
media suggests that hyperbolic response should be accompanied by strongly enhanced electromagnetic field fluctuations. The central goal of

this article is to quantify this statement.

with A, (k, @) confined to the direction § = [—s(¢), c(¢), 0]
relative to the unit direction in reciprocal space k =
[s(0)c(@), s(B)c(¢), c(0)]. (Our labeling convention for uni-
axial media is shown in Fig. 1.)

(C): If k &(k, w)k = 0, then V (K, ) can be nonzero inde-
pendent of the value of A, (k, w). These purely longitudinal
solutions generalize the Coulombic modes of an isotropic
media, Eq. (9), with the updated criterion,

k ¢k, 0)k =0, (15)

accounting for the reduced symmetry of €(k, w). For uniaxial
anisotropy, Eq. (15) reduces to

€, (k, 0, ) =0, (16)
with
€, (k, 0, ) = s(0)%¢,(k, w) + c(0)’€, (k, w). (17)

We will refer to this projection as the uniaxial permittivity of
the medium.

(AP): If A, (k, w) is not perpendicular to k &(k, ), then
Eq. (13) forces the equality

Vk, o) =0k &k, ) A,k o)/[k &k, k], (18)
and Eq. (12) becomes

k2 k®k
LFERE
0

0

—é(k, w) +

ek, w)k @ &k, )k | -
k ¢(k, )k r

=0. (19)

Given the directional restrictions on A, satisfaction of this
constraint requires k to be a solution of the p-polarized, or
extraordinary, wave condition,

k= /e, k.0, )k, (20)

with A, (k,w) confined to the direction p=
[—c(B)c(P), —c(B)s(¢), s(B)], and €,(k, 0, w) defined as
the extraordinary permittivity,
(0.0 = ek 0)
€,(k,0,w)
(The similarity between Eq. (21) and the excitation condi-
tion of a surface plasmon polariton [82] is not coincidental.)
Substitution into  V(k, ) = wk &k, w)A, (k, w)/[k &(k,
w)Kk] shows that for the extraordinary family of solutions,

2n

E, (k, 0) = k €,k 0, w)E, (K, w), (22)

where E, (k, ) is the undetermined scalar magnitude of the
transverse component of the electric field,

€,(k,0,w) =s5(0)cO)[e,(k, w) —€,(k, w)] (23)

is the relative degree of polarization anisotropy between the
optical axis and plane, and
€,(k,0,w)
€,k 0, w)= 20 24)
€,(k,0,w)
defines the hyperbolic permittivity.

Equation (22) contains the essential physics that will guide
the rest of the manuscript: in an anisotropic media the normal
variables are a mixture of transverse and longitudinal fields.
Averaging Eq. (5a) as before,

p(k, ) = i€,k €, (k, 0, w)E, (k, ), 25)

making it is apparent that for any extraordinary solution the
electromagnetic (transverse) oscillation is accompanied by a
Coulombic charge oscillation. In light of this fundamental
coupling, we refer to these solutions as anisotropic polaritons
(AP). [Notice that the same analysis can be applied to the
magnetic field and relative permeability tensor [i(k, ®).] From
Sec. II B, it is clear that in isotropic media such excitations
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are impossible. The global direction of the electric field for
a Coulombic mode is uniquely fixed by the propagation di-
rection of the charge oscillation. This means that longitudinal
electric fields cannot couple to magnetic fields, and hence
cannot be electromagnetic. Equations (24) and (25) show that
the Coulombic part of an AP-type mode grows proportionally
with the degree of anisotropy of the medium, Eq. (23), and is
resonant with zeros of the uniaxial permittivity, Eq. (17). Ac-
cordingly, these properties also characterize the distinguishing
features of hyperbolic response.

III. NORMAL VARIABLE DECOMPOSITION
OF THE ANISOTROPIC GREEN FUNCTION

Substituting Eq. (6¢) into Eq. (6d), the electric field inside
an anisotropic medium obeys the equation

—k x k x E(k, 0) — k2é(k, 0)E(k, )
= ij(k, 0)/(¢?),

e’ (K (I —k @ k) — k7 €k, 0))E(k, w)
=Gk, )E(k, ) = ij; (k, o). (26)

The dyadic Green function of a uniaxial medium is the formal
inverse of this relation,

Ekk, o) = iG(k, 0)j;(k, ),
§®8 k®k
K —e,(k,w) €,k 0,w)

L Pte k0.0 (p+e, *0.0)k)
k2 —e€,(k, 0, w) ’

“ k
G'(k, o) = —°2[
€,C

27

where all reciprocal vectors have been normalized by k,, and,
recalling our previous definitions,

§ = [=s(¢), c(¢), 0], (28a)
P = [—c(0)c(¢), —c(0)s(9), s(0)],  (28b)
k = [s(6)c(e), s(0)s(9), c(O)], (28c)

J
Imf{e, (k, )}

5 k
FU(k, w) = Tr[Im{GY (k, w)}] = ﬁ Tr({

0

Imf{e, (k, )}

k? — €, (k, 0)|?

€, (k, 0, ) = s(8)%€,(k, 0) + c(0)*€, (k, ), (29a)
_ €,(k, w)e,(k, )
EE(k,Q,a)) = W’ (29b)
€, (k, 0, ) = s(8)c(®)e, (k, w) — €,(k, )], (29c)
k.0, w) = 280 ) (290)
)= k6, @)

In isotropic media, €, (k, w) reduces to zero while €, (k, w)
and €, (k, w) become the isotropic permittivity €(k, @) so that
Eq. (27) simplifies to

g'(k, w)

k, $®$ k®k pP®p
= | - . (30
62| kK2 —elk,w) elk,w) k?—ek,w)

(For the remainder of the article, the ; and ; superscripts
mark that the results applies specifically to either uniaxial or
isotropic media.)

As an operator, the Green function Eq. (27) determines the
electric field generated by a point current source as a modal
expansion of the three homogeneous solution families.

(O): Ordinary electromagnetic,

. k $®8
vk, w) = —& —— 31
Gk ) = = e b w) S
(C): Coulombic,
. kK, kok
Uk, w) = ——2 . 32
Vel o) =—C5 @t G2
(AP): Anisotropic polariton,
G (k, )
k, (p+e,k 0,0)k)QP+e, k0, w)k)
= > . (33)
€,C k* —€,(k, 0, ®)

Taking the trace of the imaginary part of the uniaxial Green
function, the FD in reciprocal space is then

Im{e, (k, 6, w)}
k* — €, (k, 0, o)

A N

pP®p

S®8+

Imf{e, (k, )}

N [(cwnkz — €, (k, w>|)2
le, (k, 0, w)| k2 — e, (k, 0, )

(The trace of the coupling matrices p® k and k ® p are
zero.) The poles of this function show that the first term again
represents ordinary (O) excitations, while the final two terms
form the combined contributions of the anisotropic polariton
(AP) and purely longitudinal (C) families, which couple due
the presence of shared longitudinal fields. Regardless of this
mixing, the influence of these two types of excitations are
distinguished by their poles. The transverse p ® p term has
|k? — €, (k, w)|*> AP-type poles, but not e, (k, w)|*> C-type
poles.

SOk — €, (k, )\ A
+< le, (k. 0, )] >|k2—eE(k,9,w)|2]k®k}>' Gy

(

IV. MODEL-INDEPENDENT CHARACTERISTIC
To this point, all permittivity factors have been written as
functions of the magnitudes k and w, corresponding to spatial

and temporal nonlocality. For most problems in macroscopic
electromagnetic, the spatial dependence is dropped, producing

r'—r#0 = e(r—r,t—1)=0,

ek, w) = €(w). 35)
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For the FD, this approximation raises difficulties. Ignoring
nonlocality removes all spatial dependence of the Coulom-
bic solutions, making the associated longitudinal field scale
invariant. There is then no suppression of arbitrarily high
momentum contributions, and the Coulombic piece of the FD
diverges. (This issue is not unique to macroscopic electromag-
netics, and is commonly dealt with in quantum field theories
by the introduction of regulators, parameter renormalization
and counter terms [83].)

Yet, while problematic for properties like the excitation
lifetime of embedded emitters [84], for isotropic media the
local approximation is nevertheless largely valid; and many
relevant geometry independent characteristics can be deter-
mined from the homogeneous Green function without any
treatment of nonlocality. This follows from a careful con-
sideration of the length scales involved. For optical and
infrared energies, the wavelength of light is almost always
large compared to the scale of nonlocality (e.g., the scale
of the material lattice), and the difference between €(k, w)
and €(w) is usually insubstantial for any externally excited
electric field. (A fact that also makes accurate probing of the
permittivity response at these frequencies above k/k, ~ 5 dif-
ficult [75].) This approximate indistinguishability of €(k, w)
and €(w) is equivalent to the assumption that all Coulombic
poles can be moved to arbitrarily large reciprocal vector
without tangibly altering the Green function for all pertinent
reciprocal vectors. Such a change has has two primary effects.
First, the propagation length of Coulombic solutions becomes
vanishingly small. Second, interaction of an external field with
Coulombic solutions becomes possible only in the presence
of a physical discontinuity. Combining these two features,
longitudinal fields can only exist at the interface of two
media (surface charge densities), and therefore, only influence
surface effects. Volume characteristics, related to the propa-
gation of an external field once it enters the medium [78], are
conversely contained only in the electromagnetic modes, and
hence require no knowledge of the Coulombic component.

The mixed fields appearing in AP-type modes would seem
to preclude a similar separation of domains in anisotropic
media. The asymptotic behavior of Eq. (34) shows that the
final term of

2 b g
Fl(w) = lim dqb/ do
[r|[=0 Jo 0

/oo k2s(9) eik-r + e—ik~r
X
0

U

dk o) > Fi(k,w) (36)
diverges as k? in the limit of local permittivity response. Since
this term contains contributions from the AP-type modes, it is
implausible that a meaningful characterization of hyperbolic
response can be captured without it. In turn, this would seem
to imply that the FD of a hyperbolic media (or anisotropic me-
dia generally) is only describable once a microscopic model
(or other physically motivated normalization) is specified.

To work around this apparent difficulty, we begin by ex-
panding all absolute values and imaginary parts of Eq. (34),
treating k as a real variable, and extending the resulting
expression over the entire complex k plane. Jordan’s lemma
and the Cauchy integral theorem then show that if k> 7V (k, @)
tends to a constant value as |k| — oo the value of FV(w)
equals the residues of FV(k, w). (Here, we are taking infi-

nite semicircle contours in the upper and lower half spaces
depending on the value of k-r, with the convention that
the square-root function is cut along the positive real axis.)
Assuming nonlocality leads to Im{e, (k, )} and Im{e, (k, w)}
having scaling at least oc 1/k2, so that there is no contribution
from the path at arbitrarily large k, these residues split into
two distinct classes.

(i) Poles of the form k, = £,/¢, (k,, w) resulting from
the wave equations that have a second-order dependence on
spatial nonlocality, i.e., poles that tend to k, = /€, (w) in
the limit of local response. (Here k, and €, are place holder
labels that could apply to either ordinary or AP modes.)

(i1) Poles that have a first-order dependence on the exact
characteristics of nonlocality, and thus tend to toward arbi-
trarily large values in the limit of local response.

Following the same reasoning as isotropic media, volume
characteristics, for low to moderate k fields, must depend only
on the first class pole. Therefore, we can conclude that the sum
of these residues is the correct generalization of the transverse
FD of an isotropic material to an anisotropic setting.

The validity of the above argument rests on the asymptotic k
scaling of the imaginary part of permittivity response being
stronger than oc 1/k*>. However, this is a generally valid
assumption for any medium. As e(k, w) — 1 = x(k, w) is a
response function, it is analytic for all but an finite set of points
in the complex k plane for a given w [85]. Correspondingly,
there is a convergent Laurent series expansion in complex k
such that

o0
Xk, w)= " ci(@k" (37)
n=—0oo
for M < |k| < oo, where M is magnitude of the largest k pole
of x(k, ), and {c,(w)} are the frequency-dependent coeffi-
cients of the expansion. From the definition of the Fourier
transform, y (k, w) is related to the real space susceptibility as

x(r, ) = / ” dk &* x (k, w), (38)

[e.¢]

and the required convergence of this expression for all values
of r is only guaranteed if (n > —1) = ¢,(w) = 0. (Although
we have assumed inversion symmetry, €(k, w) = e(k, w),
throughout the manuscript all arguments and forms we
present hold generally.)

With this result in hand, the residues determined by the wave
equation poles sum to give

2 /2
]—'U”(w):/ d¢f do s©)Tr[Im{G (0, ¢, w)}]
0 0
kT 2 /2
= —03 / dqb/ do s(0) Re{\/€,(k,, w)}
(27 )’€,c? Jo 0
(39
for O-type modes, and

2 /2
FU () = / do / do s()Im{Gv (60, ¢, )}
0 0

k 2 /2
0 / de| dos®)Re{Ve, (k,(6),6,w)}
0 0

- 2 )%e,c?

X [1+ e,k (60), 6, ®)] (40)
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for AP-type modes, with k, and k,(6) standing for the
solutions to Egs. (14) and (20) nearest those of the local
approximation in the complex plane. In Eq. (40), the first term
results from the transverse field, and the second results from
the longitudinal field.

Convincingly, Egs. (39) and (40) are also precisely the
result obtained by considering the normal variables found in
the second section. Directly, Eq. (27) identifies the transverse
part of the AP excitations with the second term of Eq. (34).
Since there is no question as to the convergence of this
term, the existence of Eq. (40) (the longitudinal part) must
follow as a requirement of the Maxwell equations. (Either
approach to Eq. (40) is independent of the specific form of
nonlocality considered.) Further, the permittivity dependence
of the Coulombic piece of this term

F k T 2 J ﬂ/Zd
v = 0 s(6
AP L(a)) (27‘[)3606'2,/(; d)‘/(; S( )

X Re{\/eE(kE(G),O,a))}|eﬁ(k5(9),9,cu)|2 41

is the same as that observed in calculating the power radiated
by a dipole in a losses hyperbolic medium [67,86] and is
essentially an angular version of the FD associated with
a surface plasmon polariton excitation [82]. (Observe that
in this contribution the usual distinctions between one- and
two-sheeted hyperboloids [S6]—metallic response along the
optical axis, or in the optical plane—are nearly absent.)

Computation of the FD resulting from the second class of
poles, however, does requires a specific model of nonlocality
[87,88] (just as in isotropic media). To focus our discussion we
will not pursue these details. Still, there are some general char-
acteristics worth mentioning. Considering the longitudinal
component of Eq. (34), once k* surpasses |Refe, (k, 0, ®})]
the prefactors (|k* — €, (k, w)|/|k* — €, (k, 6, w)))* and (Jk2 —
€,(k, )|/1k* —€,(k, 0, w)|)* will both quickly approach
unity. (Assuming nonlocality does not drastically increase
the peak magnitude of the polarization response for real k.)
Once this condition is achieved, the final term of Eq. (34) is
increasingly well approximated as

k, [ kok

Im{G (k, ®)} = le, (k. 6, )

Imf{e, (k, 0, w)}].

€c?
(42)

This is again the exact result found by considering the normal
variables of the Coulombic solutions independently, and a
straightforward extension of the Coulombic FD encountered
in isotropic media,

A~

k, ®k
“c [mlm{e(’“ “’)}}' 3)

Im{gvé(k, a))} =

For k where the above approximation is valid, the residues
from these C-type poles can safely be attributed to pure
Coulombic modes.

Running contrary to this discussion, it should be empha-
sized that in cases where strong interactions with Coulombic
solutions are expected (for example embedded emitter) that
the Green function forms provided previously, in particular
Eq. (34), are well suited to computation. They are valid in any

general uniaxial (or isotropic) medium and can be normalized
using any specific model of nonlocality or standard quantum
field theory approach.

V. THE SUM RULE FOR MODIFIED SPONTANEOUS
EMISSION ENHANCEMENT IN HYPERBOLIC MEDIA

The sum rule for modified spontaneous emission enhance-
ment, formulated by Barnett and Loudon [47,90], states that
it is not possible to alter the total relative rate of spontaneous
emission into purely electromagnetic (transverse) modes. If
the properties of a medium enhance the relative rate of spon-
taneous emission in one spectral range, they must equally
suppress this relative rate in another. Mathematically, this is

written as
o0
/ dw
0

2w? Y
r.(r,w)= Td Im{z, G(r,r,w)m, } d 45)

(o -T(o)

I (@) 0, (44)

where

is the relative rate of spontaneous emission of a single level
emitter of frequency w, with transition dipole moment d, at
position r in a medium described by é(r, r', w), m, is the
transverse projection operator, and

3

k .
Lyrw)=;——dld (46)

0

is the rate of spontaneous emission in vacuum.

As anisotropy does not change the frequency dependence
of the Green function, an argument for the general validity of
the sum rule, given by Scheel [89], theoretically guarantees
that the transverse part of the uniaxial Green function

Im{r, G (w)7, }

kT 2 /2
= —(ZN;36 = / d¢>/ do s@)
0 0 0

x (Re{y/€,(w)} S® 8+ Re{ /6,0, w)) PR P), (47)

must satisfy Eq. (44) so long as the permittivities considered
satisfy the Kramers-Kronig relations. An illustrative exam-
ple of this result, assuming local Lorentzian polarization
responses

2

@ =14 48)
W)= +a)§—a)(a)+iy)’

for €,(w) and €,(w) with w, = {500,, 700,} cm™ !, W, =
{600, , 1000,} cm~!, and y = {5, , 10,} cm~! is provided in
Fig. 2. From the graph, we observe that the regions of hyper-
bolic response are essentially featureless, and, as in isotropic
media, enhancement follows the magnitude of polarization.
In fact, Fig. 2(d) shows that the orientationally averaged
enhancement of this transverse part is nearly equivalent to
considering the planar and axial permittivities separately and
summing the result. (Precisely, replacing Eq. (47) with the
sum of (2/3) fT’(a)) with e€(k, w) = €,(w) and (1/3) fT’(a))
with e€(k, w) = €,(w), produces a result that is not signifi-
cantly different form that of the true hyperbolic medium.)
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FIG. 2. Sum rule for transverse spontaneous emission enhancement in hyperbolic media. Panel (a) displays the absolute relative
permittivity values resulting from Eq. (48). The thin dashed lines and schematic dispersion surfaces highlight spectral regions of hyperbolic
response where one of either Re{e, (w)} or Re{e, (w)} is negative. Panel (b) shows the resulting transverse spontaneous emission enhancement
offset by vacuum, the integrand of Eq. (44). Panel (c) plots the integrated enhancement as function of the upper wave number considered. These
result confirm that the enhancement sum rule is strictly obeyed inside hyperbolic media [89]. Accounting only for purely electromagnetic
(transverse) contributions, emission enhancement in spectral regions of hyperbolic response is unremarkable. Panel (d) further highlights this
fact by comparing the orientationally averaged enhancement from (b), black line, with the enhancement found by averaging two isotropic media
with €(k, ) = €,(w) and €(k, w) = €, (w) weighted by factors of 2/3 and 1/3, respectively. The graphs are found to be nearly identical, even
though the two situations correspond to very different electromagnetic environments.

These results for the transverse enhancement of the sponta-
neous emission, which hold to arbitrarily low absorption (y),
follow from the normal variable picture. Any property of a
linear macroscopic medium should be consistent with some
arrangement of dipoles in a vacuum. Since scattering from a
dipole does not introduce new electromagnetic modes, there
is no way that the sum can be modified. From Eq. (40) the
resonant effects of hyperbolic response for AP-type excita-
tions occur in the Coulombic field [18]. In taking the strictly
electromagnetic (transverse) part of Eq. (40) these features are
ignored.

Orientationally averaged spontaneous emission enhance-

ment resulting from the Coulombic portion of the AP FD,
Iy, 6rec

() o

/2
= %/ do s(0)Re{ /€,(0, w)}e, (O, )%, (49)
0

3
Fr,, (@)

APL

is plotted in Fig. 3. [For numerical convenience in the remain-
der of this article the FD will be taken to be vacuum nor-
malized by the prefactor appearing in Eq. (49).] Comparing
with Fig. 2, it is clear that this enhancement does not obey the
sum rule: it is an additional positive contribution that grows
arbitrarily large as material absorption is decreased.

By itself, this fact is not particularly unusual. In a general
isotropic medium the absorption of energy into matter is
not limited by the number of electromagnetic modes, and so
neither is the enhancement contribution of Coulombic modes.
Yet, there are key distinctions between these two cases.

(i) The AP enhancement of the FD does not diverge
in the limit of local permittivity response (nonlocality is a
second-order effect). This is not the case for purely Coulombic
enhancement [87].

(i) The AP enhancement of the FD is not simply related
to the magnitude of the polarization, or total density of charge
carriers, as has been shown for Coulombic enhancement in
isotropic media [89]. Instead, it depends principally on the
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FIG. 3. Polaritonic spontaneous emission enhancement surpass-
ing the sum rule in hyperbolic media. The figure displays the
orientationally averaged spontaneous emission enhancement of the
longitudinal part of the AP contribution, considering a uniaxial media
with permittivity model Eq. (48). Contrasting with Fig. 2, this lon-
gitudinal enhancement dominates in spectral regions of hyperbolic
response.

magnitude of anisotropy, |€x (w, 6)|* and material absorption,
(Refe, (@, )}, (. ).

(iii) The AP-type enhancement of the FD shows a unique
scaling with material absorption, which is stronger than the
scaling exhibited by either the transverse O-type Eq. (47) or
longitudinal C-type Eq. (42) enhancement, Fig. 4.

These final two points are salient for potential applications
involving embedded quantum emitters. Although nothing can
be stated unequivocally without knowledge of the nonlocal
response features, the scaling trends indicate that polaritonic
solutions become dominate if either the material loss, Im{e},
is small, or the anisotropy is large.

VI. THERMAL FLUCTUATIONS IN HEXAGONAL BORON
NITRIDE AND BISMUTH SELENIDE

Like the degree of relative spontaneous emission enhance-
ment, the thermal energy density in the electric and magnetic
fields is similarly set by the FD through the relation

U, w, T) = %Tr[(E(r, ) @ EX(r, »))]

1
+ 2—Tr[(B(r, w) ® B*(r, w))], (50)

0

with

Tr[(E(r, 0) @ E*(r, »))] = (). (S

O(w, T
w O(w )]__
T
Using Eqgs. (1), (39), (40), and (6¢), the electromagnetic
energy density in the O- and AP-type modes of a uniaxial
medium is then

Upp(w, T)

Ur,ow,T)= 5

[ (@) + Fy ()], (52)

10* : : .
Electromagnetic (Transverse)
10°F Coulombic (Longitudinal) E
a . .
Polariton (Mixed
= 10% A 4 Seop (Mixed) 3
= 0,
7 g
g 10+ ‘ q'a;/g :
£ 1l Scaling o< 0
g
2 107!t €a= -1+ I (Material Absorption)
= €,=1+1(Material Absorption)
107 : : :
107 10° 10” 1

Material Absorption (Im{e(®)})

FIG. 4. Scaling with material absorption of fluctuation densities
in hyperbolic media. The figure depicts the power scaling of the
transverse O-type Eq. (47), longitudinal C-type Eq. (42), and mixed
AP-type (longitudinal part only) Eq. (49) contributions to the FD as
a function of material absorption Im{e, ,(w)}. For the C-type con-
tribution, only the angular integrals in Eq. (36) have been computed
as the k integral diverges in the limit of local polarization response.
The plot is computed by considering €, = —1 + i(x-axis value),
€, = 1 + i(x-axis value). The knee transitioning from a scaling of
o —1 to a scaling of o 0 is set by the minimum magnitude of the
real permittivity components |Re{e, ,(w)}|. (This behavior is also
seen the isotropic case [84].) The x~%/? scaling exhibited by the
AP contribution is found to be stronger than either of the two pure
solution types.

with

/2
F.(w) =Re{{/€,(w)} + / do s(0)Re{\/€,(0, w)}
0

x (€, (6, )+ 1) (53)

and

Fu(w) =€, (w)Re{y/€, ()}
/2
+f do s(0)|e, (0, w)Re{ /€, (0, w)} (54)
0

denoting the relative electric and magnetic contributions, and
Upg(w, T') denoting the energy density of an ideal blackbody.

The results of this expression (ignoring pure Coulombic
contributions) for hexagonal boron nitride and bismuth se-
lenide, normalized by Upg(w, T)/2 for direct comparison
with the FD, are plotted in Fig. 5. Four aspects of this figure
warrant attention.

(i) The solid green curves, denoting the contribution of
AP-type modes, confirm that in real media either a high degree
of anisotropy €,(6, w) or low material absorption €, (6, w)
may lead to a large polaritonic FD. Bisumth selenide ex-
hibits substantial material absorption, yet nevertheless, large
enhancement results from the extreme difference between the
axial and planar permittivity components. Hexagonal boron
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FIG. 5. Relative thermal energy and fluctuation densities in natural hyperbolic media. The figure shows the contribution that AP-type
modes, solid lines, and O-type modes, dashed lines, make to the total electric and magnetic thermal energy densities (total lines) inside
hexagonal boron nitride (c) and bismuth selenide (d). (For comparison the energy densities are normalized by half the thermal energy density
of vacuum.) The absolute value of the real and imaginary parts of relative permittivity components of these two materials, based on data from
Refs. [51,53], are plotted in panels (a) and (b). Each sharp peak and dip in (b) signals a sign flip of the real part as marked. The imaginary part
of each component remains positive throughout. The green electric lines (bold polariton, dashed ordinary) double as the respective FDs. Both
media show broad spectral regions where this quantity is over 120 times larger than it is in vacuum.

nitride possesses much less anisotropy but has lower material
absorption, leading to a nearly identical FD.

(i) The energy density of the magnetic field is often
roughly an order of magnitude larger than that of the electric
field (total lines).

(iii)) Equation (51) equates the green lines with the FD
contributions of AP (bold line) and O-type (dashed line)
modes. Both hexagonal boron nitride and bismuth selenide
show broad spectral regions where the FD is over 120 times
larger than vacuum.

(iv) Moving to Fig. 6, the AP component of the FD has
extreme angular dispersion, concentrated along the critical
angles determined by Ref{e, (6, @)} = 0. Along the cone set
by this angle, the polaritonic FD is over 800 times larger than
vacuum FD in both bismuth selenide and hexagonal boron
nitride.

Given the degree of enhancement observed, one may ques-
tion whether the use of local response in Eqs. (53) and (54)
is accurate. Without experimental evidence, this question is
open; but we are inclined to believe that the approximation
does hold. In either material, the largest absolute value of

the permittivities €, (w), €,(w), and €, (w) is 2400, and the
smallest ~0.1. Based on these bounds, in the local approx-
imation, all wave equation poles occur below 20 k,. Taking
the largest lattice spacing present in either material, ~ 3 nm,
this upper limit of k still corresponds to less than 1% of the
Brillouin zone for wavelengths longer than 6 yum. (The small-
est wavelength of hyperbolic response considered occurs in
hexagonal boron nitride at 6.25 um.) As such a small change
will only minimally modify the probed bandstructure around
the dominant optical phonon features [53,91,92], substantial
variation of the permittivity response should not be expected.

It is interesting to compare the electromagnetic energy
plotted in Fig. 5 with the full near-field energy density above
a half space of hyperbolic media [9,93]. For this purpose,
Eq. (16) of Guo et al. [93] is plotted in Fig. 7. (Other ex-
amples of calculated thermal properties that can be compared
with volume FDs appear in Liu et al. [94].) At the nearest
observation points considered, the near-field calculation pro-
duces values larger than the associated bulk value, signaling
that enhancement at these distances is driven primarily by
the excitation of surface charges. All the same, recalling

033833-10



DEFINITION OF POLARITONIC FLUCTUATIONS IN ...

PHYSICAL REVIEW A 99, 033833 (2019)

10 ; ; . . .
Polar Angle 0

= 10°F \ :
£ 1o 4 -
= 102 10°
g 10} Bi,Sey(110 cm™) ]
g
[Zo E
4
§ 1011 hBN (1500 cm") ]
&

1072 . . . .

0.0 0.5 1.0 1.5 2.0 25 3.0

Observation Angle (radians)

FIG. 6. Angular polaritonic fluctuation density in natural hyper-
bolic media. The figure depicts the polaritonic FD inside hexagonal
boron nitride at 1500 cm™!, and bismuth selenide at 110 cm™', as
a function of polar angle on a logarithmic scale. The inset shows
this same quantity as a polar plot on a linear scale. Although the
integrated FDs of these two cases are almost equal, Fig. 6, as hexag-
onal boron nitride more closely approaches the resonance condition
le, (8, )| = 0, but possess less polarization anisotropy, the angular
distribution of its FD is much more radical. Both materials show
angular regions where the relative polar FD is over 800 times larger
than vacuum.

that in Fig. 5 no C-type or surface polariton modes are in-
cluded, the two figures show good agreement. The additional
peaks seen in Fig. 7 match the surface polariton condition
Re{e(k, w)} = —1. This observation indicates that Eqgs. (39)
and (40) are the correct measures of local electromagnetic
fluctuation characteristics in a hyperbolic medium, akin to
the index of an isotropic medium. Further support of this
claim is seen in experimentally reported confinement factors

for hexagonal boron nitride resonators [51], which are within
30% of the FD we have found for hexagonal boron nitride at
these wavelengths.

VII. SUMMARY

In summary, we have shown that material absorption ana-
Iytically quantifies electromagnetic fluctuations in hyperbolic
(generally uniaxial) media in a manner entirely analogous to
the isotropic media. From this result, we have studied the
sum rule for modified spontaneous emission enhancement,
and have found that it does not apply to the key polaritonic
features of a hyperbolic response. We have also investigated
the density of electromagnetic fluctuations (electromagnetic
thermal energy density) inside both hexagonal boron nitride
and bismuth selenide. We have found that both media have
broad spectral regions where this quantity is over 120 times
(along specific angular directions 800 times) larger than it
is in vacuum. Our results unify the computation of electric
field fluctuations in uniaxial and isotropic settings, and should
prove useful for testing the potential of hyperbolic systems in
emerging optical technologies.
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