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Abstract
We show that a single photon pulse incident on two interacting two-level atoms induces a transient
entanglement force between them. After absorption of amulti-mode Fock state pulse, the time-
dependent atomic interactionmediated by the vacuum fluctuations changes from the van derWaals
interaction to the resonant dipole–dipole interaction (RDDI).We explicitly show that the RDDI force
induced by the single photon pulse fundamentally arises from the two-body transient entanglement
between the atoms. This single photon pulse induced entanglement force can be continuously tuned
frombeing repulsive to attractive by varying the polarization of the pulse.We further demonstrate
that the entanglement force can be enhanced bymore than three orders ofmagnitude if the atomic
interactions aremediated by graphene plasmons. These results demonstrate the potential of shaped
single photon pulses as a powerful tool tomanipulate this entanglement force and also provides a new
approach towitness transient atom–atom entanglement.

1. Introduction

Single photon induced forces and torques correspond to the fundamental limit of optical linearmomentum and
angularmomentum exchangewith atoms [1]. Their direct detection is an open challenge since state-of-the-art
quantumdetectors are only sensitive to energy and arrival time of single photons [2]. Recent advances in
temporal shaping of single photon scattering fromatoms has shed light on the role of the temporal waveformof
Fock states [3]. In light of these developments, it is an open question how single photonwaveforms influence
dipole–dipole interactions between atoms.Of particular interest is the explorationwhether single photon
shapedwaveforms incident on interacting atoms can lead to experimentally observable transient effects.

During the last two decades,many techniques have been utilized to enhance the strength of the dipole–
dipole interaction and the corresponding force [4], such as utilizingmicro-cavity [5–8], surface plasmons
[9–11], and hyperbolicmaterials [12]. Especially, the strong dipole–dipole interaction induced large energy shift
in highly excited atoms (e.g. Rydberg atoms) has been proposed as themechanism for ‘Rydberg blockade’, which
provides a novel approach for quantum information processing [13, 14] and simulation of quantumphase
transition [15, 16]. However, single-photon pulse as a tool tomanipulate the transient dipole–dipole force has
not been explored.

In this paper, we show the existence of a unique transient entanglement force between twoneutral atoms
induced by a single photon pulse.With the help of our defined force operator, we explicitly show that the
resonant dipole–dipole interaction (RDDI) force fundamentally arises from two-body entanglement, which is
significantly different from the van derWaals force. Our theoretical framework combines quantum theories of
single-photon pulse scattering [17–20] and themacroscopic quantum electrodynamics approach of dipole–
dipole interaction [21–24].We thus show that the quantum statistics of the incident (Fock-state versus
coherent-state)pulses lead to significant differences in the induced RDDI entanglement forces. After absorption
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of a single photon pulse, the inter-atomic force changes from the extremely weak van derWaals force [4, 25, 26]
to the RDDI force [27, 28]with the amplitude enhanced by∼10 orders ofmagnitude.

We propose an experiment to detect this single photon pulse induced force with two levitated neutral atoms
(see figure 1), which are separatedwith distancer∼1 μmby optical tweezers operating at themagic wavelength
[29–31]. Evenwith this enhancement, detection of such aweak transient RDDI force is still a difficult challenge.
Therefore, wewe demonstrate that the single photon pulse induced RDDI force can be significantly enhanced by
placing the atoms near a graphene layer with the assistance of graphene-based surface-plasmon polaritons. By
investigating the full quantumdynamics of single-photon absorption, we predict optimumentanglement
generationmechanisms conducive to experimental inquiry. Finally, we argue that the proposed effect can be
differentiated frompreviously known dipolar interactions since the single photon pulse induced entanglement
force can be tuned from repulsive to attractive by tuning the polarization of the incident pulse.

2.Dipole–dipole interaction force operator

With the help of theHellmann–Feynman theorem [34], we define a quantumoperator to characterize the force
generated by the coherent part of the dipole–dipole interaction in appendix A

åº -
¶
¶

= ñáF r
r

U r F r m n , 1
mn

mnˆ ( ) ˆ ( ) ( )∣ ∣ ( )

where Fmn(r)≡−∂Umn(r)/∂r is determined by the atom–atom interaction = å ñáU r U r m nmn mn
ˆ ( ) ( )∣ ∣

induced by electromagnetic vacuumfluctuations [22, 35] and ñ Î ñ ñ ñ ñm gg eg ge ee, , ,∣ {∣ ∣ ∣ ∣ } for a two-level-
atompair. The dipole–dipole interaction force is always along the axis joining the two atoms.Our defined force
operator allows us directly to classify the dipole–dipole interaction force into two categories: (1) van derWaals
force between two atoms in a direct-product state, such as the force for two ground-state atoms

= ñáF F gg gg ;gg ggvdW ,
ˆ ∣ ∣ (2)RDDI force for entangled atoms, e.g.

= ñá +F r F r eg ge h.c.. 2eg geRDDI ,ˆ ( ) ( )∣ ∣ ( )

Wewill showhow to control this forcewith a single photon pulse later.
We emphasize that the latter RDDI force fundamentally arises from two-body entanglement [36]. The

eigenvectors of the force operator F rRDDI
ˆ ( ) are the twoBell states

Y ñ = ñ  ñ eg ge
1

2
, 3∣ (∣ ∣ ) ( )

with eigenvalues±Feg,ge(r). For a given two-atom state ρ(t), the absolute value of the RDDI force is proportional
to to the probability difference of the two-atom state on these two entangled states, i.e.

r rµ áY Y ñ - áY Y ñ+ + - -F r t t t,RDDI( ) ∣ ∣ ( )∣ ∣ ( )∣ ∣. This immediately reveals that, tomaximize theRDDI force,
one needs to prepare the atompair in one of these two entangled states.We also note that, the RDDI force
presents a readout of two-body entanglement. This entanglement force between transition dipoles is
fundamentally different from van derWaals force [26] and the force generated by the permanent dipole–dipole
interaction [21].We emphasize that themaximumpossible RDDI force (the eigenvalue of the force operator) is

Figure 1. Schematic of the single-photon pulse induced entanglement force detection. (a)Two atoms in free space. (b)Two atoms on
top of a graphene layer (z0 is the height). These two atoms (the yellow spheres) are levitated by two separated optical tweezers. The
relative displacement between the two atoms is = - =r x x er x2 1 , which is along x-axis. The linearly polarized single photon pulse
propagates along y-direction, with polarization being parallel (Pwith θ=0) or perpendicular (⊥with θ=π/2) to r . For two ground-
state atoms, the van derWaals forcemediated by the vacuum fluctuations is extremely small (∼10−35N for r≈1 μm, far beyond the
state-of-art of the force sensitivity [32, 33]). After absorption of a single photon pulse, the atom–atom interaction changes to the RDDI
as shown in (c). The corresponding force is enhancedmore than 10 orders to∼10−21N.We emphasize that this RDDI force for atoms
on states Y ñ = ñ  ñ eg eg 2∣ (∣ ∣ ) is an entanglement force, which is fundamentally different from the van derWaals force.
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determined by the atom–atomdistance r. However, the exact time-dependent envelope of the RDDI force in a
specific dynamical process is determined by the atomic two-body entanglement.

3.Dynamical entanglement force

Themaster equationmethod has been broadly applied to study the dipole–dipole interaction and entanglement
between neutral atoms [22, 35, 37–39].We now incorporate the single photon pulse absorption dynamics with
the traditionalmaster equation to show the time-dependent entanglement force induced by a single photon
pulse (see appendix F)

r r= + 
t

t t t
d

d
, 4atom pump˜( ) [ ˆ̂ ˆ̂ ( )] ˜( ) ( )

where r r r= Ät t tPN˜( ) ( ) ( ) is an effective densitymatrix.Wehave introduced an extra qubit degree of freedom
ρPN(t) to characterize the photon number degree (seemore details in [19]). The initial value of r t˜( ) is given by
r r= ÄI0 0PN˜( ) ˆ ( ), where IPN

ˆ is the two-dimensional identitymatrix and r = ñágg gg0( ) ∣ ∣denotes the initial
state of the atompair.

The quantumpumping from a single photon pulse is characterized by,
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where γjj=γ0 is the spontaneous decay rate of the atoms in vacuum. The coefficient ηj characterizes the
pumping efficiency, which is determined by the effective scattering cross section of the jth atom. Thewave-
packet amplitude of aGaussian single photon pulse is given by
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with center frequencyω0 and pulse length τf [20]. The time that the center of the pulse arrives at the jth atom is
given by w= k xtj j0 0· ( w=k c0 0∣ ∣ ). The absorption of the pulse is characterized by the Paulimatrix t-ˆ of the
extra qubit degree. The interatomic RDDI are included in the regular time-independent Lindblad superoperator
[22, 35]
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whereω0 is the energy splitting of the two-level atoms, and the energy shifts δij=Ueg,ge(r)/ÿand decay rates γij
are given in appendixD.

Both the imaginary part (the cooperative decay rates γ12=γ21) and the real part (the energy shift δ12=δ21)
of the RDDI are dependent on the polarization of the atomic dipolesmj with respect to the relative displacement
vector r . As shown infigure 2(a), the cooperative decay rates decreasemonotonously with atom–atomdistance r
in the near region, begins to oscillate in themedium region, and vanishes in the far region.Note that, the sub-
indices P and⊥ denote the cases whenmj is parallel and perpendicular to r , respectively. Although γ12,P and γ12,⊥
behave differently, both of them converges to the spontaneous decay rate γ0 in the near region and decrease to
zero in the far region (see the subplot infigure 2(a)). Rewriting themaster equation (7) in the bright and dark
states basis, this will automatically give the superradiance and subradiance [40]. The coherent part of the RDDI
diverges in the near region.More importantly, δ12,P and δ12,⊥ usually have opposite signs, especially in the near
region. This lays the foundation to tune the RDDI force by tuning the polarization of the pulse as explained in the
following.

The time-dependent RDDI entanglement force, r=F r t Tr t F r,RDDI RDDI( ) [ ( ) ˆ ( )], induced by a single
photon pulse for different atomdistance is displayed in figure 3. For afixed inter-atomic distance, the RDDI
force increases after the pulse excites the atoms and decreases with timewhen atoms re-emit the photon.We can
also see the amplitude of the RDDI force oscillates with atomdistance r, due to the oscillation in thematrix
elements Fge,eg(r) of the RDDI force operator. The van derWaals force has been neglected here as it is negligibly
small as shown in appendix C. The impulse force from the incident pulse is estimated to be

w t» ~ -F c 10 Nfimp 0
20 with center frequencyω0≈2π×3.77×1014 Hz and pulse length τf∼30 ns. But

this force is along y-axis, which is perpendicular to the inter-atomic force in x-direction and can be relieved by
the trapping force in y-axis. Thus, the only relevant force along the axis joining the two atoms is the RDDI
entanglement force.
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Quantum entanglement fundamentally determines the time-dependent RDDI force induced by a single
photon pulse. Here, we use the concurrence to quantitatively characterize the two-qubit entanglement [41]. As
shown infigure 4(a), forfixed atom–atomdistance r=1.2 μm, the concurrence t( )(the dashed-pink line) and
the RDDI force FRDDI(t) (the solid-blue line), as well as the excitation probability of the first atomP1e(t) (the
dotted-red line), reach theirmaxima simultaneously for homogeneous pumping case (η1=η2). But for the local
pumping of thefirst atom casewith η1=1 and η2=0 (see figure 4(b)),  t( ) and FRDDI(t) reach their peaks at
the time, which is later than the timewhen P1e(t) reaches itsmaximum. Thus, it is the entanglement instead of
the total excitation probability thatmaximizes the RDDI force.We also see that there are twoways to generate
the quantum entanglement between the atoms: (1) homogeneous pumping to the symmetric state Y ñ+∣ directly
by the single photon pulse; (2) local pumping of single atom to state ñeg∣ and then the RDDI evolves the atoms to
entangled states. Here, we show that the first one ismore efficient for entanglement generation. The total photon
absorption probability Pe,tot(t) for both homogeneous (Pe,tot(t)=2P1e(t) infigure 4(a)) and local pumping cases
(Pe,tot(t)=P1e(t) infigure 4(b)) are almost the same. But the entanglement and the RDDI entanglement force
under homogeneous pumping aremuch larger than that of local pumping case. This is because the projection of
the atomic state ρ(t) on the entangled state Y ñ+∣ under homogeneous pumping ismuch larger.

The existing theory [4, 21, 22, 35] can not describe the quantumpulse induced dipole–dipole interaction
force.Now,we show that the force induced by a Fock-state pulse is significantly different from the one induced

Figure 2.Then incoherent part (cooperative decay rates (a)) and coherent part (the energy shifts (b)) of the RDDI in free space. The
sub-indices Pand⊥denote the RDDI triggered by parallelly and perpendicularly polarized (with respect to the atom co-axis) single-
photon pulse. In the subplot, we plot the r-axis in log scale.

Figure 3. Single-photon pulse induced transient entanglement force between twoRb atoms (D1 transition from S P5 52
1 2

2
1 2).

The force reaches itsmaximumwhen the photon absorption probability is largest. Themagnitude of the RDDI force oscillates with
atom–atomdistance around r∼1 μm.Here, the time is in the unit of 1/γ0 (γ0 is spontaneous decay rate of the atom in free space).
Perpendicularly polarized pulse (⊥) is selected and its pulse length is set as γ0τf=0.63. The pumping efficiency is set as
h h= = 1 21 2 . The exact data of the Rb atom is given in table D1.
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by a coherent-state pulse. As explained in [20], the absorption probability of Fock-state single photon pulse by a
two-level atom ismuch higher than that of coherent-state pulse. Thus, the corresponding force is larger as
shownby the blue lines infigure 5.However, there exists an optimal pulse length τf,opt to reach the largest
excitation probability of the atoms for Fock-state pulses [19]. Forfixed pulse length τfγ0=0.3, themaximum
entanglement force decreases with photon number in figure 5(a), as the total excitation probability decreases
[19]. But the force induced by coherent pulse always increases with themean photon number (see figure 5(b)). In
an experiment, larger entanglement force can be obtained by optimizing the pulse length to increase the atomic
excitation probability for given atomic transition frequency and dipole–dipole interaction strength as shown in
appendix F.

Figure 4.The transient entangled force FRDDI(t) (the solid-blue line), the concurrence  t( ) (the dashed-pink line), and the excitation
probability of thefirst atom P1e(t) (the dotted-red line) induced by single-photon pulse. (a)All the three quantities reach themaximum
at the same time in the homogeneous pumping case with pumping efficiency h h= = 1 21 2 and pulse length τfγ0=0.62. Thus,
the entanglement is generated by the single photon pulse. (b)The excitation probabilityP1e(t)first reaches itsmaximumand then the
force and the concurrence reach theirmaximum in the local pumping casewith η1=1, η2=0, and τfγ0/2π=0.75. Thus, the two-
body entanglement is generated via the dipole–dipole interaction.Here, the atom–atomdistance isfixed as r=1.2 μm. In the
double-y-axisfigure, FRDDI(t) is associatedwith the left y-axis and both  t( ) andP1e(t) are associatedwith the right y-axis.

Figure 5.Comparison of the entanglement force induced by (a) Fock-state pulses and (b) coherent pulses. The Fock-state pulse
induced force decreases with photon number (n) for thefixed pulse length τfγ0=0.3, while coherent-state pulses induced force
increases with themean photon number from1 to 10.Here, the atom–atomdistance isfixed at r=1.2 μmand h h= = 1 21 2 .
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4.Near-field enhancement of the entanglement force

The entanglement force can be enhanced significantly by engineering the nanophotonic environment near the
atoms. As a practical illustration, we demonstrate this enhancement by placing the atoms near a graphene layer
as depicted infigure 1(b). The surface plasmon polaritons of graphene have been previously shown to allow
conventionally forbidden atomic transitions [42] in addition to enhancing other well-knownphysical effects
such as decay rate of emitters [43] and Förster energy transfer rate [44]. This enhancement fundamentally
originates from the strong light–matter interaction due to the large density of states of the surface plasmon
modes, i.e. the polaritons generated by the strong coupling between the electromagnetic field and the charge
excitations at a conductor surface [43]. Since thefield is strongly confined at the surface, thus the corresponding
enhancement only occurs when the emitters are placed close to the surface.

Here, we show that the RDDI strength and the time-dependent entanglement force can be enhanced
significantly by placing the atoms near a graphene layer. As presented in appendixD, the RDDI strength can be

directly evaluated via the classical Green’s tensor
«
G (x1, x2,ω). In the presence of a planar surface, theGreen

tensor in the upper half-space can always be split into two parts [45]:
«
G (x1, x2,ω)=

«
G0(x1, x2,ω)+

«
GR(x1, x2,

ω) corresponding to the contributions from the free space and the reflection by graphene, respectively. The free
spaceGreen tensor has been analytically given in [46–48]. The reflectionGreen tensor can be obtained from the
optical conductivity of a graphene layer (seemore details in appendix E). The in-plane optical conductivity of
graphene includes intra-band and inter-band contributions [43, 44, 49–51] s w s w s w= +intra inter( ) ( ) ( )with
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where τD is the relaxation time in theDrudemodel, EF is the graphene’s Fermi energy,T is the temperature, and
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Figure 6(a) demonstrates the distance dependence of the entanglement force. For atomic transition
frequency close to graphene surface plasmon polaritons (exact data provided in appendix E), the enhancement
factor is larger than 1000 at atom-surface distance z0=10 nm (red curve).When the two atoms are very close to
the graphene layer, the RDDI is primarilymediated by the surface plasmon polaritons in the graphene layer
instead of the vacuumfluctuations. The large density of states of surface polaritons enhances the strength of

Figure 6. (a) Single-photon pulse induced entanglement force between two atoms placed near a graphene-layer interface. Here, the
forces have been normalized by the eigenvalue of the force operator F rRDDI

ˆ ( ) in free space. (b)Eigen value of the force operator
F rRDDI
ˆ ( ) for twoRb atoms in free space as a function of atomic distance r. The inducedRDDI forces FRDDI are different for parallel (P)
and perpendicular (⊥) polarizations of single-photon pulses, as shown by the solid-green (FP) and dotted-blue (F⊥) curves. In the
subplot, we show the force FRDDI with r=0.8 μm (marked by the vertical dashed line) for different polarization angle (θwith respect
to x-axis) of the pulse in xz-plane. This clearly shows the change in sign of the force from repulsive to attractive.
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RDDI by orders ofmagnitude.While the graphene-based surface plasmon polaritons occur in the terahertz to
near-infrared band [43, 49], similar enhancement at optical frequencies are feasible with other plasmonic
materials such as gold and silver [52].

5. Precise control of the entanglement force

Now,we show single photon pulse as a novel tool to precisely control the atomic force: (1) amore than ten
orders of dipole–dipole interaction force amplitude change can be induced by a single photon pulse; (2) the
induced entanglement force can be continuously tuned frombeing repulsive to attractive by varying the
polarization of the pulse. For relevant inter-atomic separations (r∼1 μm), the van derWaals force is around
∼5×10−35N (see figure C1), which is far beyond the state-of-art force sensitivity. As the van derWaals force
arises fromhigher-order process, thus it ismuchweaker than the RDDI force. After absorption of a single
photon pulse, the RDDI force dominates with a greatly enhanced amplitude∼10−22N. This force can be further
enhanced upto 10−19Nwith surface plasmons-plaritons. Using phase-coherentDoppler velocimetry, force
sensitivity of~ -10 N Hz24 can be approached in trapped ion systems [32]. In aMach–Zehnder-type
interferometer with a free fall cesium atom from an optical tweezer, a force ofmagnitude 3.2×10−27Nhas
beenmeasured in an experiment [33]. Therefore, we are confident that that the transient entanglement force
induced by a single-photon pulse can also be detected in the near future.

For atomic transition between states connected by linearly polarized light, the direction of the corresponding
transition dipole is determined by the polarization of the incident pulse. As shown infigure 6(b), both the forces
induced by parallelly (P) and perpendicularly (⊥) polarized pulses oscillate with the atomic distance around
r∼1 μm.But these two forces have a phase shift and usually have opposite signs (especially in the near region
r<0.5 μm). Thus, we can control the force to be repulsive or attractive by changing only the polarization of the
pulse.More importantly, we can continuously tune the value of the RDDI force via tuning the pulse polarization
angle θ in xz-planewithfixed atom–atomdistance (r) (see the subplot).

Conclusion anddiscussion

We reveals the essential role of the two-body entanglement in theRDDI force.We utilize a time-dependent
theoretical framework to study the transient entanglement force between two neutral atoms induced by a
quantumpulse.We also show that this entanglement force can be significantly enhanced by engineering their
nano-photonic environment and precisely controlled by tuning the polarization of the incident pulse.

Looking ahead, our work provides a natural platform to investigate photoassociation in chemical reactions
and bioprocesses [31]. By generalizing the force operator tomulti-atom case, we can also study the role of the
many-body entanglement in the collective force of neutral atom ensemble [20, 53]. The photon absorption
probability and atom–atom entanglement can be enhanced by tailoring the shape and the time-frequency
correlation of photon pulses [20].

FigureC1.Thematrix element of the dipole–dipole force operator for twoRb atoms. The dashed-pink curve denotes the van der
Waals force FvdW∼Fgg,gg, which decreases with the atom–atomdistancewith scaling∼1/r7 (marked by the thin black line) in the near
region and∼1/r8 in the far region. The eigen value of the RDDI force operator FRDDI is displayedwith the dotted-blue line (parallelly
polarized atoms P) and the solid green line (perpendicularly polarized atoms⊥). The RDDI force decrease with∼1/r4 (marked by the
thin black lines) in the near region and oscillates in the far region. The data of the twoRb atoms are given in table D1.
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AppendixA.Dipole–dipole interaction force operator

According to theHellmann–Feynman theorem [34], we perform the derivation to the secular equationwith
respect to the atom–atom separation r
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Multiply both sidewith ám ∣, we have
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Inmost case, due to the non-adiabatic transition terms in the square brackets, there does not exist a well defined
force operator for amicroscopic system, such as the exchanging interaction in a condensed-matter lattice. But in
our case, the distance between the two atoms ismuch larger than the size the the atoms. Thus, the atomicwave
function is not dependent on the relative distance r and the second term at the right-hand side disappears (i.e.
á ¶ ¶ ñ =l n r 0∣ ).

In the atomicHamiltonian, only the dipole–dipole interaction part

= ñáU r U r m n , A.4mnˆ ( ) ( )∣ ∣ ( )

depends on the inter-atomic distance r. As the corresponding force is always along the co-axis line, we can define
a scalar operator for this force as
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Wenote that this force operator only works forweak atom-field coupling case. If the two atoms strongly
coupled to a resonant cavity field, one can not eliminate the degree of the cavitymode to obtain an effective
interactionHamiltonian as shown in equation (A.4). In this case, the inter-atomic force is not only dependent on
atom–atom separation, but also the position of each atom [54].More important, themagnitude of the forces
experienced by the two atoms can be different, which violatesNewton’s third law for amacroscopic body.We do
not consider this case in this paper.

Different elements in the operator F rˆ ( ) correspond to different virtual processes generated forces.We
emphasize that only the anti-diagonal elements of the two-body interaction in (A.4) can bemediated by second-
order processes [21] and all the other terms resultmainly from fourth order processes. Thus, the corresponding
forces areweak. In this paper, we only focus on two forces. Thefirst one is the van derWaals (vdW) force
between two ground-state atoms FvdW∝Fgg,gg(r), whichmainly arises from fourth-order process [21, 23] and
usually is extremely small. An incident single-photon pulse can pump the atompair to an entangled state. In this
case, the interaction changes to the RDDI, which plays the key role in energy transfer between different
molecules in chemical and biological processes. As the RDDI ismediated by second-order processes, the
corresponding force FRDDI∼Fge,eg(r) between the two atomswill be greatly enhanced. In the following, we
present the approach to calculate the elements ofU rˆ ( ) and F rˆ ( ).

Appendix B.ModelHamiltonian for atom-field interaction

TheHamiltonian of the total system is given by

å å= + +
=

H H H H , B.1F
j

A j
j

AF j
1,2

, ,ˆ ˆ ˆ ˆ ( )

8

New J. Phys. 22 (2020) 023037 L-P Yang et al



where theHamiltonian of thefieldmodes in an arbitrary linear (non-magnetic)media is given by [46, 55]

ò ò w w w w=
¥

H x f x f xd d , , , B.2F
3

0

ˆ ˆ ( ) · ˆ( ) ( )†

and the ladder operators of the eigenmodes satisfy the commutation relations

w w d d d w w a b¢ ¢ = - ¢ - ¢ =a b abf f x y zx x x x, , , , , , , B.3[ ˆ ( ) ˆ ( )] ( ) ( ) ( )
†

and

w w w w¢ ¢ = ¢ ¢ =a b a bf f f fx x x x, , , , , , 0. B.4[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )
† †

TheHamiltonian of the two atoms is

w s s= + -H , B.5A j a j j j, , ˆ ˆ ( )

whereωa,j is the energy splitting of the jth atom and s s= = ñá+ - e gj j j jˆ ( ˆ ) ∣ ∣† is the Pualimatrix. There are two
forms ofHamiltonian to describe the interaction between the atoms and the electromagnetic field.One is the
minimumcoupling and the other one is themultipolar coupling [21]. The difference and relation between these
two forms of interaction can be found in [21, 56]. Here, we use themultiploar interactionHamiltonian

m ms s= - ++ -H E x , B.6AF j j eg j j ge j j, , ,
ˆ ( ˆ ˆ ) · ˆ ( ) ( )

wheremj eg, is the electric dipole transition element of the jth atom. In the following, for simplicity, we consider
two identical atom casem m m= = = edj eg j eg j j, , 0 .

The electric field operator can be expandedwith the eigenmodes of thefield as

ò w w w= +
¥

E x E x E xd , , , B.7
0

ˆ ( ) [ ˆ ( ) ˆ ( )] ( )†

where

òw w w= ¢ ¢ ¢
«

x GE x x x f x, d , , , , B.83ˆ ( ) ( ) · ˆ( ) ( )

òw w w= ¢ ¢ ¢
«

x GE x f x x x, d , , , , B.93ˆ ( ) ˆ ( ) · ( ) ( )† † †

w w¢ º ¢ -
« «
G Gx x x x, , , , . B.10*( ) ( ) ( )

†

The function w¢
«
G x x, ,( ) is the classical Green tensor obeying the equation

w
e w w d ´  ´ - ¢ = - ¢

« «

c
G Ix x x x x, , , . B.11

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

 

Here, we assume that themedia is a non-magneticmaterial with constant permeabilityμ0=1 and the frequency
dependent complex dielectric constant ε(x,ω). TheGreen tensor has the properties

w w¢ = ¢ -
« «
G Gx x x x, , , , , B.12
* *( ) ( ) ( )

w w¢ = ¢
« «
G Gx x x x, , , , , B.13

T
( ) ( ) ( )

ò w w
m
p

w w=
« « «

xG G Gx x x x x xd , , , , Im , , . B.143
1 2

0 2
1 2( ) ( ) ( ) ( )

†

Wewill show that both the van derWaals interaction and the RDDI can be easily obtainedwith theGreen
tensor.

AppendixC. van derWaals interaction

The van derWaals interaction between two atoms has betweenwell studied. A detailed calculation of the
coherent van derWaals interaction in free space is presented in [21]. Here, we only present themore general
formof van derWaals interaction between two identical atoms obtained by Safari and his collaborators [23]

ò m m
m

p
w w

w w
= -

+ +

¥ «


U r u

u

u u
G ux x

2
d , , i . C.1gg gg

a a

a a
,

0
2

0

,1 ,2
4

,1
2 2

,2
2 2 1 1 2 2

2( )
[ ][ ]

[ · ( ) · ] ( )

The incoherent part of van derWaals interaction has been neglected, as it is usually negligible small
compared to the spontaneous decay rate of the atoms.
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C.1. Free-space case
In this subsection, we recover thewell known van derWaals force in free space. It is easy tofind that if we let
r=x2−x1=(r, 0, 0), only the diagonal elements of the free spaceGreen tensor are non-zero [46, 47]

w
pw

w
= - wG

c

r

r

c
x x, ,

2
1 i e , C.2r c

2 1

2

2 3
i( ) ( ) ( )

w
pw

w
w

= - - - wĜ
c

r
r c

r

c
x x, ,

4
1 i e . C.3r c

2 1

2

2 3

2 2

2
i

⎡
⎣⎢

⎤
⎦⎥( ) ( )

Here, the sub-indices Pand⊥denote parallel and perpendicular to r , respectively.
As the ground-state atoms can be excited by arbitrarily polarized virtual photons. Thus, to calculate the van

derWaals interaction, we need average out the polarization angle by taking the spherically symmetric
polarizability tensor (see equation (49) in [23]). Finally, the van derWaals interaction between two ground-state
atom is given by

ò
m

p
w

w
= -

+

¥ « «


U r u

u

u
G u G ux x x x

2 d

3
d Tr , , i , , i . C.4gg gg,

0
2

0
4

0

0
2 4

0
2 2 2 1 2 2 1( )

( )
[ ( ) · ( )] ( )

Using themethod presented in [21] (see chapters 7.5 and 7.6), we can verify that:

~U r
r ur

r ur

1 , 1

1 , 1
. C.5gg gg,

6

7

⎧⎨⎩( ) ( )


Thus, the corresponding force FvdW(r)will be of scale∼1/r7 in the near region and∼1/r8 in the far region. As
shownby the pink curve infigure C1, the van derWaals force FvdW(r) deviate from the line 1/r7 (the thin black
line) slightly in the far region.We list the data of the Rb atoms in tableD1, which have been utilized to generate
figure S3.

AppendixD.Master-equationmethod to calculate the RDDI

In this section, we calculate the RDDI strength via the Lindblad formmaster equation for a two-level-atompair

r w s s d s s r

g s r s r s s s s r

=- å + å

+ å - -

+ - + -

- + + - + -

t
t t

t t t

d

d
i ,

1

2
2 , D.1

j j j i j ij i j

ij ij i j i j i j

0 ,
⎡⎣ ⎤⎦( ) ˆ ˆ ˆ ˆ ( )

[ ˆ ( ) ˆ ( ) ˆ ˆ ˆ ˆ ( )] ( )

where the decay rates are given by

m m m mg
m w

w
w
e

w= =
« «

 
G

c
Gx x x x

2
Im , ,

2
Im , , , D.2ij i i j j i i j j

0 0
2

0
0
2

0
2 0· ( ) · · ( ) · ( )

and theRDDI energy

ò
m m m m

d
m
p

ww
w

w w

w

w w
= ´

-
-

+

¥
« «




G Gx x x x
d

Im , , Im , ,
D.3ij

i i j j i j i j0

0

2

0 0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

· ( ) · · ( ) ·
( )

m m
w
e

w= - =
«




c
G U rx xRe , , , D.4i i j j eg ge

0
2

0
2 0 ,· ( ) · ( ) ( )

can also be obtainedwithHeisenberg equations [24]3.
Thismaster equation can also be found in [22, 35, 39].We present the details of the derivation in the

supplementary (see footnote 3). For atomic states connected by linearly polarized light, the direction of the

TableD1.The data of the 85Rb atomused in this paper coming from [57].We note that the spontaneous decay rate can be obtained directly
from equation (D.7)withω0 and d0.

85Rb Transition frequencyω0 Wave length

D1 ( S P5 52
1 2

2
1 2) 2π×3.77×1014Hz 794.98 nm

Transition dipole element d0 Spontaneous decay rate γ0 Life time τ0=1/γ0
2.54×10−29 C m 2π×5.75×106Hz 27.68×10−9 s

3
See supplementalmaterial atstacks.iop.org/NJP/22/023037/mmedia for information about deriving themaster equation and calculating

the RDDIwithHeisenberg equations.
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transition dipoles ej are determined by the polarization of the incident pulse. Thismakes it possible to precisely
control the RDDI force by tuning the polarization of the pulse as shown in themain text.

D.1. RDDI force in free space
In this subsection, we calculate the RDDI force in free space. It is straightforward to verify that, for the free space
single pointGreen’s function, the real part diverges, but the imaginary part does not

w
pw

w w
p

= - =w


G

c

r

r

c c
x xIm , , lim Im

2
1 i e

6
, D.5

r

r c
1 1

0

2

2 3
i

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

w
w
p

=Ĝ
c

x xIm , ,
6

. D.61 1( ) ( )

Then, we can obtain thewell known spontaneous decay rate of an atoms in free space

m mg g
w
e

w
w
p e

g= = = º
«

 c
G

d

c
x x

2
Im , ,

3
. D.7i i j i11 22

0
2

0
2 0

0
3

0
2

0
3 0· ( ) · ( )

Wewill take γ0=1 as the unit of frequency and 1/γ0 as the unit of time in this paper. As shown in the next
section, both the coherent and incoherent dipole–dipole interaction can be greatly enhanced by engineering the
electromagnetic environment to change theGreen tensor.

Substitute the free spaceGreen’s tensor (C.2) and (C.3) back to the incoherent part (D.2) and coherent part
(D.4) of the RDDI, we can obtain the corresponding cooperative decay rates and the energy shifts of the atoms in
free space

g g= - + +
k r

k r
k r

k r
k r

k r
3

2

1
sin

1
cos

1
sin , D.812, 0

0
3 0

0
2 0

0
0

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( ) ( ) ( )

g g= -^
k r

k r
k r

k r3
1

sin
1

cos , D.912, 0
0

3 0
0

2 0

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( ) ( )

and

d g= - +
k r

k r
k r

k r
3

2

1
cos

1
sin , D.1012, 0

0
3 0

0
2 0

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( ) ( )

d g= + -^ 
k r

k r
k r

k r
k r

k r
3

4

1
cos

1
sin

1
cos , D.1112, 0

0
3 0

0
2 0

0
0

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( ) ( ) ( )

where k0=ω0/c.
Thematrix element of the force operator FRDDI

ˆ are given by

d

g

=-
¶
¶

= - - +

F r
r

k

k r
k r

k

k r
k r

k

k r
k r

3

2
cos sin cos , D.12

RDDI, 12,

0
0

0
4 0

0

0
3 0

0

0
2 0

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )

( )
( )

( )
( ) ( )

 

and

d

g
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¶
¶
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^ ^



F r
r

k

k r
k r

k

k r
k r

k

k r
k r

r
k r

3

4
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2
cos

3
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1
cos . D.13

RDDI, 12,

0
0

0
4 0

0

0
2 0

0

0
3 0 0

⎡
⎣⎢

⎤
⎦⎥
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( )
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( )
( )

( )
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The numerical simulation of the forces are displayed infigure C1. In the near region, the RDDI force decreases
with 1/r4. In the far region, FRDDI, P decreases with 1/r

2 (green solid line) and FRDDI,⊥ vanishes with scaling 1/r
(blue dotted line).

Appendix E.Dipole–dipole force near planar interface

As shown in previous sections, theGreen tensor plays the key role in evaluation of the dipole–dipole interaction
aswell as the corresponding force. In this section, we explain how to calculate the RDDI force near a planar
interface via theGreen tensor.
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TheGreen tensor near a planar interface is given by [45]

w
w w

w
=

+ > >

> <

«
« «

«G
G G z z

G z z
x x

x x x x

x x
, ,

, , , , , 0, 0

, , , 0, 0
, E.1R

T

1 2
0 1 2 1 2 1 2

1 2 1 2

⎧
⎨⎪
⎩⎪

( ) ( ) ( )

( )
( )

where
«
G0 is theGreen tensor in the free space, and

«
GR and

«
GT are the contribution due to the reflection and

transmission, respectively. The interface is at the plane z=0 and the dipole source (the atoms) are placed above
the interface. Thus, all the reflected field has z>0 and all the transmitted field has z<0.

The free-space dyadicGreen Tensor in real space can bewritten as the sumof the following terms [58]

w w w w= + +
« « « «
G G G Gx x x x x x x x, , , , , , , , , E.20 1 2 0

FF

1 2 0

IF

1 2 0

NF

1 2( ) ( ) ( ) ( ) ( )

where the far-, intermediate-, and near-field terms are given by

w
p

= -
« «

wG I
r

x x e e, ,
1

4
e , E.3r r

k r
0

FF

1 2
i( ) ( ) ( )

w
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= -
w
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wG I

k r
x x e e, , i 3

1

4
e , E.4r r

k r
0

IF

1 2 2
i( ) ( ) ( )

and

w
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= - -
w

« «
wG I

k r
x x e e, , 3

1

4
e , E.5r r

k r
0

NF

1 2 2 3
i( ) ( ) ( )

with er=r/r. TheGreen tensor
«
G0 in (E.2) is the exact same as the one given in equations (C.2) and(C.3).

Usually, the reflectionGreen tenor = +
« « «
G G GR R

s

R

p

and the transmissionGreen tensor = +
« « «
G G GT T

s

T

p
(the

index s and p denote the s-polarized part and the p-polarized part, respectively) can only be obtained numerically
via [49],

òw
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d e , E.6R
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k q z z
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d e , E.7T
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z z1 2( ) ( )[ ]

where kω=ω/c is themodular of thewave vector in free space, qα=kα/kω,α=x, y, z is the normalized

dimensionless wave vector, = +q q qx y
2 2 the projection of q


on the xy-plane, and e w¢ = -q qz

2( ) with the

relative permittivity of the outgoingmedia ε(ω). The kernals in the integrals are given by
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Here, we have carried out the azimuth angle integral of q

on the xy-plane and re-expressed the displacement r in

the cylinder coordinate as r=r⊥eρ+zezwith x=r⊥ cosf0 and f= ^y r sin 0. In theseM-matrices, Jn denotes
Bessel function of nth order J[n, q kωr⊥].
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The Fresnel reflection and transmission coefficients of graphene-layer interface are given by [43, 49]

a w
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2,
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where a w ps w e= c2 0( ) ( ) is the dimensionless in-plane conductivity of the graphene. The optical
conductivity of a graphene layer can be split into intra-band and inter-band contributions
σ(ω)=σintra(ω)+σinter(ω)with [43, 44]
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where τD is the relaxation time in theDrudemodel, EF the graphene’s Fermi energy, and the function

=
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TheRDDI strength for two atoms on top of a graphene layer is given by

m m
w
e

w= -
«

U r
c

G x xRe , , . E.21eg ge i i j j,
0
2
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2 0( ) · ( ) · ( )

Then, the eigen value of the RDDI force operator on the state Y ñ+∣ is obtained as F(r)=−∂Ueg,ge(r)/∂ r. In
figure E1, to show the enhancement in theRDDI force due to the graphene layer, we re-scale F(r)with the eigen
value Fvacuum(r0) of the corresponding RDDI force operator in vacuum at r0=1.05 μm (denoted by the vertical
black line). Comparingwith the subplot, we see thatmore than three order enhancement in the force can be
obtained if the atoms are very close to the graphene layer (z0=10 nm).We also see that this enhancement
decreases fast with the height of the atoms z0 and vanishes for z0>500 nm.

In themain text, the corresponding time-dependent entanglement force induced by a single photon pulse
has been displayed. The inter-atomic distance is set as r=1.05 μmasmarked by the dark vertical line infigure
E1 and the atom-interface distance is set as z0=10, 20, 50 nm. The pulse length τfhas been optimized to get the
maximumentanglement force as both the local spontaneous decay rate γii and the cooperative decay rates γij
defined in equation (D.2) have also been greatly enhanced by the graphene layer.

Appendix F. Time-dependentMaster equation for quantumpulse scattering processes

In this section, we study the dynamics of a two-level-atompair. Different from the previous literatures, we
prepare the atompair in the ground state ñgg∣ instead of a single-excited state (e.g. ñeg∣ ). In 2012, Ben et al
derived a powerful time-dependentmaster equation for n-photon broadband pulse interactingwith an arbitrary
quantum system.Here, we generalize thismethod to calculate the dynamical RDDI force.

The totalmaster equation including the single-photon pumping process is given by

r r= + 
t

t t
d

d
, F.1atom pump˜( ) [ ˆ̂ ˆ̂ ] ˜( ) ( )

where r r r= Ät t tPN˜( ) ( ) ( ) is an effective densitymatrix andwe have introduced an extra qubit degree of
freedom ρPN(t) to characterize the photon number degree (seemore details in [19]). The initial value of r t˜( ) is
given by r r= ÄI0 0PN˜( ) ˆ ( ), where IPN

ˆ is the two-dimensional identitymatrix and r = ñágg gg0( ) ∣ ∣ is the initial
state of the atompair.
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The thefirst term at right-hand side of equation (F.1) characterizes the free evolution of the atompair
without the pumping
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The second term characterizes the pumping of the single-photon pulse
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with Paulimatrices t-ˆ characterizing the absorption of the single photon pulse. The parameter ηj characterizes
the pumping efficiency of the jth atomdetermined by its effective scattering cross section, =t e cxj j p( · ) is the
time of the center of the pulse arriving the jth atom, and
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is the Fourier transformof the pulse spectrum function. For aGaussian single photon pulse
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its wave packet amplitude in the time-space domain is given by,
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In themain text, we assume the pulse propagates along the x-axis and arrives at the two atoms at the same
time t1=t2=0. The pumping efficiency ηj in practice shoule bemuch smaller than 1 [18, 20], but its can be
enhanced by adding amode converter [59]. In our simulation, we take h h= = 1 21 2 for the homogeneous
pumping case and η1=1, η2=0 for the locally pumping case.

This effectivemaster equationmethod can be straightforwardly generalized to n-photon Fock-state pulse
case by replacing the Paulimatrix tˆ in equations (F.1)–(F.3)with

Figure E1.The eigen value F⊥(r) of the RDDI force operator on state Y ñ+∣ for two atoms on top of a graphene layer. Different curves
denote different atom-interface distance z0. In the subplot, we display the details of the curve for free-space case and the curves with
z0=200 nmand z0=500 nm.Here, the electric dipolemoments (along z-direction) of the atoms are perpendicular to the relative
displacement r and F⊥(r) has been re-scaled by the eigen value Fvacuum(r0) of the corresponding RDDI force operator in vacuumat
r0=1.05 μm (denoted by the vertical black line). The Fermi energy of the graphene is set asEF=1.0 eV and the relaxation time is
taken as τD=10−13 s. To obtained a large enhancement in the RDDI force, the energy splitting of the two-level atoms is set as
ÿω0=0.7 eV different from the optical transition in Rb atoms as shown in previous section. The graphene layer is considered to lie on
an ε(ω0)=2.5 substrate.
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and replacing the 2×2 identitymatrix IPN
ˆ with the (n+1)×(n+1) identitymatrix.

Actually, r t˜( ) is not a real densitymatrix of a physical system, as r = nTr 0˜( ) for n-photon Fock-state pulse.
Thus, only its projection on the specific subspace has physicalmeaning. The expected value of any atomic
operator Ô is given by

r rá ñ º = ÄO O t t P OTr Tr , F.8t
ˆ [ ˆ ( )] [ ˜( )( ˆ ˆ )] ( )

where P̂ is the projection operator of the extra qubit degree with the only non-zero elementP11=1.We also
note that, to handle the coherent-state pulse case, we only need to replace all the photon related operators (i.e.
tˆ , IPN

ˆ , and P̂)with the constant 1. This powerful time-dependentmaster equation (F.1) can be used to
uniformly study the quantumphoton pulse scattering process.

We can also enhance theRDDI force by changing the pulse length τf to optimize the two-body entanglement
(see figure F1). Here, we see that, for homogeneous pumping case with h h= = 1 21 2 , the optimal pulse
lengthmaximizes the local excitation probability of the first atomP1e, the inter-atomic force FRDDI, and the
concurrence  simultaneously (seefigure F1(a)). But, for local pumping case with η1=1 and η2=0, only the
pulse length optimizing  maximizes the RDDI force (see figure F1(b)). A shorter pulse optimizes the photon
absorption probability P1e, but the entanglement and the force are suppressed due to the low entanglement
generation rate via theweakRDDI coupling and the fast spontaneous decay rates of the atoms. Thus, the
homogeneous pumping is amore efficient way to generate the entanglement force.
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