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Quantum sensing of photonic spin density using a single spin qubit
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Nitrogen-vacancy (NV) centers in diamond have emerged as promising room-temperature quantum sensors for
probing condensed matter phenomena ranging from spin liquids, two-dimensional (2D) magnetic materials, and
magnons to hydrodynamic flow of current. Here we propose and demonstrate that the nitrogen-vacancy center
in diamond can be used as a quantum sensor for detecting the photonic spin density, the spatial distribution of
light’s spin angular momentum. We exploit a single spin qubit on an atomic force microscope tip to probe the
spinning field of an incident Gaussian light beam. The spinning field of light induces an effective static magnetic
field in the single spin qubit probe. We perform room-temperature sensing using Bloch sphere operations driven
by a microwave field (XY8 protocol). This nanoscale quantum magnetometer can measure the local polarization
of light in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally measured
phase change using the NV center Hamiltonian and perturbation theory involving only virtual photon transitions.
The direct detection of the photonic spin density at the nanoscale using NV centers in diamond opens interesting
quantum metrological avenues for studying exotic phases of photons, nanoscale properties of structured light as
well as future on-chip applications in spin quantum electrodynamics.
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I. INTRODUCTION

Nitrogen-vacancy (NV) centers in diamond have been used
to probe electron spin excitations in matter such as magnons
[1], magnetic thin films [2], and magnetic skyrmions [3].
Even in nonmagnetic materials such as plasmonic silver;
low-frequency evanescent wave Johnson noise and ballistic
transport of electrons can be probed by NV centers [4]. NV
centers in diamond can also work as navigation guidance
systems by vector sensing of earth’s magnetic field [5]. This
emerging frontier of research shows how coherence in spin
qubits allows for ultrasensitive read-out of magnetic fields
and magnetic noise in quantum materials and beyond. It is
therefore intriguing to explore how the synthetic magnetic
fields generated by light can be probed using the same quan-
tum metrological principles. Here, we put forth the concept of
quantum metrology of a property of dynamical light fields at
room temperature.

We propose and demonstrate that NV centers in diamond
can sense the local polarization of spinning light fields within
ultrasmall mode volumes. Our sensor is a single spin qubit in-
teracting with the effective static magnetic field generated by a
circularly polarized light field. We measure the induced phase
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of the spin qubit through optical read out to directly detect
the photonic spin density (PSD) of a laser beam red-detuned
to the optical transition of the NV center. We demonstrate
coherent interaction at room temperature paving the way to
probe exotic spin states of photons. We also put forth a rig-
orous theory of interaction between photon spin density and
the spin qubit using the full NV center Hamiltonian. Finally,
we shed light on how on-chip nanophotonic structures possess
effective static magnetic fields arising from the intrinsic spin
of evanescent waves. This effect can be exploited in future
spin quantum electrodynamics devices for on-chip targeted
addressing of spin qubits.

The spinning field of light has long been associated with
the concept of global polarization [6,7]. Here the spin angular
momentum (SAM) of light is a vector with its direction pinned
parallel to the momentum of a far field propagating wave. In
stark contrast, the PSD has only recently emerged to the fore-
front of nanophotonics [8–12]. PSD in confined or structured
light beyond the traditional paraxial regime can exhibit exotic
spatial variation of local polarization known as spin texture
[13]. In recent years, exploring the near-field properties of
this spin texture has led to the discovery of exotic phenomena
such as photonic skyrmions and topological electromagnetic
phases of matter [14–16].

Interesting phenomena originating from near-field pho-
ton spin density include directional spontaneous emission,
one-way scattering of surface plasmon polaritons, transverse
spin in free space light beams, and anomalous optical forces
[17–21]. Here the nature of PSD is inferred indirectly through
directional phenomena, i.e., spin-momentum locking or spin
to orbital angular momentum conversion [22–24]. We note
that the orbital angular momentum (OAM) of light is an ex-
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trinsic degree of freedom that can be directly detected due to
its wavelength scale helical phase signatures [25]. However,
direct measurement of PSD remains a challenge since the
fundamental property of photon spin density exists in sub-
wavelength volumes of the light field. Therefore, there is an
urgent need to develop a nanoscale photon spin probe similar
to near-field scanning optical microscopy [12,20] routinely
used to detect dipolar electric fields or magnetic force mi-
croscopy which can map nanoscale texture of electron spins.

II. THEORETICAL MODEL OF SPIN QUBIT
INTERACTING WITH PHOTONIC SPIN DENSITY

In order to demonstrate the ultra-sub-wavelength prob-
ing of PSD, we study the interaction between the spin of
a monochromatic optical beam and an NV center that is
placed on an atomic force microscopy (AFM) tip. This is
a versatile system for future explorations of spin texture of
complex optical beams. We note that the light-matter inter-
action between the Gaussian beam and the spin qubit only
occurs due to virtual photon transitions since our incident
beam is far detuned from the energy levels of the NV center.
Thus the signature of the PSD is in the phase of the single
spin qubit. We therefore need quantum metrological tools to
quantify this unique coherent light-qubit interaction at room
temperature.

In classical electrodynamics (CED), the total angu-
lar momentum of charged particles and electromagnetic
fields are given by �JCED = ∑

α �xα × �pα + ε
∫

d3x �E⊥ × �A⊥ +
ε
∫

d3xE j
⊥(x × ∇)Aj

⊥ (see chap. I in Ref. [26]), where �E (�r, t )
is the electric field, �A(�r, t ) is the vector potential, the subindex
⊥ denotes the transverse part of the vector field, and ε is
the permittivity. These three terms denote the OAM of the
charges, SAM of light, and OAM of light, respectively. In
this equation, the integral kernels give the photonic spin and
OAM densities. While the term SAM is also used to describe
the kernel of the SAM term in the literature, we use the term
PSD for the kernel to distinguish it from the SAM. Our goal
is to emphasize on the local and nanoscale characteristics of
it. In this work, we demonstrate a technique that can be used
to measure the PSD �Sobs = ε �E⊥(�r, t ) × �A⊥(�r, t ) [27] with
nanoscale resolution using a single NV center in diamond.

For a monochromatic beam with frequency ω0, the PSD
can be written as �Sobs = (1/4ω0)Im[ε �E∗ × �E + μ �H∗ × �H ] =
�Sobs

E + �Sobs
M where �E∗( �H∗) denotes the complex conjugate

of the complex electric (magnetic) field [28,29], i.e., �E⊥ =
( �E + �E∗)/2. The PSD is time independent and is related to
the handedness of the polarization of the beam. According
to the selection rules of electric-dipole transitions, circu-
larly polarized light will change the electronic orbital angular
momentum by ±h̄ while keeping the electron-spin state un-
changed. However, due to spin-orbit coupling, the transition
frequencies in the NV center become dependent on the elec-
tron spin states as shown in Fig. 1(b). Under a detuned
incident light beam, virtual electric-dipole transitions will in-
duce ac Stark shifts in the ground electronic state [30–33].
As illustrated in Figs. 1(c) and 1(d), the amplitude of these
shifts (δ0 and δ±1) depend on both the electronic spin state of
the NV center and the photonic spin density of the excitation.

We show that this effect manifests itself as a PSD dependent
effective static magnetic field. We exploit the single NV center
as a nanoscale quantum magnetometer [34] to measure this
effective static magnetic field created by the target spinning
light.

We consider the detailed energy level structure of NV cen-
ters in the basis of RCP and LCP transitions to express the net
energy shift as a function of PSD. The effective excited-state
Hamiltonian of the NV center is given by [35,36],

HES = (γNVB + �es + λz )|A↑〉〈A↑|
+ (−γNVB + �es + λz )|A↓〉〈A↓| − 2�es|ER〉〈ER|
− 2�es|EL〉〈EL| + (γNVB + �es − λz )|E↑〉〈E↑|
+ (−γNVB + �es − λz )|E↓〉〈E↓|, (1)

where γNV = 2π × 28 MHz/mT, B is the external static mag-
netic field, λz ≈ 2π × 5.5 GHz is the spin-orbit coupling, and
�es ≈ 2π × 1.42/3 GHz is the spin-spin-induced zero-field
splitting. |A↑〉, |A↓〉, |ER〉, |EL〉, |E↑〉, and |E↓〉 are spin and
orbital angular momentum resolved excited states shown in
Fig. 1(b). Using second-order perturbation theory, ac Stark
shift for the ground-state energy levels is [30,37],

δi = 1

4h̄2

∑
f

|〈 f | �d|i〉 · �E (�r, t )|2
�if + 
2

f /4�if
. (2)

where |i〉 and | f 〉 are the initial and final states for all possible
transitions, �i j is the difference between the center frequency
of the off-resonant excitation (ω0) and the resonance fre-
quency of the transition (ωi j), and 
 f is the spontaneous
decay rate of the final state. Using the Hamiltonian in Eq. (1)
and the transition rules for circularly polarized incident light,
we arrive at the result of the effective static magnetic field
generated by spin density of light (see Appendix A):

Beff ≡ δ+1 − δ−1

2γNV
∝ �Sobs

E · n̂, (3)

where n̂ is the direction of the NV center. From Eq. (3), we
see that the strength of the effective static magnetic field is
proportional to the projection of the electric PSD (�Sobs

E ) on the
NV center axis (n̂). In the expression above, we have used the
spin states | ± 1〉 to form the probe qubit as it leads to effective
static magnetic fields directly proportional to the PSD. One
can also use |0〉 ↔ | ± 1〉 transitions as the probe qubit. We
show a comparison between the choice of probe qubits in
Fig. 2(c). The magnetic portion of the PSD (�Sobs

M ) does not
interact with the NV center since the optical transitions are
derived by electric dipole interactions.

The PSD of the target beam is determined by its power
and degree of circular polarization. In our experiment, the
wavelength of the target beam is λ0 = 800 nm, which is
far off-resonant to the optical transition of the NV center at
λ = 637 nm [Fig. 1(b)]. We control the PSD by tuning the
power of the beam and the angle θ between the linear polarizer
and the quarter-wave plate (QWP) [see Fig. 2(a)]. The degree
of circular polarization (i.e., the photonic spin density) is
�Sobs

E ∝ sin(2θ )ẑ, where ẑ is the direction of propagation of
the beam. Equation (3) shows that an NV center can only
sense the projection of a magnetic field on its defect axis.
Therefore, the measured effective static magnetic field also
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FIG. 1. Probing PSD with a single NV center. (a) A target beam, red-detuned to the NV center transition, is incident on a single NV center
on an AFM tip. We measure the relative energy level shifts in the ground state and show its proportionality to the PSD. The single NV center
serves as a room-temperature nanoscale probe for PSD. (b) Ground- and excited-state energy levels of an NV center showing the selection
rules for RCP and LCP excitation. (c) Level shifts induced in the ground state due to the virtual transitions under the off-resonant target beam.
(d) Power and polarization (spin) dependence of the relative energy shifts in the ground state, resembling Zeeman splitting. An effective static
magnetic field is defined as Beff = (δ+1 − δ−1)/2γ .

depends on the alignment angle φ between the NV center axis
and the PSD vector. We show the theoretical simulation of the
effective static magnetic field Beff sensed by an NV center,
as a function of θ and φ in Fig. 2(b). We should note that
in the experimental results, the alignment angle is fixed at
φ = 54.7◦ due to the growth angle of the diamond crystal.
For this specific angle, we show the effective magnetic field
experienced by the probe qubit in Fig. 2(c). This variation
of the effective static magnetic field with degree of circular
polarization is the unique signature of PSD. We note that
the target laser is red-detuned to the optical transition of the
NV center and is not absorbed by the NV center. Therefore,
the resulting effective static magnetic field is not due to the
absorption or emission related spectral features of the NV
center. It is related to the induced phase in the spin qubit
measured by optical read out.

III. EXPERIMENTAL DEMONSTRATION USING A
SINGLE NV CENTER

We overcome the challenge of room-temperature observa-
tion of PSD to pave the way for future on-chip applications.
We exploit a large detuning of the target PSD beam to the
optical transition of the NV center to avoid absorption of
photons by the NV center which would result in a loss of
coherence. This detuning results in an amplitude of a few tens
of nanotesla for the generated effective static magnetic field.
In order to probe this effective magnetic field at the location
of the single NV center, we use ac magnetometry techniques
at room temperature. In ac magnetometry, high sensitivity is
achieved due to a long coherence time from spectral filtering
of magnetic fluctuations (e.g., nuclear noise) coupled to the
NV center [38,39]. Figure 3 shows the dynamics of the mea-
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FIG. 2. Effective static magnetic field induced by PSD. (a) A linear polarizer and a quarter wave plate control the PSD. (b) The effective
magnetic field calculated for different QWP angles (θ ) and alignment angles (φ). (c) The effective magnetic field calculated for an NV center
in a (100) cut diamond, φ = 54.7◦.

surements. A 532-nm laser is used to initialize and readout the
state of the qubit. After initialization, a series of microwave
pulses are sent in XY8 configuration to achieve dynamical
decoupling of the qubit from background noise [40]. The
intensity of the target beam is modulated to match the fre-
quency of the XY8 pulse for ac magnetometry. Furthermore,
we perform two measurements for which the phase induced
by the PSD has opposite signs [Fig. 3(e) and 3(f)]. This is
achieved by taking advantage of the sign of an ac field as show

in Fig. 3(a). We suppress the effect of any systematic noise
by subtracting the outcome of these two measurements. The
parameters used in the measurements are shown in Table I.

The first striking evidence of photonic spin density mea-
surement is shown in Fig. 4(c). We observe that the effective
static magnetic field generated by PSD directly follows the el-
lipticity of the polarization of the target beam. For a Gaussian
beam, the PSD is proportional to the degree of ellipticity of
the polarization. In our experiment, we control the ellipticity

FIG. 3. Isolating the signature of photonic spin density using dynamical decoupling and ac magnetometry with a single spin qubit. (a) Pulse
sequence used for measuring the PSD. In each measurement a pair of 532-nm laser pulses initialize (polarize) and readout the state of the NV
center. During each measurement an XY8 MW pulse performs dynamical decoupling on the spin of the NV center. The target beam, generating
the PSD, is turned on and off during the XY8 sequence to generate a net effect on the final state of the NV center. We perform two measurements
in which the target beam induces rotations in opposite directions on the spin vector in the Bloch sphere. By subtracting the outcome of these
two measurement we eliminate any systematic noise in the measurement. [(b)–(f)] Bloch sphere representation of the state of the qubit after
polarization, before the XY8 pulse, after the XY8 pulse, and before readout. Panels (e) and (f) show an schematic comparison between the
PSD-induced rotations in measurement 1 and measurement 2. The PSD is generated by the target beam. RO, readout; Pol, polarizing.
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TABLE I. Dynamical decoupling measurement parameters used
for the results shown in Fig. 4.

Number of XY8 repetitions 4
Free precession time (τ ) 1.2 μs
Total sequence time ∼40 μs
Target beam pulse length (τ ′) 1 μs
Total interaction time 15 μs
π -pulse length ∼50 ns

of the target beam using a linear polarizer and QWP. Fig. 4(c)
shows the observed dependence of the effective static mag-
netic field on the angle of the QWP (θ ). Also plotted are a
sinusoidal fit of the data (red dashed curve) and the result
of full wave numerical simulations (purple curve). The data
shows a small dc offset in the curve which is not present in
Eq. (1). This offset is related to an asymmetry in the system’s
geometry, which would lead to the presence of transverse spin
at the location of the NV center. This transverse spin obeys
spin-momentum locking rules [8,17] and does not depend on
the QWP angle and therefore, gives rise to the offset (see
Appendix E).

The second convincing proof of PSD measurement is the
linear dependence of the effective static magnetic field on the
power of the beam [Eq. (3)] shown in Fig. 4(d). The PSD
is linearly proportional to the power of the beam. This is in
contrast to real magnetic fields where the amplitude scales
with the square root of the power. The dashed red line shows a

linear fit to the measured data. It should be noted that for each
data point in Figs. 4(c) and 4(d) we measure the energy shifts
δ±1 − δ0 separately and calculate the effective static magnetic
field Beff according to Eq. (3). The inset of these figures show
the raw data for these measurements.

These two unique features in the measured effective static
magnetic field also show that the measured quantity is not
affected by temperature oscillations in the diamond caused by
the target laser. A change in the temperature of the diamond
can also lead to a shift in the energy levels of the NV center
[41]. However, this effect is distinguishable from the effective
static magnetic field induced by the PSD because the induced
temperature oscillation is independent of the polarization of
the beam while the PSD-induced effect depend on the degree
of ellipticity of the beam as shown in Figs. 4(c). The results
in Figs. 4(c) and 4(d) do not show any significant temperature
oscillations in the sample.

IV. EFFECTIVE STATIC MAGNETIC FIELD IN
OPTICAL WAVEGUIDES

We now discuss how this universal photonic spin density-
induced effective static magnetic fields can be used in future
generation of on-chip spin QED applications. We note that
evanescent waves are a ubiquitous resource available on a
scalable nanophotonic platform. These evanescent waves pos-
sess an intrinsic universal spin that can exert effective static
magnetic fields on spin qubits with a subwavelength reso-
lution. This effective magnetic field is only manifested on

FIG. 4. Demonstration of nanoscale PSD probe with a single NV center. (a) Simplified schematic of the experimental setup. (b) Pulse
sequence showing dynamical decoupling for ac magnetometry and amplitude modulation of the target beam to generate an ac effective
magnetic field suitable for high sensitivity measurement. (c) Measured PSD for different QWP angles with target beam power of 4 mW.
The dashed red curve is a sine fit to the data, the solid purple curve is the numerical simulation results, matching closely to the measurements.
(d) Measured PSD as a function of incident power for θ = 3π/4 showing a linear dependence. The dashed red curve is a linear fit. Insets show
the raw measurement data for |0〉 → | + 1〉 (red) and |0〉 → | − 1〉 (blue) transitions. Panels (c) and (d) show that the effective field is directly
proportional to PSD.

043007-5



KALHOR, YANG, BAUER, AND JACOB PHYSICAL REVIEW RESEARCH 3, 043007 (2021)

FIG. 5. Effective static magnetic field sensed by an NV center near optical waveguides. Our rigorous simulations are performed using full
wave analysis of the optical fields along with the light-matter interaction theory of Sec. 1. A plasmonic waveguide (a), a ridge waveguide (b),
and an optical fiber (c) all producing transverse effective static magnetic fields due to the PSD of their evanescent fields. The direction of the
effective static magnetic field is shown with black arrows and its amplitude with the colormap. The mode of the ridge waveguide is transverse
electric (TE) and the mode of the optical fiber is x̂ polarized HE11.

interaction of PSD with NV centers and is a synthetic mag-
netic field. PSD-induced effective static magnetic fields can
produce giant spatial gradients on the order of 10 T/m with an
ultrafast temporal response [42]. This allows for on-chip and
targeted nanoscale addressing of spin qubits. Figure 5 shows
the effective static magnetic field in the near-field region of
a plasmonic waveguide, a ridge waveguide, and an optical
fiber. This effective static magnetic field originates solely
from the PSD of the evanescent waves in the vicinity of the
waveguides. The direction of the field is in the x-y plane and
is shown with black arrows. All three cases show short-range
effective static magnetic field suitable for addressing single
NV centers on chip or deposited on the surface of an optical
fiber. This phenomenon opens the door to dense integration of
single spin qubits for on-chip spin QED applications.

V. CONCLUSIONS

In this paper, we have demonstrated a room-temperature
quantum probe for nanoscale spinning light fields. The spin-
ning optical beam induces a magnetic field in the spin qubit
causing a qubit rotation on the Bloch sphere (phase accu-
mulation). The ultra-sub-wavelength behavior of spin angular
momentum possess unique challenges for direct observation
which we overcome using state of the art quantum sensing
approaches. Our measurement reveals that the NV center’s
room-temperature excited-state energy levels display striking
agreement with those found in low-temperature measure-
ments. This is in contrast to direct measurements on the
excited state where its full features cannot be revealed due
to time averaging [43,44]. Our work can lead to new spin-
dependent topological phases of light and also presents a way
to exploit the universal resource of spinning evanescent waves
available on an integrated photonics platform.
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APPENDIX A: CALCULATIONS FOR PHOTONIC SPIN
DENSITY-INDUCED EFFECTIVE STATIC

MAGNETIC FIELD

We now show how to calculate the effective static magnetic
field induced by far off-resonant electric dipole transitions.
Virtual electric dipole transitions will induce energy shifts
in the ground states, which can be described by an effective
Hamiltonian Hshift = ∑

i δi|i〉〈i| with the shift [30,37],

δi = 1

4h̄2

∑
f

|〈 f | �d|i〉 · �E (�r, t )|2
�if + 
2

f /4�if
. (A1)

Here |i〉 and | f 〉 are the initial and final states of the possible
transitions in an NV center as shown in Fig. 6, �i j is the
difference between the center frequency of the off-resonant
excitation (ω0) and the resonance frequency of the transition
(ωi j), 
 f is the spontaneous decay rate of the final state, and
�E (�r, t ) is the electric field of the excitation at the position
of the NV (�r). Usually, the detuning is much larger than the
spontaneous decay rate. Thus, the 
2

f term will be neglected.
We show that the energy difference in the states {|0〉, | ± 1〉}
induced by the off-resonance light functions as an effective
static magnetic field for the NV ground-state spin.

1. Energy structure of NV center

To calculate this effective static magnetic field, we first give
the eigenenergy spectrum and the possible transitions in the
NV center. We only consider the six triplet excited states and
neglect the other singlet states [35,36], as the electric dipole
transitions do not change spin states. For convenience, we
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FIG. 6. Schematic of energy levels of the NV center. Here, there are no external magnetic field and strain. Left and right panels show the
possible transitions induced by left circularly polarized (LCP) and right circularly polarized (RCP) lights.

choose a basis set, which is both spin- and orbital angular
momentum resolved:

|EL〉 = 1√
2

(|Ey〉 − i|Ex〉)

= i

2
[|a1〉|e+〉 − |e+〉|a1〉] ⊗ (|↑↓〉 + | ↓↑〉), (A2)

|ER〉 = 1√
2

(|Ey〉 + i|Ex〉)

= i

2
[|a1〉|e−〉 − |e−〉|a1〉] ⊗ (|↑↓〉 + | ↓↑〉), (A3)

|E↓〉 = 1√
2

(|E2〉 + |E1〉)

= 1√
2

(|a1〉|e−〉 − |e−〉|a1〉) ⊗ |↓↓〉, (A4)

|E↑〉 = 1√
2

(|E2〉 − |E1〉)

= 1√
2

(|a1〉|e+〉 − |e+〉|a1〉) ⊗ |↑↑〉, (A5)

|A↑〉 = 1√
2

(|A2〉 + |A1〉)

= 1√
2

(|a1〉|e−〉 − |e−〉|a1〉) ⊗ |↑↑〉, (A6)

|A↓〉 = 1√
2

(|A2〉 − |A1〉)

= 1√
2

(|a1〉|e+〉 − |e+〉|a1〉) ⊗ |↓↓〉, (A7)

where |a1〉, |ex〉, and |ey〉 are the orbital states of the NV center
and |e±〉 = ∓(|ex〉 ± i|ey〉)/

√
2.

The ground states are given by

|−1〉 = 1√
2

(|exey〉 − |eyex〉) ⊗ |↓↓〉, (A8)

|0〉 = 1

2
(|exey〉 − |eyex〉) ⊗ (|↑↓〉 + |↓↑〉), (A9)

|+1〉 = 1√
2

(|exey〉 − |eyex〉) ⊗ |↑↑〉. (A10)

We note that this normalization is different from Refs. [35,36].
The possible electric dipole transition are shown in Fig. 6.

The effective excited-state Hamiltonian of the NV cen-
ter is given by Eq. (1). The optical gap h̄ωge ≈ 1.945 eV
(637 nm) between the ground states and the excited states
(see Fig. 6) has not been shown in HES. The off-diagonal
coupling between these six excited states does not change this
virtual transition-induced effective static magnetic field. Thus,
we have omitted those off-diagonal coupling terms and the
excited-state Hamiltonian is of diagonal form HES = Ej | j〉〈 j|
where | j〉 ∈ {|A↑〉, |A↓〉, |ER〉, |EL〉, |E↑〉, |E↓〉}.

2. Energy shifts and effective magnetic field for the
ground-state spin

We now also give the transition elements of the electric
dipole transitions in the NV center. As the upper basis is based
on the two-hole picture, the electric dipole operator of the NV
is given by

�d = e(�r1 + �r2), (A11)

where �r1 and �r2 are the position operator of the two holes.
According to the symmetry of the orbits shown in [36], the
nonzero elements of the dipolar transitions are

e〈ex|rx|ex〉 = −e〈ey|ry|ey〉 = e〈ey|ry|ex〉 �= 0. (A12)

and

e〈a1|rx|ex〉 = e〈a1|ry|ey〉 ≡ d0 �= 0. (A13)

The possible transitions and the corresponding transition
strength can be easily obtained by the transition element. The
nonzero transition elements are follows:

〈EL| �d|0〉 = d0�eR, 〈ER| �d|0〉 = d0�eL, (A14)

〈A↑| �d|+1〉 = id0�eL, 〈E↑| �d|+1〉 = id0�eR (A15)

〈A↓| �d|−1〉 = id0�eR, 〈E↓| �d|−1〉 = id0�eL, (A16)

where we have defined the unit vectors

�eL = (�ex + i�ey)/
√

2, �eR = (�ex − i�ey)/
√

2. (A17)
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TABLE II. Selection rules for optical transitions between the
triplet ground states and the triplet excited states. We note that any
transition connected with circularly polarized light can also be stim-
ulated with linearly polarized lights. But the corresponding transition
strength will be smaller.

Polarization |A↑〉 |A↓〉 |ER〉 |EL〉 |E↑〉 |E↓〉
| − 1〉 LCP RCP
|0〉 RCP LCP
| + 1〉 RCP LCP

Using the identities of the unit vectors �eR · �e∗
R = �eR · �eL = 1

and �eR · �eR = �eL · �eL = 0, one can easily obtain the selection
rules in Table II.

The value of the transition element can be obtained from
the life times of the triplet excited states:

τNV = 1

γNV
≈

(
ω3

egd2
0

3π h̄ε0c3

)−1

. (A18)

In this work, the lifetime of the NV center is taken as τNV =
15 ns. Then we have d0 ≈ 2.485 × 10−29 C m.

For simplicity, we first consider the case where the NV
center axis is aligned with the propagating direction of the
off-resonant excitation (+ẑ). The energy shifts in the ground
states sub-levels under a LCP or RCP excitation field are given
by

δ−1,L = 1

4h̄2

d2
0 �−1,A↓

�2
−1,A↓ + 
2/4

| �E (�r)|2,

δ−1,R = 1

4h̄2

d2
0 �−1,E↓

�2
−1,E↓ + 
2/4

| �E (�r)|2, (A19)

δ0,L = 1

4h̄2

d2
0 �0,EL

�2
0,EL

+ 
2/4
| �E (�r)|2,

δ0,R = 1

4h̄2

d2
0 �0,ER

�2
0,ER

+ 
2/4
| �E (�r)|2, (A20)

δ+1,L = 1

4h̄2

d2
0 �+1,E↑

�2
+1,E↑ + 
2/4

| �E (�r)|2,

δ+1,R = 1

4h̄2

d2
0 �+1,A↑

�2
+1,A↑ + 
2/4

| �E (�r)|2. (A21)

where the detunings are given by

�−1, j = ω0 − (ωge + Ej + γNVB), (A22)

�0, j = ω0 − (ωge + Ej + �GS), (A23)

�+1, j = ω0 − (ωge + Ej − γNVB). (A24)

3. Effective static magnetic field for probe qubits

In the experiment, we choose two ground states sub-levels
to form a qubit to detect the relative energy shift between

them. The effective static magnetic fields for the three possible
qubits are defined as

B01,L = δ+1,L − δ0,L

γNV
, B01,R = δ+1,R − δ0,R

γNV
, (A25)

B−10,L = δ0,L − δ−1,L

γNV
, B−10,R = δ0,R − δ−1,R

γNV
(A26)

B−11,L = δ+1,L − δ−1,L

2γNV
, B−11,R = δ+1,R − δ−1,R

2γNV
. (A27)

We note that the amplitude of the effective static mag-
netic field is linearly proportional to the off-resonant laser
power. We can also tune the effective magnetic field via
changing the polarization of the laser. The polarization
unit vector of an arbitrary polarized light can be expanded
as

�e = �eLcos
(
θ − π

4

)
+ �eRsin

(
θ − π

4

)
, (A28)

where the angle θ ∈ [0, 2π ) is the rotation angle of a QWP. In
addition, in the experiment the NV center axis makes an angle
φ with the propagating direction of the off-resonant beam.
We need to transform the LCP and RCP unit vectors in the
NV center coordinate frame (x′y′z′) into the excitation beam
coordinate frame (xyz) as shown in Fig. 7,

�e′
L = 1

2
�eL(cosφ + 1) + 1

2
�eR(cosφ − 1) + 1√

2
�ezsinφ,

(A29)

�e′
R = 1

2
�eR(cosφ + 1) + 1

2
�eL(cosφ − 1) + 1√

2
�ezsinφ.

(A30)

In this case, the three effective magnetic fields are given by

B01 = B01,L|�e · �e′∗
L |2 + B01,R|�e · �e′∗

R |2, (A31)

B−10 = B−10,L|�e · �e′∗
L |2 + B−10,R|�e · �e′∗

R |2, (A32)

B−11 = B−11,L|�e · �e′∗
L |2 + B−11,R|�e · �e′∗

R |2. (A33)

FIG. 7. Transformation between the NV center coordinate frame
and the off-resonant beam coordinate frame.
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Using the fact that δ−1,L = δ+1,R and δ−1,R = δ+1,L, we can
rewrite B−11 as

B−11 = δ+1,L − δ+1,R

2γNV| �E (�r)|2 {−i[ �E∗(�r) × �E (�r)] · �̂n} (A34)

= ω0(δ+1,L − δ+1,R)

εγNV| �E (�r)|2 {�S · �̂n} (A35)

≈ − ω0d2
0 λz

h̄2εγNV�+1,A↑�+1,E↑
{�S · �̂n}. (A36)

Here ε is the permittivity of diamond, �S = −(iε/4ω0)[ �E∗ ×
�E + �H∗ × �H ] = −(iε/2ω0) �E∗ × �E is the photonic spin den-
sity in the single-frequency limit, and n̂ is the direction of the
NV center. We have also used the relation,

�e∗ × �e = i
[
cos2

(
θ − π

4

)
− sin2

(
θ − π

4

)]
�ez = i sin(2θ )�ez.

(A37)

In the far off-resonant case �+1,A↑ ≈ �+1,E↑ = �. In this
case the denominator is only determined by the frequency of
the off-resonant beam and the spin-orbit coupling factor in the
excited state. Beff can be written in the following form:

Beff = B−11 = − ω0d2
0 λz

h̄2εγNV�2
(�SE · �̂n) = C(�SE · �̂n) (A38)

where C is a constant.

APPENDIX B: INFLUENCE OF COUPLING BETWEEN NV
CENTER’S EXCITED-STATE SUBLEVELS ON THE

EFFECTIVE STATIC MAGNETIC FIELD

In this subsection, we show that the off-diagonal cou-
pling in the excited-state sublevels will not affect the
effective static magnetic field. The full Hamiltonian for
the excited state of the NV center in the set of basis
{|A↑〉, |A↓〉, |ER〉, |EL〉, |E↑〉, |E↓〉} is given by [36],

HES=

⎡
⎢⎢⎢⎢⎢⎣

γNVB+�es+λz ζ ′ 0 0 −(η1 + iη2) 0
ζ ′ −γNVB+�es+λz 0 0 0 −(η1 − iη2)
0 0 −2�es −(η1 + iη2) 0 −ζ ′′
0 0 −(η1 − iη2) −2�es ζ ′′ 0

−(η1 − iη2) 0 0 ζ ′′ γNVB+�es−λz 0
0 −(η1 + iη2) −ζ ′′ 0 0 −γNVB+�es−λz

⎤
⎥⎥⎥⎥⎥⎦, (B1)

where ζ ′ and ζ ′′ are the spin-spin-induced off-diagonal zero-
field splitting (ZFS). In an experiment, we can easily tune the
Zeeman splitting with an external magnetic field. The strain
η1, η2 can also be tuned by adding an electric field. These
off-diagonal terms have been neglected in Eq. (1) because they
do not change the effective static magnetic field induced by
PSD as we show in this subsection.

For a given set of parameters, we can diagonalize the
Hamiltonian (B1) to obtain the eigenstates and the corre-
sponding eigenvalues:

HES|m〉 = Em|m〉, m = 1, . . . , 6. (B2)

Here, we only take the effective static magnetic field induced
by an RCP light as an example. The energy shifts in the
ground-state sublevels are given by

δ−1,R = d2
0

4h̄2

∑
m

〈E↓|m〉〈m|E↓〉�−1,m

�2
−1,m + 
2/4

| �E (�r)|2, (B3)

δ0,R = d2
0

4h̄2

∑
m

〈ER|m〉〈m|ER〉�0,m

�2
0,m + 
2/4

| �E (�r)|2, (B4)

δ+1,R = d2
0

4h̄2

∑
m

〈A↑|m〉〈m|A↑〉�+1,m

�2
+1,m + 
2/4

| �E (�r)|2, (B5)

where

�−1,m = ω0 − (ωge + Em + γNVB), (B6)

�0,m = ω0 − (ωge + Em + �GS), (B7)

�+1,m = ω0 − (ωge + Em − γNVB). (B8)

The effective static magnetic field can be defined via
Eqs. (A25)–(A27).

In the case of applying a far off-resonant beam with center
wavelength λ0 = 800 nm, an NV center is not pumped to
the excited state. As shown in Fig. 8(a), the effective static
magnetic field Beff induced by a circularly polarized light
is almost independent of the amplitude of the off-diagonal
ZFS terms, ζ ′′ and ζ ′′, which mix the excited-state sublevels.
In Fig. 8(b), we show that in the far off-resonant case, the
effective static magnetic field Beff is also independent of the
external magnetic field and strain η.

In this subsection we showed numerically that coupling be-
tween the excited-state sublevels does not change the energy
shift experienced by the ground-state energy levels due to a
far off-resonant excitation. A similar argument also applies to
the dynamic Jahn-Teller effect in the NV center’s electronic
excited states [45]. Therefore, it is possible to measured a PSD
dependent effective static magnetic field while resolving NV
center’s excited-state energy levels at room temperature is not
possible.

APPENDIX C: EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 9(a). The setup comprises an NV center and three main
beam paths. The NV center [Fig. 9(b)] is on an AFM tip and
is implanted 10 nm deep into the surface of the tip. The tip
is purchased from QZabre LLC. The second-order correlation
measurement for the single NV center is shown in Fig. 9(b).
A magnet breaks the degeneracy of | ± 1〉 states by applying a
magnetic field Bbias ≈ 1.1 mT. An antenna made of a 15-μm-
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FIG. 8. (a) The effective static magnetic field Beff experienced by the qubit formed by | − 1〉 and | + 1〉 as a function of spin-spin-induced
zero-field splitting ζ ′ and ζ ′′. (b) The effective static magnetic field Beff as a function of the external magnetic field B and the strain η1. Here,
the other parameters are taken as λz/2π = 5.5 GHz, �es/2π = 1.42/3 GHz, the center wavelength of the right-handed circularly polarized
excitation is λ0 = 800 with laser power 1 mW.

thick tungsten wire delivers a MW signal to the NV center to
induce Rabi oscillations [Fig. 9(c)].

A 532-nm laser is used for excitation and readout of the
state of the NV center. The beam is chopped with an AOM for
pulsed measurements. After the linear polarizer the beam is
coupled to a polarization maintaining (PM) fiber. The output
of the fiber is collimated and filtered with a band-pass filter
(BPF) (Thorlabs FLH532-10).

The target laser is a TTL controlled laser diode module
(Power Technology Inc. PMT150). The beam is coupled into

a PM fiber after a linear polarizer. The output of the fiber is
collimated and goes through a quarter-wave plate before being
filtered with a BPF (FBH800-10). Due to reflection from a
dichroic mirror, the polarization of the beam has an ellipticity
of ε = 1.08 before entering the objective lens when the QWP
is at its optimal angle.

The photoluminescence signal from the NV center is
filtered with a long-pass filter (Semrock BLP02-561-R), a
short-pass filter (Semrock SP01-785RU), and a BPF (Sem-
rock FF01-709/167). Three dichroic mirrors (DM) combine

FIG. 9. Schematic of the experimental setup. (a) Schematic of the setup showing the beam paths and filters. (b) Second-order correlation
measurement showing that the AFM tip contains a single NV center. (c) Rabi oscillations showing the interaction of the microwave beam
(MW) with the NV center. LP, linear polarizer; DM, dichroic mirror; BPF, band-pass filter; LPF, long-pass filter; SPF, short-pass filter; QWP,
quarter-wave plate.
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and separate the beams; DM1, Thorlabs DMLP550R; DM2,
Semrock FF750-SDi02; DM3, Semrock FF520-Di02. The PL
signal is detected by a Micro Photon Devices SPAD. For
measuring g(2) the signal is coupled to a fiber optic beam
splitter and is detected with two SPADs.

APPENDIX D: PULSE SEQUENCE

Here we will explain how the measurement is performed
in details. Depending on which transition the MW field is
resonant to (|0〉 to | + 1〉 or |0〉 to | − 1〉) we choose those
two states as a two-level system. The pulse sequence shown in
Fig. 3 starts with initializing the NV center in |0〉 state. Then
a series of π and π/2 pulses manipulate the state of the NV
center to prepare the NV center for interaction and readout
and to increase the coherence time. The state after each pulse
is calculated using the following rotation matrices,

Rx(θ ) =
[

cos θ
2 −isin θ

2−isin θ
2 cos θ

2

]

and Ry(θ ) =
[

cos θ
2 −sin θ

2

sin θ
2 cos θ

2

]
,

where θ = π/2 (θ = π ) for π/2 pulse (π pulse).
We show the calculations for |0〉 to | + 1〉 transition here.

The sequence starts with initializing the NV center into |0〉
state. Then a π/2 pulse rotates the spin into a superposition
state and a series of π pulses perform the dynamical decou-
pling while the target beam affects the state of the NV center.
The effect of each pulse of the target beam is captured by an
added phase, φ. We are assuming that the MW pulses are very
short and off-resonant to the NV center by ω − ω0 = δω. This
adds a phase � = δωτ/2 during each free procession period
of length τ/2. In our experiment we omit the first and last half
target pulses in measurement 1 and omit the last target pulse in
measurement 2 for simplicity. Therefore, each measurement
contains total of 4N − 1 target pulses, where N is the number
of XY8 pulses.

After sending N nember of XY8 pulses, a total of 8N π -
pulses have been sent. The state of the NV center before the
last π/2 pulse is

|ψ (Nτ )〉 =
√

2

2
(e−i(4N−1)φ|0〉 − iei(4N−1)φ| + 1〉),

We set the last π/2 pulse in the −ŷ direction. The state of
the NV center after this pulse is

|ψ (Nτ )〉=e−iπ/4(cos(π/4 − �)|0〉−isin(π/4 − �)| + 1〉),
(D1)

where � = (4N − 1)φ is the total phase induced by the target
beam. Measured contrast for this state, C1, is

C1 = Cmax|〈±1|ψ〉|2 = sin2(π/4 − �)Cmax, (D2)

where Cmax is the contrast measured for | ± 1〉 states.
The outcome of Measurement 2 similarly will be

C2 = sin2(π/4 + �)Cmax, (D3)

where the difference in the sign of � is due to the target pulses
being sent in the opposite time slots. We calculate the phase

� by subtracting the outcome of the two measurements,

C = C1 − C2 = Cmax

2
[cos(π/2 + 2�) − cos(π/2 − 2�)]

= −sin(2�)Cmax. (D4)

In this approach, any undesired effect caused by adding the
target beam (e.g., change of temperature and coherence) will
be eliminated in the subtraction.

To measure Cmax, we employ the following procedure to
ensure all the effects decreasing the coherence of the quan-
tum states are accounted for. First we calculate the contrast
Cave for the state |ψ〉 = e−iπ/4(|0〉 − i| + 1〉)/

√
2. Based on

the measurements performed, Cave = (C1 + C2)/2. Then we
measure the contrast C+1 for the state |ψ〉 = −i| + 1〉. This
measurement is performed with a pulse sequence similar to
Measurements 1 and 2 with the difference that the last π/2
pulse is in x̂ direction. Moreover, the target pulses are sent
during both time slots to cancel out the effect of each other.
The length of the pulses are set to halve of the pulses in
Measurements 1 and 2 to keep the average power reaching
the NV center same as measurements 1 and 2. This way any
decoherence added to the system due to presence of the target
beam is accounted for in measuring C+1. Then we have

Cmax = 2(C+1 − Cave). (D5)

If instead of the target pulses a magnetic field B parallel
to the axis of the NV center was applied, then the measured
contrast would have been,

C = sin(2�)Cmax = −sin[(8N − 2)φ]Cmax, (D6)

where φ = γ Bτ ′/2. In this equation γ is the gyromagnetic
ratio for the NV center, and τ ′ is the length of the target pulses.
Therefore, we define an effective magnetic field equivalent to
the effect caused by the target beam,

Beff = −1

(4N − 1)γ τ ′ sin−1
( C

Cmax

)
,

≈ −C

(4N − 1)γ τ ′Cmax
(D7)

In our experiments, shown in Fig. 3 (main text), τ ′ = 1 μs
and N = 4 is the number of XY8 pulses. For Fig. 3(c) Cmax is
measured for the two measurements as, Cmax

|0〉→|−1〉 = 20.3% ±
0.6 and Cmax

|0〉→|+1〉 = 19.2% ± 0.9. For Fig. 3(d) Cmax is mea-
sured for the two measurements as, Cmax

|0〉→|−1〉 = 20.2% ± 0.8
and Cmax

|0〉→|+1〉 = 19.1% ± 0.6.

APPENDIX E: FULL-WAVE ANALYSIS OF PROPAGATION
OF LIGHT IN AFM TIP

Numerical simulations presented in Fig. 4(c) and Fig. 5 are
performed with CST Studio Suite. The detail of the simulation
results shown in Fig. 4(c) is explained here. Figure 10(a)
shows the normalized amplitude of the electric field in the
structure. The structure is an AFM tip on a substrate both
made of diamond. The dimensions of the tip are estimates
provided by QZabre company for the AFM tip we purchased.
The excitation is a beam with wavelength λ0 = 800 nm and
Numerical aperture NA = 0.65 which resembles the target
beam in our experiment [46]. Similarly to the experimental
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FIG. 10. Numerical simulations for the effective field amplitude in an AFM tip. (a) Amplitude of the electric field in an AFM tip made of
diamond. (b) Amplitude and direction of the transverse component of the effective field in the plane of the NV center. (c) The effective field
seen by an NV center with direction n̂ = (x̂ + ŷ − ẑ)/

√
3 placed at various locations shown in panel (b) with white dots.

setup, the beam is x polarized before going through a QWP
and travels through the fast axis of the wave plate when the
wave plate angle (θ ) is zero. Due to reflection of the target
beam from a dichroic mirror in the experiment, the polariza-
tion of the beam has an ellipticity of ε = 1.08 before entering
the objective lens when the QWP is at its optimal angle. How-
ever, this ellipticity is neglected in the simulations. The power
of the beam is P = 4 mW before the objective lens which has
a measured transmission of T = 78% at this wavelength. The
power of the incident beam in the simulation is set to match
this transmitted power in the experiment. The beam travels
in +ẑ direction and is focused at a distance z0 = 1.8 μm if
the medium was vacuum. The parameter z0 is chosen such to
qualitatively match the simulation results to the amplitude of
the measured effective field.

Figure 10(b) shows the transverse effective field in the
AFM tip in a plane 10 nm away from the end of the tip. This
plane coincides with the depth of the implanted NV center.
The black circle shows the circumference of the diamond
tip in this plane. The colorbar shows the amplitude of the

transverse field and the black arrows show its direction. This
transverse field gives rise to the dc offset in the experimental
result [Fig. 4(c)]. If the NV center is placed off-axes to the
AFM tip there would be a nonzero transverse spin component
at its location. This transverse component behaves differ-
ently from the longitudinal component of the photonic spin
density when changing the QWP angle, giving rise to a dc
offset.

To illustrate the effect of transverse spin, we show the
effective magnetic field for an NV center in n̂ = (x̂ + ŷ −
ẑ)/

√
3 direction (same as the direction of the NV center in

our experiment) placed at different locations on the transverse
plane. Figure 10(c) shows the effective magnetic field along
the direction of this NV center. Each curve corresponds to
a different location for the NV center marked with white
dots on Fig. 10(b). The dots have a relative distance of d =
−10nmx̂ + 10nmŷ to each other. This figure clearly shows the
development of the dc offset as the distance to the center of
the tip increases. The Curve shown is Fig. 4(c) is the same as
curve 7 in Fig. 10(c).
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