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In (2+1)-dimensional materials, nonlocal topological electromagnetic phases are defined as atomic-scale
media which host photonic monopoles in the bulk band structure and respect bosonic symmetries (e.g.,
time reversal T 2 = +1). Additionally, they support topologically protected spin-1 edge states, which are
fundamentally different than spin- 1

2 and pseudo-spin- 1
2 edge states arising in fermionic and pseudofermionic

systems. The striking feature of the edge state is that all electric and magnetic field components vanish at
the boundary, in stark contrast to analogs of Jackiw-Rebbi domain wall states. This surprising open boundary
solution of Maxwell’s equations, dubbed the quantum gyroelectric effect [Phys. Rev. A 98, 023842 (2018)],
is the supersymmetric partner of the topological Dirac edge state where the spinor wave function completely
vanishes at the boundary. The defining feature of such phases is the presence of temporal and spatial dispersion in
conductivity (the linear response function). In this paper, we generalize these topological electromagnetic phases
beyond the continuum approximation to the exact lattice field theory of a periodic atomic crystal. To accomplish
this, we put forth the concept of microscopic photonic band structure of solids, analogous to the traditional
theory of electronic band structure. Our definition of topological invariants utilizes optical Bloch modes and
can be applied to naturally occurring crystalline materials. For the photon propagating within a periodic
atomic crystal, our theory shows that besides the Chern invariant C ∈ Z, there are also symmetry-protected
topological (SPT) invariants ν ∈ ZN which are related to the cyclic point group CN of the crystal ν = C mod N .
Due to the rotational symmetries of light R(2π ) = +1, these SPT phases are manifestly bosonic and behave
very differently from their fermionic counterparts R(2π ) = −1 encountered in conventional condensed-matter
systems. Remarkably, the nontrivial bosonic phases ν �= 0 are determined entirely from rotational (spin-1)
eigenvalues of the photon at high-symmetry points in the Brillouin zone. Our work accelerates progress toward
the discovery of bosonic phases of matter where the electromagnetic field within an atomic crystal exhibits
topological properties.
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I. INTRODUCTION

From a material science standpoint, all known topological
phases of matter to date have been characterized by electronic
phenomena [1,2]. This is true for both time-reversal broken
phases, often called Chern insulators [3–7], and time-reversal
unbroken phases, known as topological insulators [8–10]. The
signature of time-reversal broken phases is the quantum Hall
conductivity σxy = ne2/h, which is quantized in terms of the
electronic Chern invariant n ∈ Z [11–13], with e being the
elementary charge of the electron and h the Planck constant.
Only recently has the idea of bosonic Hall conductivity and
topological bosonic phases been put forth [14–22].

However, it should be emphasized that the traditional
Hall conductivity [23,24] only has topological significance,
with respect to the electron, in the static ω = 0 and
long-wavelength k = 0 limits of the electromagnetic field
σxy(0, 0) = ne2/h. At high frequency ω �= 0 and short wave-
length k �= 0, the Hall conductivity σxy(ω, k) acquires new
physical meaning. We have shown that the electromagnetic
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field itself becomes topological [25–27]. These topological
electromagnetic phases of matter depend on the global behav-
ior of σxy(ω, k), over all frequencies and wave vectors.

Like electrons, the signature of electromagnetic Chern
phases C �= 0 is topologically protected unidirectional (chiral)
edge states. Unlike electrons, however, no physical observ-
able (response/correlation function) is topologically quan-
tized as there is no known equivalent for photons. Neverthe-
less, the origin of topological quantization C ∈ Z is always
a discontinuity in the underlying Berry connection (gauge
field [28]) of the eigenmodes. This phenomenon of gauge
discontinuity in the photonic eigenmodes fundamentally re-
quires nonlocal gyrotropy (Hall conductivity). Nonlocality,
or spatial dispersion, is the momentum dependence of op-
tical parameters. If the Hall conductivity changes sign with
momentum σxy(ω, kcrit ) = 0, i.e., the handedness changes,
the electromagnetic field is topologically nontrivial C �= 0. In
two dimensions, σxy behaves as an effective mass [29–31]
and this change in sign is the photonic counterpart of the
Chern insulator [3–7], where the exact same situation occurs.
This intriguing nonlocal behavior leads to a new topologi-
cal bosonic phase of matter, a quantum gyroelectric phase
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[25–27], which is unlike any known fermionic phase as it is
intrinsically tied to the electromagnetic field.

As of yet, only the continuum topological theory of the
aforementioned quantum gyroelectric effect has been solved
[25–27]. Our goal is to extend this concept beyond the long-
wavelength approximation to the exact lattice field theory of
optical Bloch waves. In this regime, we must consider not
only the first spatial component σxy(ω, k) = σxy(ω, k, 0) but
all spatial harmonics of the crystal g �= 0, to infinite order,

JHall
x (ω, k) =

∑
g

σxy(ω, k, g)Ey(ω, k + g). (1)

g · R ∈ 2πZ are the reciprocal lattice vectors and R is the
primitive vector of the crystal. In this case, Ei is the mi-
croscopic electric field. The electromagnetic field must be
described to the same scale as the electronic wave functions,
i.e., for photon momenta on the order of the lattice con-
stant ka = π , with a ≈ 5 Å. Since topological invariants are
fundamentally global properties, these astronomically deep
subwavelength fields actually play a role in the topological
physics.

The idea of lattice topologies in electromagnetism was
first proposed by Haldane [32,33] in the context of photonic
crystals [34–41]. These are artificial materials composed of
two or more different constituents which form a macroscopic
crystalline structure. A few important examples are gyrotropic
photonic crystals [34–36], Floquet topological insulators
[42–44], and bianisotropic metamaterials [45–59]. Instead, we
focus on the microscopic domain and utilize the periodicity
of the atomic lattice itself. Thus, the topological invariants in
our theory are connected to the microscopic atomic lattice
and not artificially engineered macroscopic structures. We
stress that in the microscopic case, the electromagnetic theory
is manifestly bosonic [60–63] (e.g., time reversal T 2 = +1)
and characterizes topological phases of matter fundamentally
distinct from known fermionic and pseudofermionic phases.

With that in mind, this paper is dedicated to solving two
long-standing problems, which is of interest to both photonics
and condensed-matter physics. The first, is developing the
rigorous theory of optical Bloch modes in natural crystal
solids. This problem gained significant interest in the 1960s
and 1970s in the context of spatial dispersion (nonlocality) as
it led to qualitatively new phenomena, such as natural optical
activity (gyrotropy) [64–67]. The current paper builds on our
recent discovery of the quantum gyroelectric effect [25–27]
where we have shown that nonlocality is also essential for
topological phenomena and is a necessary ingredient in any
long-wavelength theory. However, since topological field the-
ories are global constructs, a complete picture can only be
achieved in the microscopic domain of Bloch waves. Most
of the foundations have been summarized by Agronovich and
Ginzburg in their seminal monograph on crystal optics [68].
Nevertheless, topological properties have never been tackled
to date and a few fundamental quantities, such as the Bloch
energy density, have not been defined.

This leads to the second problem—deriving the electro-
magnetic topological invariants of these systems given only
the atomic lattice. We solve this problem and also provide
a systematic bosonic classification of all (2+1)-dimensional
(2+1D) topological photonic matter. Utilizing the optical

Bloch modes, we show that a Chern invariant C ∈ Z can
be found for any two-dimensional crystal and characterizes
distinct topological phases. We then go one step further and
classify these topological phases with respect to the symmetry
group of the crystal—the cyclic point groups CN . These
are known as symmetry-protected topological (SPT) phases
[69–80] and the spin of the photon is critical to their definition.
The rotational symmetries of light R(2π ) = +1 impart an
intrinsically bosonic nature to these phases, which are funda-
mentally different than their fermionic counterparts R(2π ) =
−1 encountered in conventional condensed-matter systems.
We illustrate this fact by directly comparing SPT bosonic
and fermionic phases side-by-side. Our rigorous formalism of
microscopic photonic band structure provides an immediate
parallel with the traditional theory of electronic band structure
in crystal solids.

This paper is organized as follows. In Sec. II we develop
the general formalism of 2+1D lattice electromagnetism. First
we derive the generalized linear response function, accounting
for spatiotemporal dispersion to infinite order in the crystal’s
spatial harmonics g. Thereafter, we find the equivalent Hamil-
tonian that governs all light-matter Bloch excitations of the
material. In Sec. III we study the discrete rotational symme-
tries (point groups) of the crystal and the implications on spin-
1 quantization [81–86] of the photon. The following Sec. IV
discusses the electromagnetic Chern number and its relation-
ship to SPT bosonic phases. The bosonic classification of each
phase is related directly to integer quantization of the photon
(Table I) and this is compared alongside their fermionic
counterparts (Table II). Section V presents our conclusions.

The focus of this paper is 2+1D topological electromag-
netic (bosonic) phases of matter C �= 0 which requires break-
ing time-reversal symmetry. These bosonic Chern insulators
are ultimately related to nonlocal gyrotropic response (Hall
conductivity) and show unidirectional, completely transverse
electromagnetic (TEM) edge states [25–27]. However, time-
reversal symmetric topological phenomena can arise in higher
dimensional systems in the context of nonlocal magnetoelec-
tricity [87]. These time-reversal symmetric phases possess
counterpropagating TEM edge states and are interpreted as
two copies of a bosonic Chern insulator. Features of topo-
logical phenomena, such as spin-momentum locking [88–92],
have also been reported in conventional surface state prob-
lems: surface plasmon polaritons, Dyakonov waves, etc. How-
ever, these traditional surface properties are not connected to
any topologically protected edge states or nontrivial phases.

II. LATTICE ELECTROMAGNETISM

A. 2+1D electrodynamics

In this paper we focus on two-dimensional materials and
the topological electromagnetic phases associated with them.
The preliminaries for 2+1D electromagnetism can be found in
Appendix A of Ref. [25]. Conveniently, the restriction to 2D
limits the degrees of freedom of both the electromagnetic field
and the induced response of the material, such that strictly
transverse-magnetic (TM) waves propagate. The correspond-
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TABLE I. Summary of 2+1D topological electromagnetic (bosonic) phases. Symmetry-protected topological (SPT) bosonic phases exist
in all cyclic point groups CN=2,3,4,6. The continuous group C∞ describes the long-wavelength theory k ≈ 0. The topological phases are
characterized by their Chern invariant C ∈ Z and SPT invariant ν ∈ ZN . These numbers are not independent, but intimately related by the
symmetries of the crystal: ν = C mod N . ν is protected by N-fold rotational symmetry and determines the Chern number up to a factor of
N . The bosonic classification of ν represents the direct product of rotational eigenvalues (ηN )N = +1 (roots of unity) of the electromagnetic
field at high-symmetry points (HSPs) in the Brillouin zone. For the spin-1 photon, this classification is more intuitively understood in terms of
modulo integers mN ∈ ZN , which determine the N possible eigenvalues of ηN = exp[i 2π

N mN ].

Point group, CN Symmetry, ZN Bosonic classification, (ηN )N = +1 Boson SPT invariant, ν = C mod N

C1

C2 Z2 exp (i2πC/2) = η2(�)η2(X )η2(Y )η2(M ) ν = m2(�) + m2(X ) + m2(Y ) + m2(M ) mod 2
C3 Z3 exp (i2πC/3) = η3(�)η3(K )η3(K ′) ν = m3(�) + m3(K ) + m3(K ′) mod 3
C4 Z4 exp (i2πC/4) = η4(�)η4(M )η2(Y ) ν = m4(�) + m4(M ) + 2m2(Y ) mod 4
C6 Z6 exp (i2πC/6) = η6(�)η3(K )η2(M ) ν = m6(�) + 2m3(K ) + 3m2(M ) mod 6
C∞ Z exp (iθC) = ηθ (0)η∗

θ (∞), ηθ = exp(iθm) ν = C = m(0) − m(∞)

ing wave equation reads

H0 f = i∂t g, f =
⎡
⎣Ex

Ey

Hz

⎤
⎦, g =

⎡
⎣Dx

Dy

Bz

⎤
⎦. (2)

f is the TM polarization state of the electromagnetic field and
the material response is captured by the displacement field
g. H0(p) = p · S are the vacuum Maxwell equations in real
space and describe the dynamics of the free photon,

H0(p) = pxŜx + pyŜy =
⎡
⎣ 0 0 −py

0 0 px

−py px 0

⎤
⎦. (3)

p = −i∇ is the two-dimensional momentum operator. Ŝx and
Ŝy are spin-1 operators that satisfy the angular momentum
algebra [Ŝi, Ŝ j] = iεi jk Ŝk ,

Ŝz =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦. (4)

Here, (Ŝz )i j = −iεi jz is the generator of rotations in the x-y
plane and is represented by the antisymmetric matrix. In
two dimensions, Ŝz governs all rotational symmetries of the
electromagnetic field.

B. 2+1D linear response theory

The effective electromagnetic properties of a material are
very accurately described by a linear response theory, as-
suming nonlinear interactions are negligible. This is true for
low-intensity light | f | � 108 V/m that is sufficiently weak
compared to the atomic fields governing the binding of the
crystal itself. Our goal is to characterize the topological field
theory in this regime. With this in mind, the most general
linear response of a 2D material is nonlocal in both space and
time coordinates,

g(t, r) =
∫

d2r′
∫ t

−∞
dt ′M(t, t ′, r, r′) f (t ′, r′). (5)

M is the response function and compactly represents the
constitutive relations in space-time,

M(t, t ′, r, r′) =
⎡
⎣εxx εxy χx

εyx εyy χy

ζx ζy μ

⎤
⎦. (6)

Note that M is a (3 × 3)-dimensional matrix and we include
all possible material responses as a generalization; for in-
stance, magnetism μ and magnetoelectricity χi, ζi.

If the properties of the crystal are not changing temporally
(no external modulation), the response function is translation-

TABLE II. Summary of 2+1D SPT fermionic phases for comparison. The fermionic classification of ν represents the direct product of
rotational eigenvalues (ζN )N = −1 (roots of negative unity) of the spinor field at HSPs in the Brillouin zone. For the spin- 1

2 electron, this
classification is more intuitively understood in terms of modulo half-integers mN ∈ ZN + 1

2 , which determine the N possible eigenvalues of
ζN = exp[i 2π

N mN ].

Point group, CN Symmetry, ZN Fermionic classification, (ζN )N = −1 Fermion SPT invariant, ν = C mod N

C1

C2 Z2 exp (i2πC/2) = ζ2(�)ζ2(X )ζ2(Y )ζ2(M ) ν = m2(�) + m2(X ) + m2(Y ) + m2(M ) mod 2
C3 Z3 exp (i2πC/3) = −ζ3(�)ζ3(K )ζ3(K ′) ν = m3(�) + m3(K ) + m3(K ′) + 3

2 mod 3
C4 Z4 exp (i2πC/4) = −ζ4(�)ζ4(M )ζ2(Y ) ν = m4(�) + m4(M ) + 2m2(Y ) + 2 mod 4
C6 Z6 exp (i2πC/6) = −ζ6(�)ζ3(K )ζ2(M ) ν = m6(�) + 2m3(K ) + 3m2(M ) + 3 mod 6
C∞ Z exp (iθC) = ζθ (0)ζ ∗

θ (∞), ζθ = exp(iθm) ν = C = m(0) − m(∞)
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ally invariant in time,

M(t, t ′, r, r′) = M(t − t ′, r, r′)

=
∫

dωM(ω, r, r′)e−iω(t−t ′ ).
(7)

Equation (7) implies energy conservation in Hermitian sys-
tems ω′ = ω. However, a crystal is not translationally invari-
ant in space; momentum is not conserved k′ �= k. Instead,
the crystal is periodic and possesses discrete translational
symmetry [68,93],

M(ω, r, r′) = M(ω, r + R, r′ + R), (8)

where R is the primitive lattice vector of the crystal. This
admits a Fourier decomposition in the spatial harmonics of
the crystal g,

M(ω, r, r′) =
∑

g

Mg(ω, r − r′)e−ir′ ·g, (9)

with g · R ∈ 2π Z arbitrary integer combinations of the recip-
rocal lattice vectors.

Due to nonlocality, it is necessary to convert to the recipro-
cal space,

M(ω, k, k′) = 1

(2π )2

∫∫
d2r d2r′M(ω, r, r′)e−ik·reik′ ·r′

.

(10)

M(ω, k, k′) determines the linear transformation properties
of an input wave with momentum k′ to an output wave
with momentum k. In a periodic crystal, the momentum is
conserved up to a reciprocal vector k′ = k + g and represents
a discrete spectrum,

M(ω, k, k′) =
∑

g

Mg(ω, k)δ2(k + g − k′), (11)

where Mg(ω, k) is the Fourier transformed function with
respect to r̄ = r − r′,

Mg(ω, k) =
∫

d2r̄Mg(ω, r̄)e−ik·r̄. (12)

δ2(k + g − k′) is the momentum-conserving delta function.
Each Fourier element of the response function Mg(ω, k)
determines the polarization-dependent scattering amplitude
from k + g → k. These are essentially the photonic structure
factors of the two-dimensional crystal.

In this case, k is the crystal momentum and is only
uniquely defined within the first Brillouin zone (BZ). Hence,
the electromagnetic eigenstates of the medium are Bloch
waves,

H0(k) fk = ω

∫
d2k′M(ω, k, k′) fk′

= ω
∑

g

Mg(ω, k) fk+g. (13)

H0(k) = k · S are the vacuum Maxwell equations in momen-
tum space. The Bloch photonic wave function f̃k(r) corre-
sponds to the net propagation of all k + g scattered waves in

the medium,

f̃k(r) = 1√
V

∑
g

fk+geig·r, (14)

where f̃k(r + R) = f̃k(r) is periodic in the atomic crystal
lattice and we have normalized by the unit cell area V . For
clarity, we use tildes to identify cell-periodic Bloch functions.
fk+g are the collection of Fourier coefficients associated with
each Bloch wave. Note that Eqs. (13) and (14) reduce to the
continuum theory [25–27] when considering only the zeroth-
order harmonic g = 0.

C. Generalized response function

Nevertheless, Eq. (13) poses a few serious problems; it
does not represent a proper first-order in time Hamiltonian
since all harmonics of the response function Mg(ω, k) de-
pend on the eigenvalue ω. Moreover, it is not evident that
the Bloch waves in Eq. (14) are normalizable, as the system
contains complex spatial and temporal dispersion. Due to
these issues, it is advantageous to return to the more general
form of M(ω, k, k′) without assuming discrete translational
symmetry. This will allow us to derive very robust properties
of the response function that can also be applied to amorphous
materials or quasicrystals.

First, we demand Hermiticity,

M(ω, k, k′) = M†(ω, k′, k), (15)

such that the response is lossless. To account for normalizable
electromagnetic waves, the energy density must be positive
definite for all ω,

U (ω) =
∫∫

d2k d2k′ f †
kM̄(ω, k, k′) fk′ > 0, (16)

where M̄ describes the inner product space in a dispersive
medium,

M̄(ω, k, k′) = ∂

∂ω
[ωM(ω, k, k′)]. (17)

Notice that U (ω) = U ∗(ω) is only real-valued when M is
Hermitian. For realistic materials, the energy density is also
stable at static equilibrium ω = 0,

U (0) =
∫∫

d2k d2k′ f †
kM(0, k, k′) fk′ > 0, (18)

with M(0, k, k′) = M̄(0, k, k′) at zero frequency. Stability
implies the response function is nonsingular at ω = 0, such
that there is a smooth transition to the electrostatic limit
limω→0 ωM(ω, k, k′) → 0. All dielectric (insulating) mate-
rials satisfy this constraint since the induced current arises
strictly from time-varying polarizations Ji = Ṗi + εi j∂

jMz. By
relaxing the stability condition [Eq. (18)], metallic (plas-
monic) models can be easily included with slight modifi-
cations to M. Metallic materials are singular (unstable) at
ω = 0 as they possess dc (static) currents. However, the main
focus of this paper is the ground state of dielectric (insulating)
materials so we assume the response function is well-behaved
around ω = 0.

To ensure the electromagnetic field is real-valued, i.e.,
represents a neutral particle, we always require the reality

205146-4



NONLOCAL TOPOLOGICAL ELECTROMAGNETIC PHASES … PHYSICAL REVIEW B 99, 205146 (2019)

condition,

M(ω, k, k′) = M∗(−ω,−k,−k′). (19)

Furthermore, the response is transparent at high frequency
ω → ∞, as the material cannot respond to sufficiently fast
temporal oscillations,

lim
ω→∞M(ω, k, k′) = 13δ

2
k−k′ . (20)

13 is the 3 × 3 identity matrix and δ2
k−k′ = δ2(k − k′) is the

momentum-conserving delta function. Lastly, the response
must be causal and satisfy the Kramers-Kronig relations,

∮
�[ω′]�0

M(ω′, k, k′) − 13δ
2
k−k′

ω′ − ω
dω′ = 0. (21)

This ensures the response function is analytic in the upper
complex plane and decays at least as fast as |ω|−1.

Combining all the above criteria, we find that M can
always be expanded via a partial fraction decomposition,

M(ω, k, k′) = 13δ
2
k−k′ −

∑
α

∫
d2k′′ C†

αk′′kCαk′′k′

ωαk′′ (ω − ωαk′′ )
.

(22)
Any Hermitian (lossless) response function can be expressed
in this form. Equation (22) is easily extended to 3D materials
but our focus is 2D topological field theories. ωαk is the
resonant energy of the oscillator and corresponds to a first-
order (real-valued) pole of the response function. Note, to
satisfy the reality condition [Eq. (19)], each oscillator ωαk
must always come in pairs with a negative energy resonance
−ωα−k, which we assume is captured by the summation
over α.

In this case, α labels an arbitrary bosonic excitation in the
material, such as an exciton or phonon, which couples linearly
to the electromagnetic fields via the tensor,

Cα (k, k′) = 1

(2π )2

∫∫
d2r d2r′Cα (r, r′)e−ik·reik′ ·r′

. (23)

In the general case, rank[Cα] = 3 couples to both the electric
field Ei and magnetic field Hz. Pure electric excitations only
contribute to the permittivity tensor rank[Cα] = 2 and couple
strictly to the electric field Ei. Likewise, pure magnetic excita-
tions only contribute to the scalar permeability rank[Cα] = 1
and couple strictly to the magnetic field Hz. All such excita-
tions are accounted for simply by specifying the rank of Cα .

Substituting Eq. (22) into Eq. (16), we can exchange the
order of integration U (ω) = ∫

d2k U (ω, k) and define

U (ω, k) = | fk|2 +
∑

α

∣∣∣∣
∫

d2k′ Cαkk′ fk′

(ω − ωαk )

∣∣∣∣
2

> 0, (24)

which is positive definite for all ω and k. Equation (24) is
the generalized inner product for the electromagnetic field and
represents the energy density at an arbitrary frequency and
wave vector. We will now show that Eq. (22) is derived from
a first-order in time Hamiltonian.

D. Generalized Hamiltonian

To find the corresponding Hamiltonian, we expand the
response function M in terms of three-component matter
oscillators ψα . Similar to a Lorentz oscillator [94], these
describe the internal polarization and magnetization modes of
the material,

ωψαk = ωαkψαk +
∫

d2k′Cαkk′ fk′ . (25)

Substituting Eq. (25) and (22) into Eq. (13) we obtain

ω fk =H0(k) fk +
∑

α

∫∫
d2k′′d2k′

ωαk′′
C†

αk′′kCαk′′k′ fk′

+
∑

α

∫
d2k′C†

αk′kψαk′ .

(26)

The first two terms on the right-hand side of Eq. (26) represent
the vacuum equations and self-energy of the electromagnetic
field. The third term is the linear coupling to the oscillators.
Combining Eqs. (25) and (26) into a single algebraic matrix,
we write the generalized Hamiltonian H (k, k′) as

H (k, k′) =

⎡
⎢⎢⎢⎣
H0(k)δ2

k−k′ + ∑
α

∫
d2k′′
ωαk′′ C

†
αk′′kCαk′′k′ C†

1k′k C†
2k′k . . .

C1kk′ ω1kδ
2
k−k′ 0 . . .

C2kk′ 0 ω2kδ
2
k−k′ . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦, (27)

which is manifestly Hermitian H (k, k′) = H†(k′, k). The di-
mension of the Hamiltonian is determined by the rank of all
the coupling matrices dim[H] = N = 3 + ∑

α rank[Cα].
We now define uk as the generalized state vector of the

electromagnetic problem; accounting for the photon fk and

all possible internal excitations ψαk,

∫
d2k′Hkk′uk′ = ωuk, uk =

⎡
⎢⎢⎣

fk
ψ1k
ψ2k

...

⎤
⎥⎥⎦, (28)

which is a first-order wave equation. Notice that contraction
of uk naturally reproduces the energy density [Eq. (24)] upon
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summation over all degrees of freedom,

u†
kuk = | fk|2 +

∑
α

|ψαk|2 = U (ω, k)

= | fk|2 +
∑

α

∣∣∣∣
∫

d2k′ Cαkk′ fk′

(ω − ωαk )

∣∣∣∣
2

.

(29)

The complete set of eigenvectors and eigenvalues is repre-
sented by uk. We must define all relevant electromagnetic
quantities in terms of this generalized state vector.

E. Crystal Hamiltonian

We are now ready to enforce crystal periodicity. Instead
of expanding M directly, we utilize the periodicity of the
coupling tensors Cα (r, r′) = Cα (r + R, r′ + R), which is a
discrete spectrum in g,

Cα (r, r′) =
∑

g

Cαg(r − r′)e−ir′ ·g. (30)

After Fourier transforming, we obtain the components in the
momentum space,

Cα (k, k′) =
∑

g

Cαg(k)δ2(k + g − k′), (31)

with respect to r̄ = r − r′,

Cαg(k) =
∫

d2r̄ Cαg(r̄)e−ik·r̄. (32)

Cαg(k) tells us the scattering amplitude of a photon fk+g with
momentum k + g into an internal mode of the material ψαk
at momentum k, and vice versa. The crystal Hamiltonian
accounts for all such scattering events,

H (k, k′) =
∑

g

Hg(k)δ2(k + g − k′), (33)

with Hermiticity Hg(k) = H†
−g(k + g) satisfied by definition.

The quasiparticle eigenstates of the Hamiltonian describe
the complete spectrum of Bloch waves,∑

g

Hg(k)unk+g = ωnkunk, (34)

and the eigenenergies ωnk+g = ωnk are periodic Bloch bands.
Note, it is important not to confuse the polaritonic eigenen-
ergies ωnk with the oscillator energies ωαk. The eigenenergies
ωnk constitute modes of the coupled light-matter system while
ωαk describe the natural matter oscillations in the absence of
the electromagnetic field. n labels a particular polaritonic en-
ergy band of the material with its associated Bloch eigenstate
ũnk(r). The total wave function ũnk(r) contains the photon
f̃nk(r) and all internal degrees of freedom describing the linear
response ψ̃nαk(r). This is expressed compactly in the Fourier
basis,

ũnk(r) = 1√
V

∑
g

unk+geig·r, unk+g =

⎡
⎢⎢⎣

fnk+g
ψn1k+g
ψn2k+g

...

⎤
⎥⎥⎦, (35)

where ũnk(r + R) = ũnk(r) is periodic in the atomic crystal
lattice and we have normalized by the unit cell area V . In this
basis, ũnk(r) is normalized to unit energy as

1 =
∫

cell
d2r ũ†

nk(r)ũnk(r) =
∑

g

u†
nk+gunk+g

=
∑

g

(
f †
nk+g fnk+g +

∑
α

ψ
†
nαk+gψnαk+g

)

=
∑
gg′

f †
nk+gM̄g′−g(ωnk, k + g) fnk+g′ . (36)

The integration is taken over the 2D unit cell. To simplify
Eq. (36), we have utilized the linear response theory to express
ψα in terms of the driving field f ,

ψnαk+g =
∑

g′ Cαg′ (k + g) fnk+g′+g

ωnk − ωαk+g
. (37)

M̄g(ω, k) = ∂ω[ωMg(ω, k)] is the contribution to the energy
density arising from each spatial harmonic of the crystal.

Finally, the eigenenergies ωnk are the n nontrivial roots of
the characteristic wave equation,

H0(k) fnk = ωnk

∑
g

Mg(ωnk, k) fnk+g, (38)

which generates all possible photonic bands of the crystal.
Note, the response function Mg(ω, k) is now expressed in
terms of Cαg(k) and describes the net summation of all scat-
tering and backscattering events in the material,

Mg(ω, k) = 13δg −
∑
αg′

C†
α−g′ (k + g′)Cαg−g′ (k + g′)

ωαk+g′ (ω − ωαk+g′ )
. (39)

This proves that the wave equation is derived from a first-order
Hamiltonian, has real eigenvalues ω = ωnk for all momenta,
and is normalizable with respect to the total state vector
ũnk(r).

III. DISCRETE ROTATIONAL SYMMETRY

A. Point groups in 2D

Point groups are the discrete analogs of continuous rota-
tions and reflections. They represent the number of ways the
atomic lattice can be transformed into itself [95,96]. Due to
the crystallographic restriction theorem, there are ten such
point groups in 2D. The first five are the cyclic groups CN ,

C1, C2, C3, C4, C6. (40)

For instance, C3 implies threefold cyclic symmetry while C1

is no symmetry. The last five are the dihedral groups DN ,

D1, D2, D3, D4, D6. (41)

The dihedral group DN contains CN plus reflections. However,
it can be proven that the Chern number for all DN point
groups vanish [72]. In fact, any space group containing mirror
symmetry has a vanishing Chern number [73]. Therefore, we
concern ourselves with only the (Abelian) cyclic groups CN .
The Brillouin zone of each point group is displayed in Fig. 1.
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FIG. 1. Brillouin zone of each cyclic point group CN . (a), (b),
(c), (d), and (e) correspond to N = 2, 3, 4, 6, and ∞, respectively.
Due to rotational symmetry, the total Brillouin zone is equivalent
to N copies of the irreducible Brillouin zone (IBZ), which is
represented by the blue quadrant. For continuous symmetry N =
∞, this is simply a line. The yellow circles label high-symmetry
points Rki = ki where the crystal Hamiltonian is invariant under a
certain rotation R̂. At these specific momenta, a Bloch photonic
wave function R f̃ki (R

−1r) = η(ki ) f̃ki (r) is an eigenstate of an N-
fold rotation η(ki ) = ηN (ki ) = [i 2π

N mN (ki )] such that the photon
possesses quantized integer eigenvalues mN (ki ) ∈ ZN . Since mN are
discrete quantum numbers, their values cannot vary continuously if
the crystal symmetry is preserved; they can only be changed at a
topological phase transition.

The defining characteristic of each cyclic group is the
fermionic or bosonic representation. When we rotate the fields
by 2π , we take the particle into itself and acquire a phase,

R(2π ) = (−1)F . (42)

F is twice the total spin of the particle, or equivalently, the
fermion number. Fermions with half-integer spin are anti-
symmetric under rotations R(2π ) = −1, while bosons with
integer spin are symmetric R(2π ) = +1. Depending on the
symmetries of the lattice, the topology fundamentally changes
for fermions and bosons. We will understand the implications
this has for spin-1 photons.

B. Spin-1 discrete symmetries

If the two-dimensional crystal belongs to a cyclic point
group CN , the Hamiltonian possesses discrete rotational sym-
metry about the z axis,

R−1HRg(Rk)R = Hg(k), ωnRk = ωnk, (43)

where R is any rotation in CN . The eigenenergies ωnk respect
the symmetry of the crystal; the energy at Rk and k is
identical. It is important to note that R is diagonal in u,
meaning the photon and each oscillator is rotated individually,
f → R f and ψα → Rψα . This implies there is no mixing of
fields. The symmetries of the Hamiltonian are endowed by the
coupling tensors, which dictates the degrees of freedom of the
material response,

R−1CαRg(Rk)R = Cαg(k), ωαRk = ωαk. (44)

After summation over all Cαg(k), we can prove that the
response function transforms identically under such a rotation,

R−1MRg(ω, Rk)R = Mg(ω, k). (45)

Therefore, the photon inherits all symmetries of the crystal.
In this case, the R matrix represents a discrete rotation and

can be expressed as the exponential of the spin-1 generator
(Ŝz )i j = −iεi jz,

RN = exp

(
−i

2π

N
Ŝz

)
=

[
RN 0
0 1

]
, (46)

where 2π
N is an N-fold rotation,

RN =
[

cos
(

2π
N

) − sin
(

2π
N

)
sin

(
2π
N

)
cos

(
2π
N

)
]
. (47)

Electric components transform as 2D vectors and rotate into
one another under R. Magnetic components transform as
scalars and are left invariant under R. We stress that every
cyclic group for the photon is a vector representation, which
is bosonic,

(RN )N = R(2π ) = +13. (48)

The electromagnetic field returns in phase under cyclic revo-
lution.

C. High-symmetry points

The Bloch eigenstates ũnk(r) are essentially a collection of
periodic vector fields. To rotate the fields, we must perform
an operation on both the coordinates r and the polarization
states f and ψα . In real space, the operation of a rotation R̂ is
performed as

Rũnk(R−1r) = ηn(k)ũnRk(r), (49)

where R is a discrete rotation defined in Eq. (46). This implies
the Fourier coefficients obey,

Runk+R−1g = ηn(k)unRk+g. (50)

It follows from symmetry that the operation of R̂ takes a
wave function at k to Rk with the same energy ωnk = ωnRk,
but with a possibly different phase |ηn(k)|2 = 1. Utilizing the
linear response theory, we notice that the phase factor ηn(k) is
governed entirely by the photon,

Rψnαk+R−1g =
∑

g′ RCαg′ (k + R−1g) fnk+g′+R−1g

ωnk − ωαk+R−1g

=
∑

g′ CαRg′ (Rk + g)R fnk+g′+R−1g

ωnk − ωαk+R−1g
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FIG. 2. The collection of spin-1 (bosonic) charges for the C4 point group. (a) Fourfold rotations (R4)4 = +1; there are four unique
eigenvalues η4 = exp[i 2π

4 m4] corresponding to the roots of unity (η4)4 = +1. These represent the modulo 4 integers m4 ∈ Z4. Note that
m4 = 3 = −1 can also be interpreted as a left-handed eigenstate. (b) Bosonic inversion (R2)2 = +1; there are two unique eigenvalues
η2 = exp[i 2π

2 m2] corresponding to the roots of unity (η2)2 = +1. These represent the modulo 2 integers m2 ∈ Z2.

=
∑

g′ Cαg′ (Rk + g)ηn(k) fnRk+g′+g

ωnk − ωαRk+g

= ηn(k)ψnαRk+g. (51)

This is an incredibly convenient simplification and implies the
precise coordinates of the matter oscillations ψα are superflu-
ous when discussing symmetries. The electromagnetic field f
tells us everything.

Importantly, there are specific points in the Brillouin zone
where k is invariant under a discrete rotation,

Rki = ki. (52)

This is because the crystal momentum only differs by a lattice
translation at these points Rki = ki + g, which leaves a Bloch
wave function unchanged,

eiRki ·rũnRki (r) = ei(ki+g)·rũnki+g(r)

= eiki ·rũnki (r). (53)

These are called high-symmetry points (HSPs); they occur at
the center and certain vertices of the Brillouin zone. The crys-
tal Hamiltonian is rotationally invariant at these momenta,
i.e., it commutes with R̂. Therefore, the wave functions are
simultaneous eigenstates of R̂ at HSPs,

Rũnki (R
−1r) = ηn(ki )ũnki (r), (54)

which immediately implies

R f̃nki (R
−1r) = ηn(ki ) f̃nki (r). (55)

Here, ηn(ki ) is the eigenvalue of R̂ at ki for the nth band.

D. Spin-1 eigenvalues

Depending on the point group and the precise HSP,
ηn(ki ) = ηN,n(ki ) can represent any N th root of unity corre-
sponding to the N-fold rotation operator R̂N ,

ηN,n(ki ) = exp

[
i
2π

N
mN,n(ki )

]
, (ηN,n)N = +1. (56)

mN,n(ki ) ∈ ZN is a modulo integer; it labels the N possible
spin-1 eigenvalues at ki. In C4, for example, the � and
M points are invariant under R̂4 rotations, while the X
and Y points are invariant under R̂2 rotations (inversion).
This means there are four possible spin-1 charges located
at m4,n(�) and m4,n(M ) ∈ Z4, respectively, and two possible
charges located at m2,n(X ) = m2,n(Y ) ∈ Z2. A visualization

of these topological charges is presented in Fig. 2 and this
is contrasted with their fermionic counterparts in Fig. 3. In
Sec. IV we will connect these rotational eigenvalues directly
to the topological invariants.

IV. TOPOLOGICAL ELECTROMAGNETIC
(BOSONIC) PHASES OF MATTER

A. Electromagnetic Chern number

The Berry connection for a band n is found by varying
the total Bloch wave function ũnk(r) with respect to the
momentum,

An(k) = −i
∫

cell
d2r ũ†

nk(r)∂kũnk(r)

= −i
∑

g

u†
nk+g∂kunk+g. (57)

This can be simplified slightly to obtain

An(k) = − i
∑
gg′

f †
nk+gM̄g′−g(ωnk, k + g)∂k fnk+g′

+
∑
gg′

f †
nk+gAAAg′−g(ωnk, k + g) fnk+g′ . (58)

The first term gives the Berry connection of the photon,
while the second term AAAg(ω, k) arises solely from the matter
oscillations,

AAAg(ω, k) = −i
∑
αg′

C†
α−g′ (k + g′)∂kCαg−g′ (k + g′)

(ω − ωαk+g′ )2
. (59)

Due to nonlocality, Eq. (59) does not generally vanish. This
additional contribution to the Berry phase corresponds to
vortices in the response function itself, independent of the
Berry gauge of the photon. This means the Chern number
can be nonzero Cn �= 0 even if the winding of electromagnetic
field is trivial. However, we will show in the proceeding
sections that all symmetry constraints on the Chern number
can be established entirely in terms of the photon.

As can be seen from Eq. (58), the Berry connection is only
defined within the Brillouin zone Ank+g = Ank + ∂kχnk, up
to a possible U(1) gauge. Hence, the gauge invariant Berry
curvature is periodic Fnk+g = Fnk,

Fn(k) = ẑ · [∂k × An(k)]. (60)
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FIG. 3. The collection of spin- 1
2 (fermionic) charges for the C4 point group. (a) Fourfold rotations (R4)4 = −1; there are four unique

eigenvalues ζ4 = exp[i 2π

4 m4] corresponding to the roots of negative unity (ζ4)4 = −1. These represent the modulo 4 half-integers m4 ∈ Z4 + 1
2 .

Note that m4 = 7
2 = − 1

2 can be interpreted as a spin-down fermion while m4 = 3
2 = 1

2 + 1 and m4 = 5
2 = − 1

2 + 3 constitute a fermion plus a
boson. (b) Fermionic inversion (R2)2 = −1; there are two unique eigenvalues ζ2 = exp[i 2π

2 m2] corresponding to the roots of negative unity
(ζ2)2 = −1. These represent the modulo 2 half-integers m2 ∈ Z2 + 1

2 . Note that m2 = 3
2 = − 1

2 can also be interpreted as a spin-down fermion
under modulo 2.

The Chern number is found by integrating the Berry curvature
over the two-dimensional Brillouin zone,

Cn = 1

2π

∫
BZ

Fn(k)d2k, Cn ∈ Z, (61)

which determines the winding number of the collective light-
matter excitations over the torus T2 = S1 × S1. Equation (61)
is one of the central results of this paper. An electromagnetic
Chern invariant can be found for any 2D crystal and charac-
terizes distinct topological phases of matter Cn �= 0.

B. Symmetry-protected topological bosonic phases

Evaluating the Chern number by brute force requires
knowledge of the wave function at every point in the Brillouin
zone. However, by invoking symmetry constraints of the
cyclic groups, we can determine important properties of the
topological phase from only a few isolated points in the Bril-
louin zone. This constitutes a type of SPT phase [69–80] and
is intimately tied to the spin-1 nature of electromagnetic field.
SPT phases are protected by the N-fold rotational symmetry
of CN and this gives rise to an additional topological invariant
νn ∈ ZN . Remarkably, νn is classified entirely from ηn(ki )
eigenvalues at HSPs and requires no complicated integration
to compute. This invariant is related to the Chern number up
to a multiple of N ,

νn = Cn mod N, Cn ∈ NZ + νn. (62)

The interpretation of νn is quite simple; it tells us the geomet-
ric phase around the irreducible Brillouin zone (IBZ) of the
crystal,

exp

(
i
2π

N
Cn

)
= exp

(
i
∫

IBZ
Fn(k)d2k

)

= exp

(
i
∮

∂IBZ
An(k) · dk

)
, (63)

where ∂IBZ is the path around IBZ. This follows from rota-
tional symmetry of the Berry curvature Fn(k) = Fn(Rk). For
instance, the path in C4 is ∂ (IBZ)4 = �XMY �. Applying the
logarithm, νn is equivalent to

νn = N

2π

∮
∂IBZ

An(k) · dk mod N. (64)

As we will see more explicitly, νn is tied entirely to ηn. The
reason is subtle; any vortex within the interior of the IBZ

contributes a Berry phase of 2π , and by symmetry, there are
N such vortices within the total Brillouin zone Cn → Cn + N .
However, this has no effect on νn → νn. Only the vortices
lying at HSPs contribute to νn because these come in fractions
of 2π .

In the following sections we will discuss the bosonic
classification of νn for each cyclic point group and the SPT
phases associated with them. We do not present the full deriva-
tions here since the rigorous proofs have been carried out
by others (see Ref. [72]), we simply state the salient results.
For completeness, in Appendix A we also discuss the SPT
fermionic phases associated with each point group. We do this
to emphasize that fermionic and bosonic systems represent
distinct topological field theories, with fundamentally differ-
ent interpretations. These differences are highlighted with a
few examples (Figs. 4 and 5).

C. Twofold (inversion) symmetry: C2

For the C2 point group, or simply inversion symmetry, the
SPT phase is related to the Chern number by νn = Cn mod 2
which is a Z2 invariant. There is only one nontrivial SPT
phase and it can be found modulo 2 from

exp

(
i
2π

2
Cn

)
= η2,n(�)η2,n(X )η2,n(Y )η2,n(M ). (65)

Applying the logarithm, this classification can be expressed
equivalently in terms of m2,n ∈ Z2 inversion eigenvalues,

νn = m2,n(�) + m2,n(X ) + m2,n(Y ) + m2,n(M ) mod 2.

(66)
If the summation of m2,n eigenvalues is odd, the SPT phase
is nontrivial νn = 1 and corresponds to an odd-valued Chern
number. Likewise, νn = 0 is an even-valued Chern number.

D. Threefold symmetry: C3

C3 is unique because it is the only point group with an odd
rotational symmetry; i.e., it lacks inversion symmetry. This
means the parity of the Chern number (odd or even) is not
restricted by the symmetries of the crystal. For C3, the SPT
phase is νn = Cn mod 3, which is a Z3 invariant. There are
two nontrivial SPT phases and they can be found modulo 3
from

exp

(
i
2π

3
Cn

)
= η3,n(�)η3,n(K )η3,n(K ′). (67)
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FIG. 4. Examples of SPT bosonic phases in a crystal with C4 symmetry. These phases are characterized by their SPT invariant ν =
m4(�) + m4(M ) + 2m2(Y ) mod 4, which determines the electromagnetic Chern number up to a multiple of 4. Here, m4 ∈ Z4 and m2 ∈ Z2

are modulo integers. (a), (b), (c), and (d) correspond to SPT bosonic phases of ν = 3, 2, 1, and 0, respectively. For bosons, we simply add
up all the integer charges within the irreducible Brillouin zone. For instance, the ν = 2 phase has eigenvalues of m4(�) = 1 at the center and
m4(M ) = 3 = −1 at the vertices, with inversion eigenvalues of m2(Y ) = m2(X ) = 1 at the edge centers: ν = 1 + 3 + 2 × 1 = 2.

This classification is expressed equivalently in terms of quan-
tized modulo 3 integers m3,n ∈ Z3 at HSPs,

νn = m3,n(�) + m3,n(K ) + m3,n(K ′) mod 3. (68)

Note though, odd and even phases are not distinct ν = −2 =
1 = 4 under modulo 3.

E. Fourfold symmetry: C4

For the C4 point group, the SPT phase is related to the
Chern number by νn = Cn mod 4, which is a Z4 invariant.
There are three nontrivial SPT phases and they can be found
modulo 4 from

exp

(
i
2π

4
Cn

)
= η4,n(�)η4,n(M )η2,n(Y ). (69)

The classification is expressed equivalently in terms of spin-1
eigenvalues,

νn = m4,n(�) + m4,n(M ) + 2m2,n(Y ) mod 4, (70)

where m4,n(�) and m4,n(M ) ∈ Z4 are modulo 4 integers and
m2,n(Y ) ∈ Z2 is a modulo 2 integer. Examples of all SPT
phases of the C4 point group are displayed in Fig. 4 and these
are compared with their fermionic counterparts in Fig. 5.

F. Sixfold symmetry: C6

For the C6 point group, the SPT phase is νn = Cn mod 6,
which is a Z6 invariant. There are five nontrivial SPT phases

and they can be found modulo 6 from

exp

(
i
2π

6
Cn

)
= η6,n(�)η3,n(K )η2,n(M ). (71)

This is equivalent to the summation of spin-1 eigenvalues at
the HSPs,

νn = m6,n(�) + 2m3,n(K ) + 3m2,n(M ) mod 6, (72)

where m6,n(�) ∈ Z6 is a modulo 4 integer, m3,n(K ) ∈ Z3 is
a modulo 3 integer, and m2,n(M ) ∈ Z2 is a modulo 2 integer.
This completes the classification of all 2+1D topological elec-
tromagnetic (bosonic) phases of matter which is summarized
in Table I. These are compared alongside their fermionic
counterparts in Table II.

G. Continuous symmetry: C∞

To finish, we briefly discuss the continuum limit g =
0 and the topological phases that can be described by a
long-wavelength theory k ≈ 0. The physics is significantly
more tractable here and exactly solvable models are possible
[25–27]. In this limit, the rotational symmetry of the crystal
is approximately continuous C∞. The SPT invariant νn and
Chern number Cn are thus equivalent,

νn = Cn = mn(0) − mn(∞). (73)

Note that νn ∈ Z and mn ∈ Z are not modulo integers in this
limit and do not have the same interpretation as the lattice
theory. This is because we have gained the full rotational
symmetry in the continuum approximation. Note that for

FIG. 5. Examples of SPT fermionic phases in a crystal with C4 symmetry. These phases are characterized by their SPT invariant ν =
m4(�) + m4(M ) + 2m2(Y ) + 2 mod 4, which determines the electronic Chern number up to a multiple of 4. In this case, m4 ∈ Z4 + 1

2 and
m2 ∈ Z2 + 1

2 are modulo half-integers. (a), (b), (c), and (d) correspond to SPT fermionic phases of ν = 3, 2, 1, and 0, respectively. The
problem is more complicated for fermions because the charges are fractional and we must also account for the antisymmetric phases of a
spinor wave function. As an example, the ν = 2 phase has eigenvalues of m4(�) = m4(M ) = 1

2 at the center and vertices, with inversion
eigenvalues of m2(Y ) = m2(X ) = 3

2 = − 1
2 at the edge centers: ν = 1

2 + 1
2 + 2 × 3

2 + 2 = 2.
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fermions, mn ∈ Z + 1
2 is a half-integer. Clearly though, the

spin eigenvalues must change at HSPs mn(0) �= mn(∞) for a
nontrivial phase to exist Cn �= 0. In the continuum regulariza-
tion, ki = 0 represents the � point and ki = ∞ is interpreted
as mapping the vertices of the Brillouin zone into one another.
We have provided a simple example of a continuum topologi-
cal electromagnetic phase in Appendix B.

V. CONCLUSIONS

In summary, we have developed the complete 2+1D lat-
tice field theory describing symmetry-protected topological
bosonic phases of the photon. To accomplish this, we analyzed
the electromagnetic Bloch waves in microscopic crystals and
derived the Chern invariant of these light-matter excitations.
Thereafter, the rotational symmetries of the crystal were ex-
amined extensively and the implications these have on pho-
tonic spin. We have studied all two-dimensional point groups
CN with nonvanishing Chern number C �= 0 and linked the
topological invariants directly to spin-1 quantized eigenvalues
of the electromagnetic field, establishing the bosonic classifi-
cation for each topological phase.
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APPENDIX A: SYMMETRY-PROTECTED TOPOLOGICAL
FERMIONIC PHASES

For completeness, we examine the SPT fermionic phases
associated with each point group CN and highlight their essen-
tial differences from bosons. The most important distinction
is how they transform under rotations; half-integer particles
are antisymmetric R(2π ) = −1. In terms of discrete rotations
R̂N about the z axis, the eigenstates of a Bloch spinor particle
satisfy

R̂N |�ki〉 = ζN (ki )|�ki〉, (A1)

where the eigenvalues at HSPs are related by

ζN (ki ) = exp

[
i
2π

N
mN (ki )

]
, (ζN )N = −1. (A2)

mN (ki ) ∈ ZN + 1
2 is a modulo half-integer and labels the N

possible spin- 1
2 eigenvalues. Notice that ζN represents the N th

roots of negative unity which is characteristic of a fermionic
field.

The single-particle fermionic classification for C2, C3, C4,
and C6, respectively, is [72,79]

exp

(
i
2π

2
C

)
= ζ2(�)ζ2(X )ζ2(Y )ζ2(M ), (A3a)

exp

(
i
2π

3
C

)
= −ζ3(�)ζ3(K )ζ3

(
K ′), (A3b)

exp

(
i
2π

4
C

)
= −ζ4(�)ζ4(M )ζ2(Y ), (A3c)

exp

(
i
2π

6
C

)
= −ζ6(�)ζ3(K )ζ2(M ). (A3d)

Although the classification appears similar, the SPT
fermionic phases constitute very different physics than their
bosonic counterparts, which is alluded to by the antisym-
metric phase factors R(2π ) = −1. We illustrate this with an
example in C4. Applying the logarithm, the classification for
the SPT fermionic phase ν = C mod 4 can be expressed as

ν = m4(�) + m4(M ) + 2m2(Y ) + 2 mod 4, (A4)

where m4(�) and m4(M ) ∈ Z4 + 1
2 are modulo 4 half-integers

and m2(Y ) ∈ Z2 + 1
2 is a modulo 2 half-integer.

APPENDIX B: EXAMPLE OF A CONTINUUM
TOPOLOGICAL ELECTROMAGNETIC PHASE

We consider the long-wavelength (continuum) limit k ≈ 0
and ignore all higher order g �= 0 spatial harmonics [25–27].
The simplest response function showing a topologically non-
trivial electromagnetic phase is described by the permittivity
tensor εi j ,

εi j (ω, k) = ε(ω, k)δi j + ig(ω, k)εi j . (B1)

εi j = −ε ji is the antisymmetric tensor and should not be
confused with the permittivity εi j . This is simply the Drude
model biased under an applied magnetic field. ε is the scalar
permittivity (diagonal part),

ε(ω, k) = 1 + ω2
p(k)

ω2
c (k) − ω2

, (B2)

while g is the gyrotropic coefficient (off-diagonal part) which
breaks both parity and time-reversal symmetry,

g(ω, k) = ωc(k)ω2
p(k)

ω(ω2
c (k) − ω2)

. (B3)

Notice we have added nonlocal (momentum-dependent) cor-
rections to both the plasma ωp and cyclotron ωc frequencies.
As we will see, nonlocality is imperative to describe a topo-
logically nontrivial phase. In terms of coupling matrices C, the
permittivity tensor can be expressed as

εi j = δi j − [C+]il [C+]l
j

ω(ω − ωc)
− [C−]il [C−]l

j

ω(ω + ωc)
, (B4)

where repeated indices imply summation and,

[C±]i j = ωp

2
(δi j ± iεi j ). (B5)

The corresponding Hamiltonian ωu = Hu governing the total
light-matter interaction is therefore

H =
⎡
⎣H0 C+ C−
C+ ωc 0
C− 0 −ωc

⎤
⎦, u =

⎡
⎣ f

ψ+
ψ−

⎤
⎦, (B6)

where ψ± are the positive and negative energy matter os-
cillations. To be properly regularized, the nonlocaity (spatial
dispersion) must be at least quadratic in k,

ωp(k) = ωp0 + ωp2k2, ωc(k) = ωc0 + ωc2k2. (B7)
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Physically, the quadratic nonlocality arises from high-
momentum corrections to the effective mass, since the elec-
tronic bands are not perfectly parabolic,

1

M∗ = 1

h̄2

∂2E

∂k2
= 1

M0
+ 1

M2
(ka)2 + · · · , (B8)

which gives

ωc0 = eB0

M0
, ωc2 = eB0

M2
a2. (B9)

a is the lattice constant in this case. Inserting into the wave
equation, we obtain the dispersion relation

ω2

(
ε − g2

ε

)
= k2, (B10)

which has two (positive energy) eigenmode branches,

ω2
± = 1

2

[
2ω2

p + ω2
c + k2 ±

√
4ω2

pω
2
c + (

ω2
c − k2

)2]
. (B11)

After a bit of work, it can be shown that the Chern number for
each band is determined by the spin eigenvalues at ki = 0 and

ki = ∞,

C± = m±(0) − m±(∞) = ∓[sgn(ωc0) − sgn(ωc2)].

(B12)

Alternatively, the Chern number can be expressed in terms of
the relative sign of the effective masses, M0 and M2, and the
applied magnetic field B0,

C± = ∓[sgn(M0) − sgn(M2)]sgn(B0). (B13)

If the cyclotron frequency switches sign with momentum
ωc0ωc2 < 0, the topological phase is nontrivial |C±| = 2. This
implies there is an inflection point in the electronic band,
1/M∗ = ∂2E/∂k2 = 0, such that the curvature changes. More
precisely, if there are an odd number of inflection points, the
curvature changes an odd number of times, which always
produces a nontrivial phase |C±| = 2.
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