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Dimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demon-
strate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting
ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense en-
semble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs
reveal an effective dimensionality reduction to d̄ = 2.20(12), despite the emitters being distributed
in 3D. This contrasts the homogeneous environment, where the apparent dimension is d̄ = 3.00.
Our work presents a promising avenue to manipulate dimensionality in an ensemble of interacting
emitters.

Introduction- In a dense ensemble of interacting emit-
ters, each emitter perceives the other neighboring emit-
ters via position-dependent dipole-dipole interactions
(DDIs). The role of geometry in such position-dependent
collective interactions between an ensemble of emitters
has been of fundamental interest [1–7]. Controlling the
dimensionality is appealing as a lower-dimensional emit-
ter geometry shows strong quantum fluctuations [8]. This
can potentially provide a host of benefits in realizing
platforms to probe long-range interactions [1, 2], quan-
tum phases such as quantum spin-liquids [3, 4], tran-
sient super solid behavior [5], quantum phase transition
in transverse Ising models [9], provide an advantage in
quantum sensing applications, in mitigating decoherence
[1, 5], and in long-range energy transport of delocalized
excitons [7]. More recently, interesting physical effects on
Dicke superradiance in 1D, 2D, and 3D arrays of atoms
have been theoretically predicted [6]. Thus, realizing a
lower-dimensional system supporting long-range DDIs is
of significant importance.

While 1D and 2D interacting ensembles of emitters
have been realized in cold-atom systems, it remains
largely unexplored in solid-state platforms. Only re-
cent efforts demonstrating a thin layer of emitters (NV
- P1 centers) have paved the way for realizing lower-
dimensional systems in solid states [1, 2]. The P1 sys-
tem’s many-body noise is characterized by the decoher-
ence of NV center probe spins and shows stretched expo-
nential decay dynamics [1].

As DDIs are mediated by the underlying electromag-
netic fields, tailoring them provides an alternative route
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to manipulate the apparent dimensionality. Recently, in-
terfacing quantum emitters with light within nanopho-
tonic structures has provided the means to control and
study collective DDIs [10]. This led to the demonstra-
tion of long-range resonance energy transfer in incoher-
ent systems [11, 12], and sub-and super-radiant emission
dynamics in coherent systems [13–16].
Here we modify the apparent dimensionality using a

nanophotonic structure that supports dispersive delocal-
ized resonant modes that mediate the interactions. These
modes lead to modification of the spatial distribution of
the perceived neighboring emitters. We experimentally
probe the apparent dimensionality of the interacting en-
semble of donor and acceptor emitters, encoded in the
interacting emitters’ temporal decay dynamics. While
individual emitters decay exponentially, the lifetime de-
cay dynamics of interacting ensemble of emitters follow
a stretched exponential decay, revealing a non-integer
power β in time,

I(t)/I0 = exp(−γDt)exp(−αtβ) (1)

where γD is the spontaneous decay rate and α is the effec-
tive interaction volume [17–19]. The non-integer power,
β, originates due to DDIs between the emitters and cap-
tures the apparent dimensionality sensed by the mutually
interacting emitters.

β = d̄/S (2)

d̄ is the apparent or fractal dimension, and S = 6 for
electric DDIs [18]. Such relaxation decay dynamics aris-
ing due to DDIs are common in other systems such as
the kinetic Ising model below the critical temperature,
an interacting ensemble of spins [1], in ultra-cold atoms,
and ions [20–25]. The underlying physics that governs
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FIG. 1. The illustration depicts the concept of apparent dimensionality of an interacting ensemble of emitters. The apparent
dimensionality is related to the non-integer exponent of time in the fluorescence decay dynamics I(t)/I0 = exp(−γDt)exp(−αtβ).
In a homogeneous environment, β = 0.5(0.33) for the 3D (2D) spatial distribution of emitters. A resonant nanophotonic
environment modifies the spatial distribution of the neighboring emitters sensed by each interacting emitter which results in
the modification of the temporal decay dynamics. This reduces the apparent dimensionality experienced by the interacting
emitters, which is reflected in the non-integer exponent, β < 0.5, though, the emitters are distributed in a 3D volume.

DDIs is universal; here, we focus on DDIs at room tem-
perature, where it is difficult to discern coherent effects.
The two underlying characteristics that relate to this

intriguing non-integer power, β in the decay dynamics
(and thus the apparent dimensionality) are (i) the dis-
tance scaling law associated with DDIs in the vicinity of
nanophotonic environment and (ii) the competition be-
tween the characteristic DDI length-scale, R0, and the
system size, Lsys. The interplay between these two char-
acteristic lengths determines the spatial extent of the
emitters sensed by each donor quantum emitter. Figure
1 conceptually shows the origin of the reduced appar-
ent dimensionality. In homogeneous environments, the
DDI potential, Vdd, scales as ∼ 1/R3. The non-integer
power, β = 1/2 (1/3) for the three-dimensional (two-
dimensional) spatial distribution of emitters (see supple-
mentary information) [17, 19, 26] for time-scales beyond
the coherence times of the interacting system (i.e., the
emitters do not possess memory of previous interaction
events).
In contrast to homogeneous environments, a resonant

nanophotonic structure modifies the strength, range, and
characteristic interaction length scale of DDIs [11, 12,
14, 27, 28]. Due to this modification of underlying elec-
tromagnetic fields, an ensemble of interacting quantum
emitters coupled to such resonant nanophotonic struc-
tures perceive a modified spatial distribution of emitters.
Thus, the spatial extent, strength, and confinement of
electromagnetic fields, the hierarchy of distances (and
thus the DDI strength) averaging over all possible sites
of the interacting emitters is modified. This leads to a
modification in the temporal decay dynamics which is
reflected in the non-integer exponent, β, and hence, the
apparent dimensionality of the interacting system.
System– In this study, we consider the interaction of an

ensemble of donor (Alq3) and acceptor (R6G) emitters
in both resonant and off-resonant nanophotonic struc-
tures. The dipole-dipole interactions (DDIs) between
the emitters lead to resonance energy transfer. The
DDI potential is related to the dyadic Green’s function,

Vdd(rA, rD;ωD) = −(ω2
D/ǫ0c

2)nA.G(rA, rD;ωD).nD,
where rA and rD are the positions of the acceptor and
donor emitters, respectively, nA and nD are unit ori-
entation vectors of the acceptor and donor emitters,
respectively, ωD is the radial frequency of the donor
emitter, ǫ0 is vacuum permittivity, and c is the speed
of light [12, 27]. The interaction strength is propor-
tional to the rate of energy transfer, ΓET (rA, rD;ωD) =
(2π/~2)|Vdd(rA, rD;ωD)|2fD(ωD)σA(ωD), where fD(ωD)
and σA(ωD) are the emission spectra of the donor emit-
ter and absorption cross-section of the acceptor emitter,
respectively. Figure 2(a) shows the spectral overlap be-
tween the donor emission spectrum (Alq3), the accep-
tor absorption spectrum (R6G), and the extinction spec-
trum of both a resonant and an off-resonant plasmonic
lattice. The resonant plasmonic lattice modes mediate
the DDIs between the donor and acceptor emitters. The
resonant plasmonic lattice modifies the scaling, strength,
and range of the DDI potential |Vdd| as shown in Fig
2(b). The scaling of the DDI potential, |Vdd|, is signifi-
cantly modified with distance R = |rD − rA| in a reso-
nant structure, whereas the DDI potential decays rapidly
with distance in an off-resonant plasmonic lattice. The
resonances of the plasmonic lattice modes can be tuned
by altering the lattice constant.

The relaxation dynamics of the interacting ensemble of
donor-acceptor emitters are governed by non-linear cou-
pled rate equations (see supporting information). Here
the Monte-Carlo simulation method is employed to esti-
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β ~ 0.52 ± 0.01

α ~ 0.90 ± 0.02

β ~ 0.42 ± 0.12
α ~ 0.95 ± 0.04

(a) (b)

(c) (d)

0

0.2

0.4

0.6

0.8

1

450 500 550 600 650

Wavelength (nm)

0.1

1

0.2

0.4

0.6

0.8

0 50 100 150

Time (t/τ0)

0.2

0.4

0.6

0.8

1

0 50 150

Time (t/τ0)

100

0.2

0

0.6

0.7

0.5

0.4

0.3

0.1
 ~ 1/R3N

o
rm

a
liz

e
d

 In
te

n
si

ty
 (

a
.u

)
O

cc
u

re
n

ce

O
cc

u
re

n
ce

E
x

ti
n

ct
io

n

FIG. 2. (a) The plot shows the acceptor emitter’s absorption
spectrum (blue curve), the donor emitter’s emission spectrum
(orange curve), the extinction spectrum of a resonant plas-
monic lattice with lattice constant ∼ 300 nm (purple dash
curve) and an off-resonant plasmonic lattice with lattice con-
stant ∼ 350 nm (green dash-dot curve). The extinction spec-
trum of the resonant plasmonic lattice spectrally overlaps
with the emission-absorption spectrum of the donor and ac-
ceptor emitters (yellow highlighted region) (b) The calculated
dipole-dipole interaction potential |Vdd| for the resonant and
off-resonant plasmonic lattice is shown. The resonant plas-
monic lattice shows a strikingly modified scaling law. (c)
Monte-Carlo simulations depicting the temporal decay dy-
namics of donor emitters for |Vdd|

2 = R6

0/R
6 scaling and

R0 ≪ Lsys with β ∼ 0.52. The inset shows the values of β
for randomized spatial distributions of emitters. (d) Monte-
Carlo simulations showing the temporal decay dynamics of
donor emitters for R0 ∼ Lsys. The reduced dimensionality
is evident from the estimated values of β ∼ 0.4. The inset
shows the values of β for randomized spatial distributions of
emitters.

mate the temporal decay dynamics of the donor emitters
(see supporting information). Figure 2(c) shows the es-
timated temporal decay dynamics for homogenous envi-
ronments, i.e., R0 ≪ Lsys, where non-integer exponent,
β ∼ 0.52. This is commensurate to a three-dimensional
interacting system and matches well with the predicted
theoretical value (see derivation in supporting informa-
tion). The inset shows the estimated values of β for vari-
ous runs of the Monte-Carlo simulations with different
random spatial distributions of the emitters. On the
other hand when R0 ∼ Lsys as shown in Fig.2(d), the
value of non-integer exponent, β ∼ 0.42(12). This is com-
mensurate to an effective dimension of d̄ ∼ 2.50(72)— a
lower than a three-dimensional system. The inset shows
the broad distribution in the values of β with a standard
deviation of ∼ 0.12 for 1024 different iterations of the
Monte-Carlo simulation.

In practice, a resonant plasmonic lattice aides in realiz-
ing an apparent lower-dimensional system. The modified
scaling of the DDI potential, |Vdd| coupled with increased
interaction strength, leads to an increase in the charac-
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FIG. 3. The measured fluorescence lifetime decay when the
interacting emitters are in different electromagnetic environ-
ments (a) glass substrate (i.e, a homogeneous environment),
(b) TiO2 dielectric lattice (i.e. an off-resonant inhomoge-
neous electromagnetic environment), and (c) a plasmonic lat-
tice (i.e. a resonant inhomogeneous electromagnetic environ-
ment). The value of β ∼ 0.5 in both inhomogeneous and off-
resonant inhomogeneous environment. This is commensurate
with a 3D system. In contrast, the faster-than-exponential
decay dynamics on a resonant silver (Ag) plasmonic lattice
reveals an exponent value of ∼ 0.37. This is commensurate to
an effective lower dimension d̄ ∼ 2.20(12). The emitters were
embedded in a ∼ 1 µm thick polymer thin films.

teristic interaction length scale, R0. Under certain con-
ditions when the system size, i.e., the spatial extent of
emitters, Lsys becomes comparable to the R0 in addition
to the scaling law, the interacting system of emitters (in
resonant nanophotonic structures) perceive an apparent
lower dimension. We explore this effect here to engineer
the dimensionality of collective (many-dipole) DDIs.

Experiment– To elucidate this, in the experiment, we
measure the fluorescence lifetime decay trace of the
interacting emitters in both resonant and off-resonant
nanophotonic structures. The dye molecules Alq3 (0.83
mM) and R6G (0.25 mM) are embedded in PMMA poly-
mer thin films on the aforementioned samples. We use
time-correlated single-photon counting technique with a
narrow-band filter (520(5) nm) centered at the peak emis-
sion of the donor emitter to measure the fluorescence
lifetime decay traces (see supporting information for de-
tails). Figure 3 shows the measured lifetime decay when
the interacting emitters embedded in different nanopho-
tonic structures such as (i) glass substrate, (i.e. a ho-
mogeneous environment), Fig.3(a), (ii) a T iO2 dielectric
lattice, Fig.3(b), (iii) an off-resonant plasmonic lattice,
Fig.3(c), and (iv) a resonant plasmonic lattice, Fig.3(d).
We observe a striking deviation to the non-integer ex-
ponent in time from the typical β = 0.5 in 3D homoge-
neous environments to β ∼ 0.37 (an effective lower di-
mension d̄ ∼ 2.20(12)) in a dispersive resonant nanopho-
tonic structure— a plasmonic lattice. We note that this
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value is close to that of a 2D system. This elucidates
that the underlying resonant modes supported by the
plasmonic lattice indeed modify the apparent dimension
perceived by the interacting ensemble of emitters. The
T iO2 dielectric lattice has the same geometric features
as the resonant plasmonic lattice but supports no reso-
nances. The measurements on the T iO2 lattice help rule
out effects due to the underlying geometry of the lattice.
On the other hand, the measurements on the off-resonant
plasmonic lattice elucidate that the origin of the appar-
ent lower dimension is purely due to the lattice resonance
and not from the localized-surface-plasmon-resonance of
the constituent metal nanoparticles.
The non-integer exponent in time is estimated by

fitting the temporal fluorescence decay trace with a
Laplace transform of an underlying probability density
function[26],

I(t)

I0
=

∫
∞

0

Gδ(γ)e
−γtdγ

∫
∞

0

Hβ(ΓET )e
−ΓET tdΓET

(3)
In Eq.3, the first term is associated with the spontaneous
decay of donor emitters, whilst the second term is asso-
ciated with resonance energy transfer (DDIs). Gδ(γ) is
the probability density function (PDF) associated with
the distribution of spontaneous emission decay rates, and
Hβ(ΓET ) is the PDF for resonant energy transfer rates.
For a homogenous environment, with no significant en-
hancement in the local density of optical states (LDOS),
Gδ(γ) = δ(γ−γD), where δ(γ−γD) is the delta function,
γD is the decay rate of the individual donor emitter. In
contrast, in an inhomogeneous environment, each donor
experiences different LDOS and, thus, different sponta-
neous emission decay rates [29]. As DDIs in this par-
ticular scenario is a weak perturbation, the spontaneous
decay rate of the donors, is estimated from the fluores-
cence decay trace of donors in the absence of the ac-
ceptor emitter(see supporting information). The PDF of
resonance energy transfer rates, Hβ(ΓET ), is estimated
by fitting the fluorescence lifetime decay trace with the
spontaneous decay rate PDF, Gδ(γ) as a fixed parameter.
The underlying probability distributions have a charac-
teristic long-tail behavior and are related to Lévy stable
distributions [30].
Figure 4 shows the extracted PDF of the resonant en-

ergy transfer rate (ΓET ) distribution. The PDFs ob-
tained in the resonant inhomogeneous environment are
observed to differ from those in the homogeneous and
off-resonant inhomogeneous environments. This directly
indicates that the sensed spatial distribution of emitters
is modified. As the plasmonic lattice supports dispersive
delocalized resonant modes that can mediate interactions
between the donor and acceptor emitters over larger dis-
tances, the underlying PDFs show a broader distribution
of rates. Furthermore, the number of interaction events
in the tail of the distribution reduces, which indicates a
reduction in the total number of larger magnitude DDI
interaction strengths, ΓET , see inset of Fig. 4.

Conclusion- In summary, we experimentally demon-

FIG. 4. The extracted probability density function (PDF) for
the resonance energy transfer rate on various electromagnetic
environments (1) Glass, a homogeneous environment (dash-
dot red curve), (2) An in-homogeneous environment, T iO2

nanoparticle lattice having the same lattice constant and di-
mensions as the resonant plasmonic lattice (dot-line yellow
curve). (3) An off-resonant plasmonic lattice (purple curve)
and (4) A resonant plasmonic lattice (blue curve). The PDF
of the energy transfer rates on the resonant plasmonic lattice
is not only shifted but also broader. The inset shows the re-
duced number of events having stringer interaction strength
(in the tail)

strated that the apparent dimensionality of an interact-
ing ensemble of emitters could be modified using a reso-
nant nanophotonic structure. The temporal fluorescence
decay dynamics show a non-integer exponent, β, that
relates to the apparent dimensionality of the interact-
ing system. The value of apparent dimensionality on a
resonant plasmonic lattice shows a stark contrast value
of d̄ ∼ 2.20(12), in comparison to d̄ ∼ 3.0 obtained on
glass, an off-resonant T iO2 dielectric lattice, and an off-
resonant plasmonic lattice. Further, we extract the un-
derlying distribution of energy transfer rates for the emit-
ters’ interacting ensemble, indicating that the interact-
ing emitters’ perceived apparent dimensionality is mod-
ified. This arises due to modifying the underlying dis-
tribution of energy transfer rates. This work paves the
way for engineering interacting systems with apparent
lower dimensionality. Though the presented results are
semi-classical and discernible coherent effects cannot be
observed at room temperatures, they can readily be ap-
plied to regimes where quantum effects are more promi-
nent such as in ultra-cold atoms [14], solid-state emit-
ters systems [1, 2], rare-earth ions [31, 32], Rydberg exci-
tons in solids [33], and quantum-dots systems [13]. Such
nanophotonic structures can potentially provide an al-
ternative route to realize two-dimensional systems that
host new quantum many-body phases, help mitigate de-
coherence for quantum sensing, memories, and quantum
network applications, realize novel, more efficient light-
harvesting systems, and potentially improve biological
samples imaging.
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nenanregungsenergie, Zeitschrift für naturforschung A 4,
321 (1949).

[18] J. Drake, J. Klafter, and P. Levitz, Chemical and bio-
logical microstructures as probed by dynamic processes,
Science 251, 1574 (1991).

[19] L. Klushin and O. Tcherkasskaya, Effects of molecular
distribution on the fluorescence transfer: Exact results
for slab geometry, The Journal of chemical physics 119,
3421 (2003).

[20] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee,
P. Richerme, Z.-X. Gong, A. V. Gorshkov, and C. Mon-
roe, Observation of prethermalization in long-range inter-
acting spin chains, Science advances 3, e1700672 (2017).

[21] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Col-
loquium: Many-body localization, thermalization, and
entanglement, Reviews of Modern Physics 91, 021001
(2019).

[22] L. Ratschbacher, C. Sias, L. Carcagni, J. Silver, C. Zip-
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