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Electron g-factor engineering for nonreciprocal spin photonics
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We study the interplay of electron and photon spin in nonreciprocal materials. Traditionally, the primary
mechanism to design nonreciprocal photonic devices has been magnetic fields in conjunction with magnetic
oxides, such as iron garnets. In this work, we present an alternative paradigm that allows tunability and
reconfigurability of the nonreciprocity through spintronic approaches. The proposed design uses the high spin-
orbit coupling (SOC) of a narrow-band-gap semiconductor (InSb) with ferromagnetic dopants. A combination
of the intrinsic SOC and a gate-applied electric field gives rise to a strong external Rashba spin-orbit coupling
(RSOC) in a magnetically doped InSb film. The RSOC which is gate alterable is shown to adjust the magnetic
permeability tensor via the electron g factor of the medium. We use electronic band structure calculations (k · p
theory) to show that the gate-adjustable RSOC manifest itself in the nonreciprocal coefficient of photon fields
via shifts in the Kerr and Faraday rotations. In addition, we show that photon spin properties of dipolar emitters
placed in the vicinity of a nonreciprocal electromagnetic environment are distinct from reciprocal counterparts.
The Purcell factor (Fp) of a spin-polarized emitter (right-handed circular dipole) is significantly enhanced due to
a larger g factor while a left-handed dipole remains essentially unaffected. Our search for novel nonreciprocal
material platforms can lead to electron-spin-controlled reconfigurable photonic devices.
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I. INTRODUCTION

Nonreciprocal photonic materials such as ferrites and mag-
netized plasmas are central to the design of optical isolators
and circulators [1]. While technology exists in the microwave
regime, there is a major impetus driving on-chip miniatur-
ization of nonreciprocal devices for quantum [2] as well as
classical [3] applications. A particular frontier in this regard
is time modulation to achieve nonreciprocity as an alternative
to using magnetic materials. However, significant challenges
remain—primarily, insertion loss and the high-speed modula-
tion of such effects—which makes it an area of active interest
in which to carry out a search for new materials exhibiting
nonreciprocity.

There is an intimate connection between photon spin and
nonreciprocal materials exhibiting gyrotropy. A classical anal-
ysis [4] of gyrotropic media [5] reveals that the eigenstates of
such a medium are circularly polarized with differing phase
velocities. However, the role of spin in the near field of
gyrotropic media has not been fully analyzed. In this work,
we put forth approaches to probe the near-field spin properties
of nonreciprocal media. We note here that the special case of
moving media which displays magnetoelectric nonreciprocity
has spin-split mode dispersion [6].

Recently, gyrotropy was demonstrated to be equivalent
to effective photon mass through a direct comparison with
an optical analog of the Dirac equation [7–9]. Gyrotropy
inside matter has properties similar to Dirac mass and is
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accompanied by a low-energy (frequency) band gap for
propagating electromagnetic waves. Within this electromag-
netic band gap, Maxwellian spin waves can exist with
unidirectional propagation and are closely related to Jackiw-
Rebbi waves that occur at the interface of positive and neg-
ative mass media. In addition, there can exist a topological
electromagnetic phase of atomic matter [10,11] that arises
from nonlocal gyrotropy which is a spatiotemporally dis-
persive Hall conductivity. This gyroelectric phase of atomic
matter [10,11] achieves skyrmionic texture of photonic spins
in momentum space [9]. The nonlocal topological electro-
magnetic phase can host helicity-quantized unidirectional [12]
edge waves fundamentally different from classical magneto-
plasmons. This advancement illustrates how hitherto unex-
plored forms of gyrotropy can lead to creation of intriguing
Maxwellian spin waves as well as spin-1 photonic skyrmionic
textures.

An equally fundamental application of nonreciprocal mate-
rials lies in controlling radiative heat transport [13,14]. Ther-
mal photonic energy density in the near field of a planar slab
of gyrotropic media has been predicted to show unidirectional
transport behavior even under equilibrium conditions [14].
This effect arises from universal spin-momentum locking of
evanescent waves [15] in the near field of a nonreciprocal slab.
Topological electronic materials that exhibit nonreciprocity
such as Weyl semimetals and axion insulators are ideal for
verifying concepts of thermal spin photonics [14].

The focus of this paper is electron-spin control of gy-
rotropy which utilize spintronic devices for applications re-
quiring photonic nonreciprocity. Typically, conventional gy-
roelectric media rely on cyclotron orbits and orbital angular
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momentum of electrons interacting with a fixed magnetic
field; gyromagnetic media, on the other hand, obtain their non-
reciprocal behavior from electron-spin angular momentum
interaction with the static magnetic bias. These materials are
also widely known as magneto-optic media. Here, we couple
band structure calculations—performed using an eight-band
k · p Hamiltonian adapted [16] to quantum wells—to the the-
ory of magnetic permeability tensors. This approach leads to
a computation of the nonreciprocity coefficient inside matter
for photon fields.

We propose nanoscale thick InSb quantum well struc-
tures [17] exhibiting optical nonreciprocity. Our structures are
more amenable to use in small-sized integrated systems and
unlike YIG, the growth of quantum well devices is established
easily through molecular beam epitaxy. We emphasize that
leveraging the spin of the electron with a gate field for
nonreciprocal photonics remains unexplored heretofore. InSb
has been previously explored [18] for its nonreciprocity with
emphasis on its gyroelectric behavior; the present work shows
that it is possible to design “multigyroic” materials which
have nonreciprocity in both the electric and magnetic off-
diagonal permeability and susceptibility tensor components.
We further note that while similar analyses with gyroelectric
media exist in the literature [1,19] wherein nonreciprocity
has been demonstrated [20], such realizations are generally
incumbent solely upon the external magnetic field and offer
no recourse to further modulations via microscopic device
rearrangements. For clarity, throughout the paper, we do
not invoke the terminology of chirality [21]. Chirality (i.e.,
traditional optical activity) is a reciprocal phenomenon, and
the fields of metamaterials, plasmonics, and chemistry define
it as a coupling coefficient of electric and magnetic fields.
Gyrotropic nonreciprocity, in contrast, associated with photon
spin inside matter, couples the orthogonal components of the
electric (or magnetic) fields.

The present work, as mentioned above, combines a large
spin-orbit coupling, narrow band gap, and crystalline asym-
metry of the target nanostructure, materializing in a signifi-
cant external Rashba spin-orbit field [22,23]. This effectively
changes the material response to an impinging light beam in
the presence of an external magnetic field which is discernible
from appropriate magneto-optical data. We now give a suc-
cinct description of the arrangement on which the theoretical
and computational analysis of the latter sections is centered.
The model structure is a magnetically doped InSb [Fig. 1(a)]
slab with a permanent axis of magnetization (M) normal
(aligned to the z axis) to the x-y plane and forms the optically
active component. The slab [Fig. 1(a)] is also placed under an
external magnetic field parallel to M while a gate electrode
is affixed to the top. The nonreciprocity of the magnetized
InSb slab is captured by the nonzero off-diagonal elements
in the permeability (μ) tensor matrix. However, beyond the
influence of the magnetic fields, the extent to which such
nonreciprocity manifests is also functionally dependent on
the gyromagnetic ratio [γ = g(e/2m∗

e )]. Here, e stands for
the electronic charge and m∗

e is the effective electron mass.
The g factor, therefore, evidently via γ determines the so-
lutions to Maxwell’s equations that govern the light-matter
interaction in this setup. The middle panel [Fig. 1(b)] de-
notes this process wherein a tailorable g factor arises as the

FIG. 1. The schematic represents the arrangement considered in
this work. The left panel (a) shows a unit cell of ferromagnetically
doped InSb (red atom denotes In while blue stands for Sb) irradiated
with a beam of light (wavy line) that traverses its body and emerges
on the opposite side. The passage of the light beam is governed by the
constitutive parameters, ε1 and μ1, of InSb, which is gyrotropic with
an inherent magnetization. Note that for gyrotropy to be observed,
an out-of-plane magnetic field (Hz) is applied to the device. The
permeability tensor in this case is significantly modified by the
external Rashba spin-orbit coupling (RSOC) that exists on the InSb
slab. The amplitude of transmission of an incident beam through the
slab, marked as an angled wavy blue line in the middle panel (b), is
therefore linked to the strength of the RSOC. The RSOC in (b) is
identified by its characteristic spin-momentum locking, where the
tangential green lines indicate the spin-polarization vectors. The right
panel (c) is a possible realization of a gyrotropic and nonreciprocal
optical device. It is fitted with a metal gate that allows a dynamic
tuning of RSOC, leading to the necessary modulation of the light
beam. We elucidate here, via demonstration of such optical control,
an indirect but robust connection between the electron spin and
diverse photonic applications.

light beam propagates through a medium with significant
external Rashba field identified through the spin-momentum
locked states on an equienergy circular contour. As tangi-
ble illustrations of such synergy—albeit indirect—between
a photon beam and the Rashba spin-orbit coupling (RSOC),
we show (1) variations in the characteristic magneto-optical
measurements, in particular, the Kerr and Faraday rotation
with a varying electric field, and (2) the Purcell factor of
nonreciprocal photon spin-polarized dipole emission.

Briefly, we note that changes to the Rashba coupling pa-
rameter (λR) through a gate electric field and the dispersion re-
lation (through additional confinement and strain, etc.) revise
the g-factor profile—a higher λR leading to an enhanced value,
and revealed as greater Kerr and Faraday rotations [24]. We
also show electron-spin control of the photon-spin-dependent
Purcell factor [25,26]. Before we proceed to a complete
analysis of the g-factor engineered nonreciprocal phenomena,
a note about the organization of the paper is in order: In Sec. II
steps are outlined for the g-factor calculation beginning with
the model Hamiltonian for the InSb slab; this is followed by
a quantitative discussion on electron spin-orbit coupling gov-
erned Kerr and Faraday rotations that characterize the viability
of nonreciprocity-driven magneto-optical devices (Sec. III).
The Purcell factor and its numerical determination are taken
up next in Sec. IV, and we close by summarizing the key
findings in Sec. V, which also touches on the possibilities of
extending the current work to include aspects of material and
structural optimization.
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II. THEORY

The basis of all calculations presented in this paper begins
with two essential steps: (1) constructing the permeability (μ)
tensor matrix that ties its behavior to the extrinsic Rashba
spin-orbit coupling, and (2) band dispersion of the two-
dimensional (2D) ferromagnet. In this section, their analytic
expressions are presented in the same order below. Note that
at this stage the steps are generalized and no target material
is specified; however, we will allude to possibilities during
a numerical evaluation of the μ matrix and the overall band
dispersion later in the paper.

We begin by writing the Landau-Lifshitz equation that
governs all magnetization (M) behavior in a magnet. In the
presence of Gilbert damping, and in an external magnetic field
(H), it takes the form [27,28]

∂M

∂t
= γμ0(M × H ) + αγ

M
[M × (M × H )], (1)

where

γ = ge

2m∗
e

. (2)

In Eq. (1), g is the Landé factor, m∗
e is the electron’s effective

mass, and α is the Gilbert damping. The magnetic permeabil-
ity in vacuum is μ0. Without loss of generality, we let the
magnetic field vector point along the z axis and superimpose a
small and identically directed ac field, H ′ exp (iωt ). The ac
field imparts a frequency dependence to the structure of the μ

tensor matrix. Analogously, the M vector is also assumed to
point along the z axis in addition to an induced ac component,
M ′ exp (iωt ). Inserting the complete expressions for the mag-
netization and magnetic field in Eq. (1), the tensor components
assume the form [29]

μ =
⎛
⎝μxx −iκxy 0

iκxy μxx 0
0 0 μzz

⎞
⎠, (3)

where the individual entries are defined as

μxx = 1 + (ω0 + iαω)ωm

(ω0 + iαω)2 − ω2
,

κxy = − ωωm

(ω0 + iαω)2 − ω2
. (4)

Finally, μzz = 1 + M/H , ωm = γμ0M, and ω0 = γμ0H .
This completes the form of the tensor matrix for a gyro-
magnetic material. A set of remarks is in order here: First,
we note the structure of the μ matrix in Eq. (4), whose
off-diagonal elements vanish (the medium therefore turns
isotropic, assuming no gyroelectricity is present) in absence
of M, the intrinsic magnetization vector. Additionally, it is a
Hermitian tensor, since μik = μ∗

ki. The next comment pertains
to the matrix dependence on the electron g factor via the
gyromagnetic ratio (γ ), a number that is manifestly material
driven; as a case in point, it is determined to be −0.44 for
GaAs [30] conduction electrons while reaching ≈50 in 2D
InSb [31]. Notice that the free-electron value of g = 2.0023
does not apply for a crystal. The g factor of an electron bound
to a lattice, inter alia, is primarily governed by the intrinsic
spin-orbit coupling (SOC) and therefore must be computed
for each nanosystem including the appropriate quantization

effects, which are reflected via the dispersion (electronic)
relations through altered (from bulk values) band gaps and
effective masses. We will expound on this point in greater
detail in the following subsection and present a path that ties
SOC effects and their influence on the overall nonreciprocal
behavior.

Determination of the g factor

We remarked above on the functional relationship between
the structure of the μ tensor and crystal SOC. In what follows,
we make explicit use of band dispersion to formalize this
connection. We consider an InSb slab which crystallizes under
zinc-blende symmetry and displays a substantial RSOC. A
minimal Hamiltonian representing the 	6 conduction bands
under RSOC is expressed as

H0 = p2

2m∗ + λR(σxky − σykx ), (5)

where λR > 0 is the Rashba coupling parameter. The effective
mass in Eq. (5) is m∗. In the presence of a z-directed mag-
netic field, carrying out the usual Peierl’s transformation, the
momentum terms are rewritten as h̄ k → h̄ k − eA(t ), where
A is expressed by a Landau gauge of the form (0, Bzx, 0).
The momentum terms in Eq. (5), following this change, can
be expressed via creation (a†) and annihilation (a) opera-
tors, k+ = kx + iky = √

2/lBa† and k− = kx − iky = √
2/lBa,

while k2 is now 0.5(k+k− + k−k+) = 2
l2
B

(a†a + 1
2 ). Here, lB =√

h̄/eBz, the magnetic length.
It is now straightforward to diagonalize the Hamiltonian to

obtain the eigenstate for the nth quantum level; it is simply

En = h̄eB

m∗ n ±
√(

� − h̄eB

2m∗

)2

+ 2neλ2
RB

h̄
. (6)

The term � = 1
2 g0μBB accounts for the Zeeman splitting of

spin states in a z-axis pointed magnetic field. Note that we
set g0 = 2.0 and μB is the standard Bohr magneton. The
upper (lower) sign is for the spin-up (spin-down) electron.
The effective g factor that an electron experiences can then
be approximated as

geff = E1 − E−1

2μBB
. (7)

Notice that we limit our analysis to the n = 1 Landau level for
the computation of the effective g factor. In Fig. 2, the Landau
levels (up to n = 8) are shown; in addition, the difference in
energies between the spin-up and spin-down states for the n =
1 level is marked on the plot—the precise quantity desired in
Eq. (7) to ascertain the g factor.

As a way of elucidation, an additional comment must
be included here: The g factor, evidently a function of the
Rashba parameter, influences the μ tensor [Eq. (4)] and the
concomitant magnetic-anisotropy-linked optical phenomena.
In particular, supplementary degrees of freedom in optical
manipulation can manifest through alterations made to the
strength of the Rashba coupling coefficient, which is λR =
λ0〈 E (z)〉. Here, 〈 E (z)〉 serves as the average electric field.
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FIG. 2. The Landau dispersion for the conduction electrons of a
15.0 nm InSb slab for several values of an external z-axis directed
magnetic field is shown here. The left panel (a) was prepared by di-
agonalizing the Hamiltonian; the desired InSb band parameters such
as the effective mass and the fundamental band gap were obtained
from an 8 × 8 k · p Hamiltonian adapted for slablike structures.
A note about the band structure calculations and their numerical
implementation can be found in the Appendix and Ref. [16]. The
upper (lower) set of curves in red (blue) denotes the dispersion of
the spin-up (spin-down) conduction electrons. The right panel (b) is
the effective g factors of the conduction electrons computed directly
from the Landau dispersion curves. They are shown for two values
of the Rashba parameter, a dynamically tunable quantity, an attribute
which we harness to describe the coupling between electron spin and
optical nonreciprocity in this paper.

The material-dependent λ0 is given as [32]

λ0 = h̄2

2m∗
�so

Eg

2Eg + �so

(Eg + �so)(3Eg + 2�so)
. (8)

In Eq. (8), the fundamental band gap is Eg and �so denotes the
intrinsic spin-orbit coupling. It is therefore easy to see how
a tuning of the essential dispersion parameters—principally,
the band gap and electron effective mass—can adjust λR and
thereby the electric and magnetic response of the system.
Elucidating further, the electromagnetic response forms the
solution to Maxwell’s equations that are reliant on the elec-
tric permittivity and magnetic permeability of the medium,
of which the latter in our case can be transformed via the
RSOC-assisted g factor. The set of plots [Fig. 2(b)] reinforces
this reasoning. Before we proceed to discuss magneto-optical
setups harnessing the embedded utility of the g factor, an
explanatory set of statements must be added to dispel any
ambiguity: The g factor is typically a tensor quantity and
direction dependent; however, for the case shown here, we
assumed the electrons are located at the base of the conduction
band, which is spherically symmetric (	6), allowing a single
number to fully represent this inherent tensor quantity. For
methods that carry greater rigor and include contributions
from higher-energy bands, see for example, Refs. [33,34], a
more accurate modeling of the g factor is possible. The Ap-
pendix contains a brief note on this point. Lastly, observe that
Landau levels derived from a pure parabolic model (λR = 0)
ensure that the g factor is independent of the magnetic field;
the dependence here otherwise (Fig. 2) is simply an outcome
of including a linear Rashba spin-orbit Hamiltonian.

FIG. 3. The twin optical phenomena of Kerr and Faraday rotation
is shown here. The solid lines contained within the ellipses repre-
sent the polarization axes which suffer rotation (drawn separately
with respective angles marked as θK and θF ) as an incident light
beam on the InSb slab is partly reflected and transmitted. Note
that this configuration describes the polar magneto-optical Kerr
effect (PMOKE) where the magnetization (M) is oriented normal
to the plane.

III. MAGNETO-OPTICAL PHENOMENA

A wide variety of functionalities can be accomplished
through the inclusion of nonreciprocal photonic devices; how-
ever, as we pointed in the opening paragraphs, geometric con-
siderations hinder integration into silicon photonic systems
necessitating the need for planar and dimensionally shrunken
devices. While magnetic oxide films have been put forward as
suitable material systems in this regard, here we seek to ex-
plore a class of strongly spin-orbit coupled and narrow-band-
gap zinc-blende materials with embedded magnetic impurities
(cf. Fig. 1). The usefulness of a magneto-optical material
is typically gauged by a figure of merit (ξ ) defined as [35]
Faraday degree of rotation per dB absorption; more concisely,
ξ = θF /ζ , where θF is the Faraday rotation and ζ gives the
absorption coefficient (per unit length) of the material. It
may therefore appear prudent to measure θF and the related
Kerr rotation (θK ) in the InSb-based setup taken up in this
work. The Kerr and Faraday rotation are sketched in Fig. 3.
A numerical calculation of θF and θK can be carried out by
examining the Fresnel coefficients. In matrix form, for Kerr
rotation, we have [36]

(
E p

r

Es
r

)
=

(
rpp rps

rsp rss

)(
E p

i
Es

i

)
. (9)

Here, rss, rsp, rps, and rpp are the Fresnel coefficients and the
superscript s (p) stands for s (p)–polarized incident (i) and
reflected (r) electric field. A similar equation can be written
connecting the incident and transmitted components of the
electric field by introducing another set of Fresnel coefficients,
which are tss, tsp, tps, tpp. Note that in this nomenclature, the
off-diagonal coefficients (rsp, rps, tsp, tps) point to the inter-
mixing of the s and p components. We can numerically ascer-
tain the reflection and transmission behavior for a completely
generalized case of a planar stratified and bi-anisotropic media
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that follows the constitutive relations [37]

D = εε0E + ξ
1

c
H,

B = ζ
1

c
E + μμ0H. (10)

For our case, we set the magneto-electric coupling tensors, ξ

and ζ , to zero while ε and μ are the dimensionless permit-
tivity and permeability tensors. The permeability tensor has
nonzero off-diagonal components. The incident, reflected, and
transmitted fields are then obtained by matching tangential
components at the interface, which here straddles the vacuum
and the InSb slab. The electric fields must therefore be com-
puted, which we do by first writing the complete wave vector
[k = (k‖,±kz )] expression for the reflected and incident plane
waves consisting of their respective conserved parallel (k‖)
and perpendicular (±kz ) components. The “+” and “−” signs
indicate waves propagating away and toward the interface,
respectively.

A simple application of Maxwell’s equations gives the
dispersion relation k2

‖ + k2
z = k2

0 = (ω/c)2, where k‖ = |k‖|
is real while kz can assume both real (k‖ < k0) and complex
(k‖ > k0) values. Note that k‖ = (k‖ cos φ, k‖ sin φ), where φ

is the angle subtended by k‖ with the x axis. With this notation

in mind, we substitute the ansatz [E,
√

μ0

ε0
H]

T
ei(k‖·R+kzz−iωt )

in Maxwell’s equations [Eq. (10)] to construct the following
dimensionless dispersion relation inside the material:

det(M + Mk ) = 0, for M =
[
ε ζ

ξ μ

]
. (11)

The matrix, Mk , is defined by the auxiliary relation

Mk =
[

0 k/k0

−k/k0 0

]
,

k =
⎡
⎣ 0 −kz k‖ sin φ

kz 0 −k‖ cos φ

−k‖ sin φ k‖ cos φ 0

⎤
⎦.

(12)

The 6 × 6 material tensor M expresses the constitutive rela-
tions and Mk encapsulates the result of the curl operator on the
plane waves. For a completely generalized anisotropic system,
we obtain kz numerically by setting det[M + Mk (kz )] = 0
for a given (k‖, φ). The fields inside the material are linear
combinations of these eigenstates described by polarization
vectors ê j± for j = {s, p} given as

ês± =
⎡
⎣ sin φ

− cos φ

0

⎤
⎦, êp± = −1

k0

⎡
⎣±kz cos φ

±kz sin φ

−k‖

⎤
⎦. (13)

The upper (lower) sign is for a wave propagating along
the +êz (−êz ) direction. It is now a straightforward task to
calculate the Faraday and Kerr rotation by simply noting the
appropriate ratios of the Fresnel coefficients. For Faraday (F)
and Kerr (K) rotation, we have [38]

�F = θF + iηF = tps

tss
, �K = θK + iηK = rps

rss
, (14)

FIG. 4. We numerically calculate the Kerr (a) and Faraday (b) ro-
tation which arises from reflected and transmitted rays for two
gate fields and several incoming frequencies. The incident light is
assumed to make an angle of π/4 with the normal to the plane
of incidence. A higher electric field (which augments the g factor)
widens the Kerr rotation angle and also pushes the peak past the one
obtained for a lower bias. In addition, the Kerr angle is negative in
the same frequency range for which the permeability plots dip below
the zero mark (see Fig. 5). The inset in (a) quantitatively assesses
the ellipticity of the reflected beam and a profile in agreement with
that of the Kerr rotation. The Faraday rotation in (b) which quantifies
the plane of rotation of electric field for transmitted waves exhibits
a similar behavior for a higher gate bias and records a minimum at
the same frequency as noted for its Kerr counterpart. Note that the
Kerr and Faraday rotation and the measure of ellipticity are evaluated
using the transmission formalism whose governing equations are
summarized in Eq. (14) in the main text. The material system used
in these calculations is a 30.0 nm wide InSb well under an external
magnetic field of 0.8 T and intrinsic magnetization of 0.3 T. The
Gilbert damping constant, as usual, is set to 0.04.

where θF/K is the Faraday/Kerr rotation and ηF/K stands for
the ellipticity of the p-polarized wave. Note that the Fresnel
coefficients can be in general complex quantities as seen from
the form of Eq. (14). Moreover, θF = Re[tan−1 (tps/tss)], with
a similar relation holding for θK , the Kerr rotation.

This brief digression aside, which outlined the steps un-
derpinning a numerical assessment of the Faraday and Kerr
rotation, it is now possible to study their dependence on
the g factor that impacts the permeability tensor. We show
such a calculation in Fig. 4 and elucidate further: First of
all note that both θK and θF shift with an electric field, an
observation easily reconcilable by recalling that the g factor
(via the RSOC) undergoes a change leading to a quantitatively
different permeability tensor (cf. Fig. 5). It is therefore of
interest that an electric (gate) field by acting upon the spin of
the electrons for a given magnetic field arrangement (applied
and intrinsic) serves as an effective control mechanism to
regulate the θF -governed figure of merit (ζ ) for magneto-
optical devices. It is pertinent to mention here that the key
to the adaptability of a nonreciprocal photonic device design
is the ζ parameter, whose optimization until now has relied
on the macroscopic alignment of the total angular momentum
of magneto-optical ions (magneto-optical effects are princi-
pally an outcome of electronic states with different angular
momentum) as a pathway to a high Faraday rotation. A typical
arrangement generally brings into play a combined role for the
intrinsic spin-orbit coupling of the magneto-optical material
and an external magnetic field to achieve a ζ commensurate
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FIG. 5. The permeability dispersions for two different values of
the g factor, where we made use of Eq. (4) and set the external z-axis
directed magnetic field to 0.8 T, are shown in the above plots. The
dispersion curves that use a g-factor value of 22 (25) are depicted by
a dotted (solid) set of lines. Additionally, the intrinsic magnetization
(parallel to the external magnetic field) and the dimensionless Gilbert
damping constant were assumed to be 0.3 T and 0.04, respectively.
The dispersion on the left (a) shows the real and imaginary com-
ponents of the diagonal elements of the permeability tensor while
the right panel (b) furnishes the corresponding curves for the off-
diagonal entries. Note that the dispersions for both the diagonal and
off-diagonal components besides displaying a functional dependence
on the g factor also peak at a resonant frequency. A switch of signs
is also observed for a frequency range in both cases.

with a level desirable for applications. While in principle a
magnetic-field-controlled adjustment of material properties is
feasible, electromagnetic compatibility and its lack thereof
with the adjoining integrated circuitry (in a device environ-
ment) make it a less propitious design guideline. The sug-
gested procedure in this work also involves control of the spin-
orbit coupling (external) for a higher Faraday rotation, but
with an electric bias that significantly mitigates the severity
of electromagnetic incompatibility in the case of a magnetic
field.

IV. SPIN-POLARIZED PURCELL EFFECT
AND THE g FACTOR

We showed how a recalibration of the permeability tensor
via an altered g factor offers promise of tangible dynamic con-
trol in magneto-optical measurements. The genesis of such re-
sults, which lay in a rearrangement of the surrounding electro-
magnetic field, can also be observed in a different setting—the
Purcell effect (PE). This effect is characterized by alterations
to the spontaneous emission lifetime of a quantum source
whose dynamical properties are induced by its interaction
with the environment. From an application standpoint, the
PE aids in the construction of nanoscale probes and develop-
ment of newer light sources, for example, lasers and LEDs.
The quantitative prediction of the PE is useful, therefore,
especially where emission-controlled design parameters are
of importance. A traditional approach to securing an optimal
PE draws upon the geometry and optical attributes of the
medium surrounding the emitter, notably, the electromagnetic
local density of states (LDOS), determined in part by the
constitutive parameters, ε and μ. Here, to exemplify the role
of the g factor in amendments to the PE, we consider a dipole
placed close to the InSb slab and numerically compute the
emitter (dipole) decay rate. Nominally, for a dipole moment
p located at a distance z0 above the first interface, the PE can
be written as [25] (the frequency and speed of light in vacuum
are ω and c, respectively)

P = 1 + 6πε0
Im p∗Gscat(z0)p

ω3c−3|p|2 , (15a)

where Gscat(z0) is the scattered dyadic Green’s function of
the dipole near the InSb slab that starts at z = 0 and extends
below. We write it as

Gscat(z0) = i

8π2

∫
d2k‖

kz

⎡
⎢⎢⎣

scattered/reflected part gref︷ ︸︸ ︷
ei2kzz0

[
(rssês+ + rpsêp+)êT

s−︸ ︷︷ ︸
reflection of ês− wave

+ (rspês+ + rppêp+)êT
p−︸ ︷︷ ︸

reflection of êp− wave

]
⎤
⎥⎥⎦, (15b)

where kz =
√

k2
0 − k2

‖ . A plot of the Purcell factor (Fp) that

features the decay rate of the dipole (d1 = 1/
√

2[x + iy])
in the vicinity of the InSb slab (which serves as a model
two-dimensional array of scattering centers) normalized to
its value in free space is presented in Fig. 6. Clearly, as the
g factor is increased, changing the localized electromagnetic
setting through the μ tensor, a stronger field-dipole interaction
is revealed as a concomitant rise in the Purcell factor. Further,
we carried out the same calculation for a second orientation
of the dipole (d2 = 1/

√
2[x − iy]), which yielded no defini-

tive gain for the Fp. A marginal rise in the decay rate (or
equivalently the Fp) for both values of the g factor points to
no significant modification of the localized electric field in
presence of the d2 dipole placed above the InSb slab.

We make a comment on the connection of the Purcell
effect to the nonreciprocity of the optical medium. First,
notice that the scattering matrix in the Purcell formulation
identified through the dyadic Green’s function [Eq. 15(b)], say
for the dipole d1 = 1/

√
2[x + iy], is related to dipole d2 = d∗

1
through the simple relation

Gscat(z0, d1) = Gscat(z0, d2) = G
T

scat(z0, d1). (16)

The above relation, however, is untrue in a nonreciprocal
medium such that the Purcell factors for dipoles d1 and d2 are
unequal. Furthermore, since the two dipoles are distinguished
through the spins of their emitted light [see Fig. 6(a) and
accompanying caption] and display contrasting behavior, it is
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FIG. 6. The numerically determined Purcell factor (Fp) for
two sets of circularly polarized dipoles of opposite handedness
(d1,2 = 1/

√
2[x ± iy]) placed at a certain distance from a 30.0 nm

InSb slab with (assumed) intrinsic magnetization is shown here. We
select two values of the g factor for this calculation, where the lower
(higher) number corresponds to an electric field of 8 (5) × 106 V/m.
For the case of the d1 dipole, a large enhancement in the Purcell
factor is observed, which correlates with an increase in the electro-
magnetic density of states arising from a constructive interference
of electric field in the vicinity of the dipole, d1. The placement of
the second dipole (d2), however, in contrast, leads to no significant
uptick in the electric field and the Fp remains close to unity. The Fp

also in the case of the d1 dipole reaches a higher value for a g factor
pushed upward through a stronger gate bias. For smaller distances
(z0) from the slab, a more intense electric field operates that gives rise
to a more robust Fp uptick; this trend falls off for larger z0 values in
agreement with the usual inverse square law for electric fields. Note
that the arrow curving around the dipole d1 in panel (a) represents
the emission of a right circularly polarized light; for d2, the sense of
polarization of emitted light is the exact opposite.

conceivable to view this as an instance of photonic spin tied
to nonreciprocity.

V. FINAL REMARKS

We explored the prospects of magneto-optical devices that
epitomize the phenomenon of nonreciprocity [5] and showed
that a newer class of design guidelines can be laid down
wherein the electron’s spin degree of freedom is the primary
determinant through the inclusion of the external Rashba
spin-orbit coupling (RSOC) assisted g factor. A set of further
advancements can be planned in which the usually weaker
Dresselhaus spin-orbit coupling may actively influence the g
factor in tandem [39,40] with RSOC, and therefore requires
an examination of a large variety of material systems using ab
initio techniques. In addition, pursuant to the former objective
of suitable candidate materials, a more systematic study of
the current setup will aid us in quantitatively correlating
(via first-principles simulations) various sample slabs of InSb
with strain, magnetized dopants, defects, and vacancies to
magneto-optical phenomena discussed here. Here, we may
note that perovskites and their thin-film derivatives which are
strongly magnetoelectric [41,42] and can carry a robust RSOC
are an encouraging alternative as a starting point for further
expanding the design space of magneto-optical structures
[and upgrading the figure-of-merit (ζ ) parameter] through a
conjoined action of the principles of multiferroics and electron
spin-orbit coupling.

TABLE I. Eight-band k · p parameters for InSb. Ev , Eg, Ep, and
Vso are in units of eV. The remaining Luttinger parameters are
dimensionless constants, and the effective mass is in units of the free
electron mass.

Material Ev γ1 γ2 γ3 m∗ Eg Ep Vso

InSb 0.28 34.8 15.5 16.5 0.0135 0.235 18 0.81

The theme of nonreciprocity allied to photon spin was car-
ried over to Purcell factor calculations, where we established
using the theory of the dyadic Green’s function the decay rate
of a dipole held close to an InSb slab. This framework also
allows us to assess situations with a randomized configuration
of electromagnetic scatters or plasmonic nanoantennas replac-
ing the InSb slab, essentially building a general theory of
decay rates in a Purcell factor calculation of emitters (dipoles)
near a 2D array of scattering centers. A more comprehensive
set of results that suggests structures and emitter orientations
maximizing the Purcell effect is planned for a future publica-
tion.
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APPENDIX: BAND STRUCTURE CALCULATIONS

We include material that was left out of the main text
and brief explanatory notes that clarify and expand on the
discussion presented in the paper. The 8-band k · p band
structure calculations are performed by discretizing the InSb
slab (modeled as a quantum well) on a cubic grid. The

FIG. 7. The Rashba spin-orbit coupling (RSOC) leads to two
nondegenerate Fermi concentric energy contours for the spin-up and
spin-down ensemble (a). The right panel (b) shows the band structure
of conduction electrons of a 6.0 nm InSb quantum well obtained
from a k · p calculation. The two “winged profiles” in the right panel
(b) denote the energy contours for the spin-up (higher energy) and
spin-down electrons. Notice that InSb is an ideal candidate material
to observe RSOC as it satisfies the twin criteria of a large intrinsic
spin-orbit coupling (0.78 eV) and a small band gap (0.43 eV at
Brillouin zone center). In the present case, the Rashba coupling
parameter was artificially enhanced to 4.0 eV Å for a more vivid
portrayal of the spin splitting.
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quantum well is assumed to be grown along the [001] axis.
The quantized direction is aligned to [001] which is also the z
axis. The InSb slab Hamiltonian, H (kx, ky,−i ∂

∂z ), is of size
8Nz × 8Nz, where Nz represents the number of discretized
points along the z axis. The finite-difference discretization
scheme for the 8-band k · p Hamiltonian has been explained
fully in Ref. [10]. The k · p parameters for this work were
obtained from Vurgaftman et al. [43]. The parameters are also
collected in Table I for easy reference. The conduction band
profile of a 6.0 nm InSb quantum well which is spin-split by
the Rashba coupling is shown in Fig. 7. In preparing Fig. 7,
the effective mass [cf. Eq. (5)] of the conduction electrons was
obtained from the 8-band k · p calculation.

A direct approach to ascertain the g factor [g f in Eq. (A1)]
using k · p theory is from the following result:

g f = g0

[
1 − Ep

3

(
1

E6c − E8v

− 1

E6c − E7v

)]
. (A1)

In Eq. (A1), g0 ≈ 2 is the free electron g factor while the
subscripts 6c, 7v, and 8v designate the symmetries of the

bottom (top) of the conduction (valence) bands in a crystal
with Td symmetry. All remote contributions from higher-order
bands have been ignored. Note that E6c − E8v is the funda-
mental band gap (Eg) and E6c − E7v = Eg + �so. Here, �so

is the splitting from the intrinsic spin-orbit coupling. While in
principle it is possible to derive a similar expression with the
Rashba coupling term that explicitly accounts for Eg, �so, and
the effective mass, the approximate estimation procedure out-
lined in Sec. II A indirectly includes the foregoing quantities
through the Rashba parameter [cf. Eq. (8)].

Finally, in the context of the 8-band k · p Hamiltonian
based g-factor calculations, it is relevant to mention here that
the use of only the lowest conduction band is a reasonable
approximation for InSb; the next p-like conduction band (	7)
is much above the fundamental direct band gap. A more
accurate model, however, must include the 	7 and 	8 con-
duction bands, for instance, in GaAs, suggesting a 14-band
k · p calculation as our starting point. The g-factor formula
[Eq. (A1)] must reflect this modification through terms of the
form of [33].
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