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Non-classical photonic spin texture of quantum
structured light

Li-Ping Yang® "2 & Zubin Jacob® 2*

Classical structured light with controlled polarization and orbital angular momentum (OAM)
of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical
communications and quantum simulations. However, quantum noise and photon statistics of
three-dimensional photonic angular momentum are relatively less explored. Here, we develop
a quantum framework and put forth the concept of quantum structured light for space-time
wavepackets at the single-photon level. Our work deals with three-dimensional angular
momentum observables for twisted quantum pulses beyond scalar-field theory as well as
the paraxial approximation. We show that the spin density generates modulated helical
texture and exhibits distinct photon statistics for Fock-state vs. coherent-state twisted pulses.
We introduce the quantum correlator of photon spin density to characterize nonlocal spin
noise providing a rigorous parallel with electronic spin noise. Our work can lead to quantum
spin-OAM physics in twisted single-photon pulses and opens explorations for phases of light

with long-range spin order.
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tructured single-photon pulses are an important frontier for

spin and orbital angular momentum (OAM)!-3. As a

quantum information carrier, single-photon pulses with
OAM have been achieved in the solid-state system with quantum
dots recently* and have been exploited to construct a quantum
network with higher channel capacity®~10. The spin and OAM of
light have also attracted increasing attention in an emerging
research field—spin-orbit photonics!!, which studies photon
spin-OAM transfer!>-1> and light—matter angular momentum
exchange in the near-field region'®-18 or transfer of optical OAM
to bounded electrons!® or photoelectrons!?20, Spin-1 quantiza-
tion is also the hallmark of photonic skyrmions and topological
photonic phases of matter?l:22, A quantum field theory frame-
work is needed to study the non-classical properties such as 3D
noise of the angular momentum of light.

Existing theories of quantum light—matter interaction have
advanced over the last two decades to capture a plethora of
phenomena related to SAM and OAM of light?>-34. Important
outstanding questions remain even within this large body of work
which is the focus of this manuscript, namely—photon statistics,
3D quantum spin and OAM vector density, 3D quantum noise in
SAM/OAM, and single-photon quantum states. Figure la shows
the well-known regime of twisted laser beams which contain an
enormous number of photons. At the single-photon level, both
existing semi-classical?>?* and approximate quantum theories
break down3%-32, In the widely adopted state-space description of
single photons or entangled photons {|l,s)} with Stokes para-
meters and the Poincaré sphere?®33, the rich spatial texture of
spin and OAM vectors is ignored completely. Specifically,
important open questions remain on the full 3D projection of
photon spin and OAM at the quantum level beyond the scalar-
field theory and paraxial approximation. Heisenberg uncertainty
relations for photon angular momenta can affect quantum
metrology experiments which require a quantum theoretic fra-
mework. These Heisenberg uncertainty relations between differ-
ent photon OAM 3D components are the canonical quantum
characteristics of angular momentum. Similarly, for applications
such as secure quantum communication, twisted single-photon
pulses in the quantum limit with few photons (see Fig. 1b) are
required. In this technologically relevant limit, quantum statistics
of photons will reveal behavior significantly different from the
quasi-classical Poisson behavior exhibited by traditional OAM
laser beams. These fundamental, as well as technologically rele-
vant problems, require the definition of single-photon quantum
state along with OAM/SAM operators.

In this work, we present an important frontier for quantum
structured light involving twisted space—time wavepackets of
light. We first construct the wave function of a quantum twisted
pulse, as well as a twisted laser beam, from quantum field
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theory3> instead of from the single-particle Schrédinger equation
in the first-quantization picture3©-38, By exploiting the quantum
operators of the angular momenta of light’®, we evaluate the
mean value, as well as the quantum uncertainty of the photon
spin operator vector. Apart from the well-established global
properties of polarization, we also investigate the quantum
properties of the photon spin density vector, i.e., the spin texture,
which is a function of space and time. We show that beyond the
paraxial approximation, the photon spin density of a Bessel
single-photon pulse can exhibit rich spatial texture. Our work
builds on previous important work in the field>3-34. Our pro-
posed framework provides a powerful and versatile tool to engi-
neer the local photon spin and OAM densities of a quantum
structured light pulse, specifically for spatiotemporal optical
vortices#0:41,

Non-local spin noise (i.e., spin density correlation) for elec-
trons is a fundamental signature of quantum phases of magnetic
condensed matter*?, specifically in phases of matter such as
quantum spin liquids without magnetic order*3. However, no
such quantum spin noise operator has been defined for photons
till date. Our theoretical formalism allows us to overcome this
challenge. Here, we introduce the quantum correlator of photonic
spin density to characterize the nonlocal spin noise in light. This
paves the way to explore exotic phases of light with long-range
spin order.

We emphasize that our work is immediately amenable to
experimental verification. We predict that for Bessel pulses with
large OAM, there will exist large fluctuations in the OAM along
orthogonal directions. This additional quantum noise can be
verified in metrology experiments even with OAM laser beams.
Recently, it was demonstrated that the nitrogen-vacancy (NV)
center in diamond can be used as a quantum sensor for detecting
the local spinning nature of photons*%. The spin density of the
off-resonant optical beam can induce an effective static magnetic
field for the electron spin of the NV center, which itself is an
atomic-scale magnetometer working at room temperature. Ima-
ging of our discovered helical spin-density structure in this work
can be realized with the same technology in the near future.
Furthermore, our proposed non-local spin density correlation can
also be measured in compound measurements with two or
multiple NV centers.

Results and discussion
Quantum spin and orbital angular momenta of light. The full
quantum operator of photon spin is given by3°

§=1 / Exi(r, £)x A(r, ). 1)

c

and OAM L of light in the Lorenz gauge within quantum field

Quantum limit

Finite-length pulse
with few photons

Fig. 1 Contrast between a traditional twisted beam and quantum pulse. Schematic of a traditional twisted beam a compared to the quantum twisted pulse
b put forth in this paper. The semi-classical theory only captures the mean orbital angular momentum (OAM) of a laser beam with large photon number.
However, the quantum effects of photon statistics, vectorial uncertainty relations, and non-local spin noise require a quantum-theoretical framework put

forth in this paper.
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theory. The operators S and L obey the canonical commutation
relationships

[S: 81 =

iV lhezjkslw [Ln ]] - lhet]kLk7 [L

i’ ]] - 0 (2)
where €5, is the third-order Levi-Civita symbol. The longitudinal
and scalar photons play a significant role in both § and L.

However, only the SAM § = &/ &*rE | (r,t)x A (r,t) and

0AM 1™ = g [d Qo | (r,0)(rx V)A (r,t) carried by transver-
sely polarized photons are directly observable quantities even in
the presence of charges®. Note, E, and A, are the transverse
part of the electric field and the vector potential, respectively.

Using the circularly polarized plane waves, we can expand the
observable photon spin and OAM operators as*>~47 (please refer
to Supplementary Notes 1 and 2)

& / SK[al a, —af_a,_]ek.3), (3)
i = —ih/d3k Y g, (kx Vi), (4)
A=z ’

where e(k, 3) = k/|k| is the unit vector and A = + denotes the left
circular polarization (LCP) and right circular polarization (RCP)
separately (see Supplementary Note 1). The ladder operators of
the plane wave with wave vector k and polarization A satisty the

bosonic commutation relation [d,,a k, ] = 8(k — K')8,,. The
photon helicity is given by A = # [d& k[ak,+“k,+ — a,t_’_akﬁ] . We

emphasize that the spin and OAM are separately observable due
to the quantum commutation relations3?

5,11 = 0. (5)

To show the striking symmetry between the angular momen-
tum of photons and electrons, we deﬁne a field operator for light

[y,.(r), V/ QIR
/ & ki e (6)

For the source-free case, our defined field operator in the
Heisenberg picture satisfies the homogeneous wave equation

v 1 l y(r,t) =0 (7)
2op )V =0
Now, we can re-express the OAM and helicity operators of light
in parallel to their electron counterparts

in real space ¥(r) = where

li/)t(")

"= [ e oo, ®)
and

A= [ @i @i ©)
where p = —ihV is momentum operator and &, = diag[1, —1] is

the Pauli matrix. However, the similar expression for the spin

20b
operator 8" can not be obtained in real space. The unit
polarization vector e(k,3) in Eq. (3) for each plane wave is k-
dependent, i.e., dependent on its spatial momentum.

Quantum wave function of twisted light pulses. In previous

sections, we have shown that both § and L™ are vector
operators. However, in previous studies, usually only their pro-
jections on the propagating direction have been fully
studied?32434. Their mean value on the transverse plane and
more importantly, their quantum fluctuations have not been

investigated. On the other hand, the near-field techniques have
now been well developed. This makes it possible to measure and
engineer the angular-momentum density of light, which is a
vector function of space and time, in experiments. Thus, a fully
quantum theory beyond the paraxial approximation to explore all
classes of twisted pulses in a united framework is highly desirable.
Here, we present this powerful theoretical tool by generalizing the
quantum theory of continuous-mode field3>#® to the twisted-
pulse case.

We first define the single-photon wave-packet creation
operator for a twisted photon pulse

af, = / &kE (K)al,, (10)

as a coherent superposition of plane-wave modes. The pulse
shape and other quantum properties of the pulse are fully
determined by the spectral amplitude function (SAF) &,(k). In the
following, we denote the propagating direction of the pulse as the
z-axis and work in the cylindrical coordinate in k-space
k=k.e, +pie, = p cospe, +p,singe, +ke,. Here, p is
the radial distance from the k.-axis, @i is the azimuth angle,
and e denotes the corresponding unit vector. The SAF of a twisted
pulse with deterministic OAM can be generally expressed as

(11

Usually, the amplitude #,(k,, px) is symmetric in the transverse
plane, i., it is independent on the azimuth angle ¢;. The phase
factor exp(img,) with an integer m will lead to the OAM of light
in z-direction of a single-photon pulse as shown in the following.

The SAF is required to satisfy the normalization condition
J d3k}f )l(k)‘2 = 1. This guarantees that &g obey the bosonic
commutation relation

1 .
& (k) = \/—2_7-[,7/‘(1(27 pre .

(12)

Then, the wave-packet creation operator 21; can be treated as a
normal ladder operator of a harmonic oscillator. Using this
commutation relation, we can construct the wave function of all
classes of quantum pulses in the standard way, such as the most
common n-photon Fock-state and coherent-state pulses3® (please
refer to Supplementary Note 3)

|ng) = \/ln— (“a) 0},

[ag a})] = 1.

(13)

and
. 1_ _
|0c&> = exp (ocag - in) |0y = e /2 Z — ’T’lg)t> (14)

where # = |a|® is the mean photon number in the coherent-state
pulse. The wave function of a squeezed-state pulse, an entangled
two-photon pulse?®, or an ultra-short spatiotemporal vortex
pulse®04! can also be constructed similarly. Here, the polarization
of the pulse is fixed as one of the circular polarizations. However,
linearly or elliptically polarized quantum pulses can also be
constructed with the superposition of two circular polarization
ladder operators ag (A = *). We also note that a twisted laser
beam can be characterized by a wave function with a very long
pulse length and a very large photon number. Thus, our method
also captures the cases of continuous OAM laser beams used
widely in experiments.

Without loss of generality, we only take the Bessel pulses as an
example to show the quantum properties of the spin and OAM of
twisted pulses. Other twisted pulses, such as a Bessel —Gaussian or
Laguerre—Gaussian pulse, can be treated similarly. The single-
frequency Bessel beam is the superposition of all plane waves on
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Fig. 2 Profile of a Bessel pulse in wave-vector space and real space. a Schematic of the spectral distribution of a Bessel pulse. b The energy density (in
unit of hwc/)tf) distribution of a Bessel pulse in the xy-plane. ¢ The envelope of the Bessel pulse in the propagating direction is of a Gaussian type. Here, o,
is the center frequency of the pulse with center wavelength A.. The polar angle of the Bessel pulse is taken as 6. = 0.2z. The other parameters are taken as

m=2 and Co =100.

the cone with the same frequency w = c|k|, k., and polar angle
0 = 0, as shown in Fig. 2a. Then, the SAF of a Bessel pulse with a
Gaussian envelope can be expressed #,(k,, px) as the product of
two Gaussian functions

2

20 14 2 5
'IA(kak) = <TZ) exp [_az(kz - kz,c) i|

20_2 1/4
() el
1.

The first Gaussian function with width 1/0, and center wave
vector k,. characterizes the envelope of the pulse in the
propagating direction. The pulse length on z-axis in real space
is given by o,=c1, with 7, the pulse length in time domain
(please refer to Supplementary Note 3). We show the energy
density of a Bessel pulse in Fig. 2b, c.

Distinct from previous works3%0, we do not add a delta
function [such as (0, — 0.)] in the SAF to characterize its
distribution property in the xy-plane. This will cause a serious
issue that the wave functions of the quantum pulses cannot
be normalized, because [d3k|&,(K)|? x 8(0, — 6.). Instead, we
utilize another Gaussian function with width 1/0, and center
value k; .=k, tan6. These two Gaussian functions should
have the same ratio between center wave-number and the width,
ie. k;.0,=k; 0,=Co In the narrow bandwidth limit C,> 1,
our defined SAF is well normalized (please refer to Supplemen-
tary Note 3). We also note that in contrast to the Bessel-mode-
based method3! which only applies to Bessel beams, our
generalized plane-wave-based framework is amenable to unify
the theory of all classes of quantum pulses.

(15)

Quantum statistics of the photon spin. Traditionally, the
angular momentum carried by each photon in a twisted laser
beam has been calculated semi-classically via the ratio of angular
flux to the energy flux2324 and only its projection on the pro-
pagating axis has been studied. Although the projection of the
photon spin and OAM of a non-paraxial beam on the transverse
plane has caused attention recently?>-27:2%34, a systematic and
comprehensive investigation of the vector nature of the photon
spin and OAM is still missing. Specifically, the Heisenberg
uncertainty relation for photon OAM has never been investi-
gated. On the other hand, many researchers have also tried to
establish a quantum theory of the angular momentum of light in
the last two decades39-3351. However, a fully quantum framework
to handle arbitrary quantum pulses beyond the paraxial
approximation has not been found.

We first calculate the mean value of the spin of a Fock-state
Bessel pulse with polarization A and photon number n (please

refer to Supplementary Note 4),

(ng|8™ (16)
Here, we see that the magnitude of the spin carried by each
circularly polarized photon is usually smaller than % and
approaches to / asymptotically in the paraxial limit (6, — 0)26:30,
This is significantly different from the helicity, which is exactly /.
If the SAF of a pulse is symmetric in the xy-plane, then the mean

value of the spin in the xy-plane vanishes, i.e., (Szbs) = (3;bs) =0.
However, we show that the quantum fluctuations of photon spin
in the xy-plane are not zero. The standard derivations of the spin
of an n-photon Fock-state Bessel pulse are given by

Agzbs = AS;bs = hy/n/2[sin8,|, ASEbS =0.

ng ) = hnd(0,0,cos6.).
| f/\> ( t:)

(17)

This is significantly beyond the previous semi-classical
theory?32434, in which the quantum statistics of the photon spin
cannot be studied.

Similarly, we can evaluate the mean value of the spin of a

coherent-state Bessel pulse with polarization A and photon
number 7 = |af?,
{ag 8™ (18)
Here, we see that the average spin carried by each photon is still
hcos6. and the spin’s projection on xy-plane also vanishes.
However, the quantum statistics of the photon spin for a
coherent-state pulse is significantly different from that of a Fock-
state pulse,

ag, ) = hnA(0,0,cos6.).
| f/\> ( t:)

~obs

A8 = A8 = hy/n/2Jsin6,], A8 = nhlcos, | (19)

The Poisson statistics of a coherent pulse leads to non-vanishing

obs .
AS; * in contrast to a sub-Poisson Fock-state pulse.

Quantum statistics of the photon OAM. Heisenberg’s uncer-
tainty relation is the canonical quantum characteristics of angular
momentum. However, this relation for photon OAM has never
been addressed till date. Here, we present a quantitative investi-
gation about the quantum statistics of photon OAM. We discover
that for beams with large OAM number, there exist large fluc-
tuations for the OAM operators in the orthogonal directions i.e.
in the transverse plane. This quantum effect can be observed in
experiment even with traditional OAM laser beams. The mean

value of izbs for a Fock-state twisted pulse with photon number n
is given by,
inh
2m

~obs

L, ’nﬁ> =

<"£/\ / d3km(k)efim“’k i m(k)eim"’k
09,

(20)
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eay)

This reduces to the well-known result obtained from the semi-
classical method that each twisted photon carries mi OAM?2324,

We see that (I:st) is independent of the photon polarization. It is
only determined by the photon number # and integer m in the
helical phase factor exp(img, ) if #,(k) is not a function of ¢,. We

can also verify that, in this case, the mean value of photon OAM

in xy-plane vanishes, i.e., (izbs) = (I:Obs

y
Supplementary Note 4).
The quantum variances of the three components of photon
OAM for a Fock-state Bessel pulse are given by

= mnbh.

) =0 (please refer to

~obs, 2 N obs

ALY = (ng|@ S) ng) — (nall"|ng)’ =0, (22)
and
BE®) = (aE™)
=3l [(C+ DX + (G +m* +3) & — 1]
(23)

> lnh2
2

1
\/(403 + 1)((:3 +m? + Z) — 1} > Emnhz, (24)

where x =tanf, € (0,00) and we have used the inequality
relation a%x? + b%/x2>2|ab] and the narrow-band condition
Co> 1. This immediately leads to the Heisenberg relation

~obs,2  ~obs 2 } ‘

(AL;") (AL)) > (25)

mnh2

The other two Heisenberg relatlons for photon OAM are trivial

c 1 ~ob 2 ob!
due to the vanishing mean values of Lz * and L; )
also hold for a coherent-state twisted pulse, but with non-

. Similar results

- ~obs, 2 _
vanishing (AL, ) = h*am?.
Interesting works have been reported to demonstrate the
uncertainty relation between the conjugate variables of angle ¢ of

light and its derivative l = —ihd/d¢ in the first-quantization
picture®2>3, i.e., AgAl, > h[l —27P(0)]/2. In contrast, our focus
is the Heisenberg uncertainty corresponding to the canonical 3D
angular commutation relation of photons. On the other hand, we
note that for transverse EM fields, {Hamiltonian H, momentum

P, helicity A} has been select as the complete set of commuting
observables to specify a photon state usually. Here, we see that a
single-photon pulse carrying determinate integer OAM in the

~obs. 2

propagating direction is not the eigen state of (L) .
Our predicted large OAM fluctuations in xy-plane can be
verified in experiments (see Fig. 3a). The quantum uncertainties

of LobS and i;bs are linearly proportional to the photon number n

in a Bessel pulse as shown in Fig. 3b and proportional to the
square of the helical phase index m in Eq. (11) as shown in 3c.
From Eq. (23), we see that the OAM fluctuations in the transverse
plane are strongly dependent on the polar angle 6, of a Bessel
pulse. There exists a minimum-uncertainty angle due to the
inequality a?x? + b%/x?>2|ab| (x = tan6,) in (24) as shown in
Fig. 3d. For a optical pulse, the ratio C, between its center wave
number and its width is usually very large, e.g., Cy =~ 188 for a 50
fs pulse with center wave length A, =500 nm. In our numerical
simulation, we set C,=100. We note that these large OAM
fluctuations in the transverse plane also exist in traditional OAM
laser beams, such as the routinely used Laguerre—Gaussian beams
in experiments.

Quantum spin texture of a single-photon pulse. We show that
the spin texture of a single-photon pulse can exhibit a very rich
and interesting structure in the case beyond the paraxial
approximation. The photon spin texture is characterized by the
spin density operator

0r, 1) = e, B, (r, ) x A, (r,1). (26)

Similar to the electric or magnetic fields, the spin density can be
treated as a vector field and can be measured locally*t. We
emphasize that as a vector, the spin density is neither purely
longitudinal or purely transverse in most cases. In the single-
mode plane-wave limit, the spin density will be a space-
independent constant, i.e., Vx (8%(r, £)) = V- (°*(r, )) = 0.

The mean value of the spin density of a Fock-state Bessel pulse
is given (please refer to Supplementary Note 5)

na’s *(r, t){n&> /\(s e —i—szez)7 (27)

where

he, : .8 : 6,
o= s {Puath] cost % = it snt fexp [—

2
2n0,0;

(ct — zcos Gu)zjl

2cos?
202c0s%0,

(28)
and

_ nhC,sin 6,
?7 2m0,02

2
exp {7 (ct —zcosb,) } ’

202cos26,
with r = pe, + ze,. The spin density of a coherent pulse can be
evaluated similarly. Here, we can see the following key characters
of the spin density: (i) its projection in the xy-plane is symmetric
around z-axis. This causes the corresponding spatial integral to
~obs Aobs) — 0

vanish as shown in the previous section, i.e, (S, ) = (Sy

(ii) its xy-plane projection is parallel or anti-parallel to the
azimuth-angle-dependent unit vector e, and it does not have a
radial component. This leads to the helical spin texture as shown
in Fig. 4; (iii) its xy-plane projection contains the product of two
different Bessel functions. The sign of a Bessel functions flips
when crossing its zeros. This leads to the oscillation between
clockwise and anti-clockwise structures in the spin texture; (iv) its
projection on z is independent on ¢. For a small angle 0, the term
~cos*(0,/2) dominates. Thus, the sign of s, is always positive
(negative) for LCP (RCP) pulse. This leads to the non-vanishing
global spin (S, ,).

We show the spin texture of an LCP single-photon (n=1)
Fock-state Bessel pulse in Fig. 4. Here, we only look at the spin
density vector field on the plane k, z = ct, at which the Gaussian
functions in Egs. (28) and (29) reach their maxima. In this case,
the space-dependent spin density is only a function of the radius
p and the azimuthal angle ¢ contained in e,. For a pulse with
small polar angle 6, = 0.17, almost only a clockwise structure can
be observed in panel a. However, for a pulse with a larger polar
angle 0.=0.27, the oscillation between clockwise and counter-
clockwise structure can be observed clearly. This oscillation can
only be obtained beyond the scalar-field theory and the paraxial
approximation. For higher-order Bessel pulses with m >0, the
fine structure of the spin density is significantly different from the
m =0 case. The innermost ring changes from clockwise to
counter-clockwise as shown in panels ¢ and d. We also note that
the Bessel pulse with m =1 is very special (see panel c), because
the spin texture has a peak instead of a hole at the center.

In Fig. 5, we show more details of the projection of the spin
density vector field on xy-plane and z-axis, respectively. In panel
a, we look at the projection of the spin density on xy-plane sge,

7] 7]
ks )+ 5 s V)|
(29)
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Fig. 3 Photonic orbital angular momentum (OAM) fluctuation in the transverse plane. a OAM measurementSﬂn the dlregtlon orthogonal to the
propagating z- aX|s A Bessel pulse has vanishing mean OAM in xy-plane but non-zero OAM fluctuations, (AL ) (AL ) <= 0. b The quantum
uncertainty of © |s linearly proportional to the photon number n in the pulse. Different lines correspond to different helical phase index m. € The quantum

uncertainty of LX is proportional to the square of m. d The OAM fluctuation in xy-plane is strongly dependent on the polar angle 6. of a Bessel pulse. The
ratio Co has been taken as 100 in all simulations.
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Fig. 4 Helical spin texture of twisted quantum pulse. Spin texture of a single-photon left-circular-polarized Bessel pulse on the pulse-center plane with
k,.z = ct. a—d Correspond to different quantum numbers m and polar angles 6. The colorbar describes the amplitude of spin density in unit of h/)tf.
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Fig. 5 Details about the spin density vector. Projections of the spin density of a Bessel single-photon pulse on xy-plane (panel a, b) and on z-axis in panel
(€). Panel a corresponds to the case with fixed azimuthal angle ¢ = O, but different polar angle .. Panel b corresponds to the case with fixed polar angle
6.= 0.2z, but different azimuthal angle ¢ ={0, n/3, 22/3, n, 47/3, 57/32}. Panel ¢ shows the z-component of the spin density.

with fixed Bessel order index as m = 0 and the azimuthal angle as
¢ =0 (i.e, along the x-axis). For a pulse with small 0, (see the
blue arrows at the bottom), s,e,, is relatively small and flat. The
amplitude of s, decreases with 6. and it vanishes when 6. — 0.
For a pulse with larger 0. (see the yellow arrows at the top), the
sign of s, oscillates between £1 with increasing p. This explains
the oscillation between the clockwise and counter-clockwise
structures shown in Fig. 4b. In panel b, we show the rotation of
s¢€, in xy-plane with fixed m =0 and 6. = 0.271. In panel c, we
show the projection of the spin density on z-axis as the function
of p for the four cases in Fig. 4. Here, we clearly see the oscillation
induced by the Bessel function in Eq. (28). Specifically, the vertex
at the center for m = 1.

Nonlocal spin noise of light. To characterize the nonlocal spin
noise of light, we introduce the quantum correlation function of
the photon spin density. Due to the vector nature of the spin
density, the full two-point correlation should be characterized by
a 3 x 3 correlation matrix as shown in the Supplementary Note 6.
Here, we only describe the equal-time correlator
(8% (r, )33%(r, 1)),

In the paraxial limit (6.=0), the two-point correlation
functions for a Fock-state and a coherent-state pulse are given
by (please refer to Supplementary Note 6)

(g |52, 082 Oy ) ~ 2 80 = 1y, 0

(30
+an =Dy 0 |y, t)ﬂ,
and
o [0 (r, 3 )|y ) = 12 |8(r — il (r, 0)]
(e o) ~ 7 ot
+ 7y, O [y, )| ]
where
1 4
N0 = [ Eger )
Vv (2n) .

is the effective wave function of a pulse in real space. This method
can be easily generalized to higher-order correlations.

We note that the delta function 8(r — ') in the correlation
function will not lead to any diverging effect, because a practical
probe always measures the averaged photon spin density over a
finite volume instead of the true single-point spin density. On the
other hand, this term vanishes in a composite measurement with
r # ¢'. In this case, we see that the Poisson and sub-Poisson
statistics automatically enter the quantum spin-density correla-
tions. Specifically, the two-point spin density correlation vanishes
for a single-photon Fock-state pulse as expected.

We now propose to detect the non-local spin density
correlation via compound measurements of two NV centers,
which have been exploited as nano-scale quantum sensors for
photonic spin density measurements recently**. As shown in
Fig. 6a, we fixed one quantum sensor on the z-axis and move the
other one to image the distribution of the spin density correlation
in the transverse plane. We contrast the spin density correlations
in Fock-state and coherent-state Bessel pules in Fig. 6b—d. Here,
we see that in the few-photon limit, there exist significant
differences between Fock-state and coherent pulses. This
difference fundamentally roots in the quantum statistics of
photons and it will disappear in the large-photon limit.

The electronic ground-state of a negatively charged NV center
is a spin-1 system, which has been routinely used as a highly
sensitive nano-scale magnetometer at room temperature54. A
laser with wavelength shorter than 637 nm is required to excite
the NV to its electronic excited states. A red circularly polarized
laser pulse (target pulse) with wavelength around 800 nm will not
excite the NV, but only induce energy shifts in the three ground
spin states. Recent work has shown that these energy shifts
function as a static magnetic field for the NV spin4, which is
linearly proportional to the local spin density of the target beam,
ie, By o (8°(r)). Thus, an NV center can be exploited as a
nano-scale photonic spin sensor.

Currently, imaging of single-photon level spin density and the
corresponding correlation is extremely challenging in experi-
ments. However, our discovered interesting texture of spin
density and non-local spin noise also exists in traditional OAM
beam, which can be demonstrated in the near future. On the
other hand, due to the absence of photon-photon interaction, the
nonlocal spin noise within a light pulse in free space is fully
determined by the photon-number statistics. However, we predict
that exotic photonic phases with long-range spin order can exist
in a quantum polariton system or an atomic lattice>>°.

Conclusion

We have established the fully quantum framework for photonic
angular momenta of quantum structured pulses, as well as the
corresponding quantum texture. Our approach presents a para-
digm shift for the photonics community as it can be exploited to
study the quantum properties and to reveal the vector nature of
the angular momentum of light. We have shown that the spin
texture of a Bessel pulse can exhibit a very interesting structure
beyond the paraxial limit. Our proposed non-local spin noise will
open a frontier for studying exotic phases of photons with long-
range spin order. This spin noise can be measured in compound
measurements with multiple nano-scale spin sensors, which have
been proposed and demonstrated in our previous experiment?*,
The photonic OAM density and the corresponding non-local
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Fig. 6 Non-local spin noise. a Our proposed spin density correlation measurement with two nitrogen-vacancy (NV) centers (NV1and NV2) at rand ¥,
respectively. b—d Contrast of spin density correlation between Fock-state and coherent-state pulses. Here, n is the mean photon number in each pulse and
we show the results for the case with m =1 and .= 0.2z. One of the quantum sensor is fixed on the z-axis and the other sensor can move in xy-plane.

OAM density noise can also be handled within our proposed

theoretical framework, which will be addressed

in our

future work.

Data availability
The data that support this study are available at https://github.com/yanglp091/
PhontonicSpinTexture.

Code availability
The code that supports this study is available at https://github.com/yanglp091/
PhontonicSpinTexture
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