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All elementary particles in nature can be classified as fermions with half-integer spin and bosons with integer
spin. Within quantum electrodynamics (QED), even though the spin of the Dirac particle is well defined, there
exist open questions on the quantized description of spin of the gauge field particle—the photon. Using quantum
field theory, we discover the quantum operators for the spin angular momentum (SAM) SM = (1/c)

∫
d3xπ × A

and orbital angular momentum (OAM) LM = −(1/c)
∫

d3xπμx × ∇Aμ of the photon, where πμ is the conjugate
canonical momentum of the gauge field Aμ. We also reveal a perfect symmetry between the angular momentum
commutation relations for Dirac fields and Maxwell fields. We derive the well-known OAM and SAM of classical
electromagnetic fields from the above-defined quantum operators. Our work shows that the spin and OAM
operators commute, which is important for simultaneously observing and separating the SAM and OAM. The
correct commutation relations of orbital and spin angular momentum of the photon has applications in quantum
optics, topological photonics as well as nanophotonics and can be extended in the future for the spin structure of
nucleons.

DOI: 10.1103/PhysRevResearch.4.023165

I. INTRODUCTION

Spin is the fundamental property that distinguishes the two
types of elementary particles: fermions with half-integer spin
and bosons with integer spin. Beth’s seminal experiment [1]
has shown that each circularly polarized plane-wave photon
carries angular momentum of h̄. An earlier experiment work
implemented by Raman and Bhagavantam even pointed out
that this angular momentum belongs to the photon spin [2].
The polarizations of the electromagnetic (EM) field are com-
monly accepted as the spin degrees of the freedom of the
photon. However, apart from these well established global
properties of polarization, more recently, the photon spin den-
sity, a local quantity which is a function of space and time
has risen to the forefront of multiple fields [3–7]. It should be
noted that a complete quantum treatment of the photon spin
which connects space-time dependent fields and the global
observables has never been achieved.

This problem is of interest in quantum optics, nanopho-
tonics and topological photonics. A substantial body of work
based on the free-space classical Maxwell equations has
been devoted to finding the measurable photon spin angular
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momentum (SAM) and orbital angular momentum (OAM)
[8–16]. Quantization of photon spin is also the signature of
topological electromagnetic phases of matter [17–19] and
skyrmion texture in optical scattering experiments [20]. In
the near-field of nanophotonic structures, evanescent waves
exhibit universal spin-momentum locking widely studied in
2D materials, photonic crystal waveguides, optical fibers and
metamaterials [21–25]. Here, an advancement for these fields
is reported by exploiting a paradigm shift in approach for
photonics—we appeal to a fundamental QED lagrangian in-
cluding Dirac particles to quantize the spin of the light field.

Even in the context of high-energy physics, there is an
on-going discussion on the decomposition of the angular mo-
mentum of the photon or gluon into SAM and OAM parts
[7,26–31]. Leader and Lorcé have written a pedagogical re-
view to explain these important open challenges for the field
[32]. The fundamental difficulty stems from the puzzling fact
that the genuine gauge-invariant photon spin operator does
not exist. Our work utilizes quantum field theory to pave the
way and resolve these questions about photon spin with future
implications for the spin structure of the nucleon [33].

The importance of the problem becomes clear on compar-
ing to the Dirac spin operator SD = (h̄/2)

∫
d3xψ†�̂ψ . These

obey the canonical commutation relationships for angular mo-
menta. However, a genuine quantum operator for the photon
spin SM , which satisfy the standard equal-time commutation
relations [SM,i, SM, j] = ih̄εi jkSM,k , have never been obtained.
Because of this major knowledge gap, interesting questions
have been raised whether photon spin and OAM are true
observable angular momenta at all [8,9,12,34]. We solve this
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FIG. 1. Comparison between our proposed photon angular momentum operators and the well-known Dirac field counterparts. We show
that our discovered quantum operators SM and LM obey the canonical commutation relations in striking parallel to Dirac fermions.

open problem within the canonical quantization framework
of relativistic field theory. We explicitly derive the quantum
operators for the spin SM and OAM LM of the photon by
quantizing the electromagnetic (EM) field covariantly in the
Lorenz gauge. Using relativistic field theory, we show a per-
fect symmetry between the angular momentum commutation
relations for Dirac fermions and Maxwell bosons. We show
that photon SAM and OAM operators commute with each
other and are thus separately observable. This is an advance
over existing knowledge since it is an important question
whether the spin and OAM of light are independently observ-
able [8,9].

Historically, duality symmetry of classical electromag-
netism (Maxwell’s equations) in source free regions was the
chosen route to understand conservation relation between the
photon spin density and helicity [35–37]. Important recent
works have generalized this approach [38,39]. However, QED
requires local U(1) gauge symmetry, to capture quantum light-
matter interaction. Our work also fills this historic gap by
investigating the angular-momentum conservation law of the
combined Dirac-Maxwell fields. An important hallmark of
our QED approach is that we obtain the well-known Dirac
SAM and OAM operators simultaneously en route to our new
photonic spin and OAM operators. We note that similar to
the Aharonov-Bohm phase [40] where gauge fields and not
electric/magnetic fields take center stage, the quantum spin
operator of light also shares this characteristic of gauge field
theory.

In this paper, we prove the perfect symmetry between the
angular momentum of Dirac fermions and Maxwell bosons
using quantum field theory. For the broad audience, we sum-
marize our central result in a simple schematic (Fig. 1). First,
we report on the discovery of new SAM and OAM quantum
operators for the photon. While the commutation relations
of angular momenta for Dirac operators are well established,
we show here that Maxwell operators obey the same strik-
ing symmetry. Our discovered operators for the photon spin
(SM) necessarily requires the inclusion of virtual photons in
QED. Table I shows a summary of our theoretical formal-
ism that includes SO(3) rotational symmetry and local U(1)

gauge symmetry of QED. However, the important previous
framework of duality symmetry in Maxwell’s equations [12]
only deals with the local spin density of transverse photons.
Duality symmetry in Maxwell’s equations does not capture
the global photon spin which includes real (transverse) and
virtual (longitudinally polarized in vacuum) photons. In this
paper, we only focus on the spin of the photon. However, we
believe our results can be generalized in the future to the other
massless gauge boson—the gluon [32,41].

The perfect symmetry between Dirac and Maxwell angu-
lar momentum operators necessarily includes the subtle role
of longitudinal and scalar photons which are not gauge in-
variant. To incorporate gauge invariance into the theoretical
framework, we put forth a redecomposition of the total an-
gular momentum of the combined Dirac-Maxwell fields (see
Table II). We reveal that the contribution of the photon spin
from longitudinal photons is hidden from detection by the
requirement of gauge invariance. The experimentally measur-
able part of the photon spin is its transverse-field part. The
gauge field necessarily includes longitudinal and transverse
fields as required by relativistic field theory—QED. This leads
to new commutation relations for the observable total angular
momentum of the photon ([Jobs

M,i , Jobs
M, j] = ih̄εi jkLobs

M,k). In our
manuscript, we use the superscript “OBS” as opposed to the
notation of gauge invariant variables. We note that the SAM
and OAM operators commute. We prove that this is true for
the new gauge operators as well as the well-known OAM
and SAM operators. These results have implications for future
experiments on photon spin noise [42] and exotic topological
phases of matter [43].

II. HISTORICAL CONTEXT OF THE QUANTUM SPIN
OPERATOR OF THE PHOTON

To show the novelty of this work, we give a short review
of the theoretical development of the photon spin in quantum
optics. In Chap. I of the textbook in Ref. [44], the authors
have shown that the total angular momentum of classical
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TABLE I. Our work is fundamentally beyond duality symmetry and incorporates SO(3) rotational symmetry and local U(1) gauge
symmetries.

Current approach [35–39] Our work

Symmetry type Duality symmetry SO(3) rotational symmetry Local U(1) gauge symmetry
Symmetry transformation E → E cos θ +

cB sin θ B → B cos θ −
(E/c) sin θ

x → R(θ)x (R 3 × 3 matrix)
ψ (x) → eiJ·θψ (x)

Aμ(x) → Aμ(x) − ∂μ f (x)
ψ (x) → ψ (x)eiq f (x)/h̄

Physical phenomenon Conservation of helicity Conservation of angular
momentum

Massless photon

Involved spin angular momentum provides local classical spin
density of transverse EM

field; does not lead to angular
momentum commutation

relations

full spin operator of the
isolated photon [U(1) gauge

field] satisfies the correct
commutation relations

introducing interaction
between Dirac-Maxwell field
leads to the gauge invariant

photon spin

electrodynamics (CED) can be split into three parts:

JCED =
∑

α

xα × pα + Sobs
M + Lobs

M . (1)

Here, the first term denotes the OAM of charge particles and
pα = mα ẋα + qαA⊥ is the canonical momentum of the αth
particle with charge qα and mass mα . The subscript ⊥ of
the vector potential denotes its transverse part with vanishing
divergence, i.e., ∇ · A⊥=0. The second and third terms have
been interpreted as the SAM and OAM of light, respectively,

Sobs
M = ε0

∫
d3xE⊥ × A⊥, (2)

Lobs
M = ε0

∫
d3xE j

⊥(x × ∇)Aj
⊥. (3)

Here, we have added the superscript “obs” in Sobs
M and Lobs

M ,
because we will show in later sections these are only the
directly observable part of the photonic angular momenta. The
total angular momenta JCED of CED is a conserved quantity,
and all the three parts in Eq. (1) are invariant under a classical
gauge transformation. Thus, the decomposition of the angular
momentum of CED in free space has been completely solved.

Two fundamental problems in electrodynamics angular
momentum decomposition occur after quantization. First, the
OAM of a charged particle p = −ih̄∇ is not gauge-invariant
anymore because an extra space-time-dependent phase is
acquired under a gauge transformation. Second, the early
important work by van Enk and Nienhuis has shown that the
photon spin from CED does not satisfy the angular momentum
commutation relation [8,9], [Sobs

M,i, Sobs
M, j] = 0. Thus, the open

question remains whether new quantum operators exist be-
yond these well known classical results that satisfy the correct
canonical commutation relations. In this paper, we find these
SAM and OAM operators of photons using quantum field
theory. Furthermore, we also derive the above well known
classical decomposition through the quantum operators.

Due to these two unsolved problems and the lack of
a quantum gauge theory, the conservation of photon spin
has been studied [12] only in the absence of charges using
electric-magnetic duality symmetry [11,38,45]. By build-
ing on Lipkin-Calkin conservation law [36,37], the photon
spin density has been previously interpreted sobs(x, t ) as the

current corresponding to the photonic helicity h(x, t ), i.e.,
∂h/∂t + ∇ · sobs = 0. An experiment has also been imple-
mented to measure the photonic helicity and the related
quantity photonic chirality [46]. We note that these elegant
works are of broad interest, but their results do not lead
to new SAM and OAM operators especially for the gauge
field. Electric-magnetic duality of Maxwell’s equations is a
classical symmetry which does not apply to U(1) gauge fields
which are essential to QED. The duality symmetry only gives
the conservation of the photon helicity, not the angular mo-
mentum of gauge fields. However, in the presence of charges
(Dirac fermions), this duality symmetry will be destroyed.
In QED, it has been well-accepted that the conservation of
angular momentum is due to the SO(3) rotational symmetry
of the background space-time. The duality-symmetry-based
argument cannot be extended to explain the conservation of
spin for all other particles (e.g., gluons and Dirac fermions).
Therefore, we appeal to quantum field theory to discover new
SAM and OAM operators and also present a unified frame-
work for gauge-field SAM and OAM.

In the high-energy community, the separation of the
total angular momentum of photons and gluons into gauge-
invariant spin and orbital contributions is an important and
interesting challenge faced by gauge field theories like QED
and quantum chromodynamics (QCD) [32]. Deriving the
angular momentum commutation relations from the basic pos-
tulated relation between the field and its canonical momentum
is also of fundamental significance. Here, we solve these two
fundamental problems in QED angular momentum decompo-
sition conclusively. Our work also leads to the derivation of
the angular momentum in classical electrodynamics theory
from the new operators discovered within quantum gauge-
field theory.

III. NEW OAM AND SAM OPERATORS FOR THE PHOTON

We utilize a quantum field theory framework to analyze
the spin and orbital angular momentum of the photon. In
quantum optics (nonrelativistic QED), only the transverse
degrees of freedom for the photon are quantized. In stark
contrast, our relativistic treatment shows that longitudinally
polarized photons are necessary to construct the full spin-1
operator for the photon. The subtle detail, overlooked previ-
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ously, becomes self-evident in our starting Lagrangian that
incorporates both the longitudinal part of the vector poten-
tial A and the scalar potential A0. These quantities cannot
be quantized with the standard Maxwell Lagrangian density
LM,ST = −FμνFμν/4μ0 (Fμν = ∂μAν − ∂νAμ is the EM field
tensor), because there is no canonical conjugate momentum
corresponding to the scalar field A0 and the longitudinal po-
tential A‖ with zero curl (∇ × A‖ = 0) has also been shown to
be a redundant dynamical variable (see Chap. II in Ref. [44]).

To obtain complete knowledge of the polarization de-
grees of freedom, we start from the gauge-fixed Maxwell
Lagrangian density [44,47]

LM = −(∂μAν )(∂μAν )/2μ0. (4)

The covariant quantization of the photon in the Lorenz gauge
can be realized by defining the canonically conjugate momen-
tum [44,47]

πμ = ∂LM

∂ (∂0Aμ)
= − 1

μ0
∂0Aμ, (5)

and postulating the fundamental equal-time commutation re-
lations (ETCRs),

[Aμ(x, t ), πν (x′, t )] = ih̄cgμνδ3(x − x′), (6)

[Aμ(x, t ), Aν (x′, t )] = [πμ(x, t ), πν (x′, t )] = 0, (7)

with the metric tensor gμν = diag{1,−1,−1,−1} of the
Minkowski space and the speed of light c = 1/

√
μ0ε0 in

vacuum. The photon Hamiltonian is given by

HM = − 1

2μ0

∫
d3x

[
μ2

0π
μπμ + (∇Aμ) · (∇Aμ)

]
. (8)

We note that πμ and Aμ are now quantum operators. But, to
highlight the spin degrees, we only add the ˆ symbol on the
spin matrices throughout this paper.

The fundamental connection between a continuous sym-
metry and and the corresponding conservation law was given
by Noether. Applying Noether’s theorem on the Lorentz rota-
tion symmetry [47], we obtain the angular momentum tensor
density from LM [48] (also see Appendix A),

Mμνλ
M = �

μλ
M xν − �

μν
M xλ + ∂LM

∂ (∂μAσ )
(Iνλ)στ Aτ (9)

= �
μλ
M xν−�

μν
M xλ− 1

μ0
[(∂μAν )Aλ−(∂μAλ)Aν], (10)

where �
μλ
M is the energy-momentum tensor and the infinites-

imal Lorentz transformation generator for the vector field is
given by

(Iαβ )μν = gαμgβν − gανgβμ, (11)

which is an antisymmetric matrix (Iαβ )μν = −(Iβα )μν . The
first two terms in Eq. (10) comes from the spatial coordinate
rotation and the last term denotes the contribution from the
“intrinsic” rotation between different components of the vec-
tor potential Aμ [47].

Focusing on the three-dimensional rotation symmetry, we,
arrive at the central result of our paper—the striking quantum
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operators of the spin and OAM of the photon,

SM = − 1

μ0c

∫
d3x(∂0A) × A = 1

c

∫
d3xπ × A (12)

and

LM = 1

μ0c

∫
d3x(∂0Aμ)x × ∇Aμ = −1

c

∫
d3xπμx × ∇Aμ,

(13)
from the rotations of the intrinsic and spatial degrees of free-
dom, respectively. Of course, given the long-standing nature
of the problem, fundamental checks are required to verify
these are indeed the SAM and OAM of photons. Utilizing
the ETCRs in Eqs. (6) and (7), we show that our defined
photon spin and OAM operators satisfy the standard angular
momentum commutation relations (see Appendices B and D)

[SM,i, SM, j] = ih̄εi jkSM,k, (14)

[LM,i, LM, j] = ih̄εi jkLM,k, (15)

[LM,i, SM, j] = 0, (16)

where εi jk is the three-dimensional Levi-Civita tensor and
i, j = 1, 2, 3. Deriving the commutation relations for the pho-
ton spin and OAM operators from the basic field ETCR ansatz
Eqs. (14) and (15) is of fundamental importance. This has
never been achieved till date. Note the other striking result—
the SAM and OAM operators of the photon commute. We also
emphasize that this commutation relation cannot be obtained
from the standard Maxwell Lagrangian density LM,ST under
the noncovariant quantization scheme.

It is well known that the Dirac spin operators obey SU(2)
symmetry. To clearly show the SO(3) symmetry in the quan-
tum spin degrees of the photon, we perform the plane-wave
expansions on the vector potential and its canonically conju-
gate momentum (see Chap. 7 in Ref. [47])

Aμ =
∫

d3k
3∑

λ=0

√
h̄

2ε0ωk(2π )3

[
ak,λε

μ(k, λ)eik·x + H.c.
]
,

(17)

πμ = i
∫

d3k
3∑

λ=0

√
h̄ωk

2μ0(2π )3

[
ak,λε

μ(k, λ)eik·x − H.c.
]
,

(18)

where ωk = c|k| is frequency of the mode with wave vector
k and the unit vectors ε(k, λ) describe the four polarization
photons. Following the convention [44,47], we let the two
unit vectors ε(k, 1) and ε(k, 2) denote the two transverse
modes, ε(k, 3) = (0, k/|k|) for the longitudinal photon, and
ε(k, 0) = (1, 0, 0, 0) for the scalar photon. In the following,
we also use ε(k, λ) to denote the spatial part of the four-
vector ε(k, λ). From the ETCR ansatz in Eqs. (6) and (7),
we can derive the familiar bosonic commutation relations
for the ladder operators [ak,λ, a†

k′,λ′] = −gλλ′δ3(k − k′) and

[ak,λ, ak′,λ′ ] = [a†
k,λ

, a†
k′,λ′] = 0.

Using the plane-wave expansion, we now re-express our
discovered photon spin operator Eq. (12) in an intuitive form

in wave-vector space (see Appendix C)

SM = h̄
∫

d3kφ
†
k ŝφk, (19)

where the column-vector φk = [ak,1, ak,2, ak,3]T is the field
operator of the photon in wave-vector space and the 3 × 3
matrix ŝ = ∑3

λ=1 ŝλε(k, λ) is the spin-1 operator of the photon
with the SO(3) rotation generators

ŝ1 =
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦, ŝ2 =

⎡
⎣ 0 0 i

0 0 0
−i 0 0

⎤
⎦,

ŝ3 =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦. (20)

Here, we see that our defined photon spin operator generates
the rotation of the polarization degrees of freedom of light.

The direction of our defined photon spin is completely
determined by the polarization [i.e., the unit vector ε(k, λ)]
of the photon. Thus, the spin operator indeed describes the
angular momentum carried by the polarization degrees of
freedom of the photon. This is significantly different from the
OAM of the photon that we obtain

LM = ih̄
∫

d3k
3∑

λ=0

gλλa†
k,λ

(k × ∇k)ak,λ, (21)

whose direction is fully determined by the orbital motion.
In Appendix C, we prove that counterrotating wave terms
ak,λa−k,λ′ and and a†

k,λ
a†

−k,λ′ both in the spin and OAM oper-
ators vanish since they change their sign when we relabel the
indices {k, λ} → {−k, λ′}. We also note that different from the
spin of Dirac field, the photon spin is not the intrinsic angular
momentum of light, because the polarization unit vectors ε are
dependent on the wave vector k.

There remain two subtle aspects that need further explo-
ration for developing a full quantum theory of photon spin.
First, there is a fundamental requirement in QED that a mea-
surable quantity cannot change under a gauge transformation.
However, both SM and LM defined above for the free-space
photon are not gauge invariant because longitudinal and scalar
photons are involved. Thus, they are not direct physical ob-
servables. We argue that this is a fundamental tenet in the
construction of the correct quantum theory because additional
hidden degrees of freedom are necessary to construct the
above quantum spin-1 operator for the free-space photon.
However, only two transverse polarizations are allowed for the
photon in free space. Second, in the presence of charges (Dirac
particles), the EM field acquires a longitudinal (near-field)
component that is beyond the transverse photons commonly
encountered in vacuum. Can we construct a gauge-invariant
photon spin operator in the presence of charges? Next, we will
answer this question conclusively and show how to incorpo-
rate the gauge invariance into the photon angular momenta.
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IV. GAUGE INVARIANT DECOMPOSITION OF QED
ANGULAR MOMENTUM

We now put forth a gauge invariant theoretical framework
to make connections to experimentally observable OAM and
SAM. We note that photons are massless gauge bosons under
the local U (1)-gauge symmetry of the standard (subscript
“ST”) QED Lagrangian density LQED,ST = ih̄cψ̄γ μ∂μψ −
mc2ψ̄ψ − qcψ̄γμAμψ +LM,ST. Thus, the gauge-dependence
problem can only be fully solved by a theoretical framework
that combines Dirac-Maxwell fields. This line of exploration
is a paradigm shift from previous approaches in the field of
photonics that do not use a fundamental QED theory including
Dirac particles for addressing this problem. We argue that
any measurement process of photon’s SAM and OAM nec-
essarily requires interaction with matter, i.e., Dirac-Maxwell
fields have to be analyzed as opposed to Maxwell fields alone.
Thus, conservation laws which emerge from the combined
Dirac-Maxwell-field angular momenta provides the clear path
towards analyzing experimental observables. Schematically,
this is depicted in Fig. 1 which deals with a relativistic quan-
tum scattering experiment of a photon with a Dirac particle
[49]. We put forth the OAM and SAM conservation laws
in this set-up to develop a theoretical framework for gauge
invariant SAM and OAM observables. We note that our defini-
tion of transverse and longitudinal follows the QED literature.
It is unrelated to classical transverse concept defined in rela-
tion to the propagation direction for plane waves.

We first start from a gauge noninvariant QED Lagrangian
density

LQED = ih̄cψ̄γ μ∂μψ − mc2ψ̄ψ − qcψ̄γμAμψ +LM,

(22)
where the gauge noninvariance arises from LM . We exploit
a novel redecomposition of the total angular momentum and
enforcement of the Lorenz gauge condition to obtain the
gauge-invariant SAM and OAM. To prove that our procedure
is exact, we arrive at the same striking result through an alter-
native path where the gauge issue can be solved by quantizing
the standard gauge-invariant Lagrangian density LQED,ST in
the Coulomb gauge (see Appendix G).

The total angular momentum of the combined Dirac-
Maxwell fields can be decomposed in two different ways
which we term as canonical and gauge-invarant decomposi-
tion.

A. Canonical decomposition

According to Noether’s theorem, the total QED angular
momentum obtained fromLQED contains four parts J = SD +
LD + SM + LM . The SAM and OAM of the photon have
been given in the previous part of the work. The SAM and
OAM of the Dirac field are given by SD = 1

2 h̄
∫

d3xψ†�̂ψ

and LD = −ih̄
∫

d3xψ†x × ∇ψ , respectively. All four parts
in the canonical decomposition satisfy the angular momentum
commutation relations and they commute with each other.
However, except for the Dirac spin, all the other three parts
in J are not gauge invariant.

B. Gauge-invariant decomposition

To obtain the gauge-invariant variables, we introduce the
concept of gauge flow. Here, we extract the parts in SM and
LM containing scalar and longitudinal photons and flow them
into the OAM of the Dirac field LD. Then, we obtain the
gauge-invariant decomposition of the total angular momen-
tum (superscript “obs”):

SD + LD + SM + LM = J = SD + Lobs
D + Sobs

M + Lobs
M . (23)

In Table II, we contrast the canonical decomposition of
the total QED angular momentum with this gauge invariant
decomposition. The gauge invariant part of our defined photon
SAM and OAM operators recovers the angular momentum of
light from CED [44] Sobs

M = ∫
d3ksk,3 = ε0

∫
d3xE⊥×A⊥ and

Lobs
M =−ih̄

∫
d3k

∑
λ=1,2 a†

k,λ
(k × ∇k)ak,λ =ε0

∫
d3xE j

⊥x × ∇Aj
⊥.

Here, sk,3 = ih̄(a†
k,2ak,1−a†

k,1ak,2)ε(k, 3) is the observable
spin density in k-space and we have used the relation
between π and the electric field E = −c(∂0A + ∇A0) =
cμ0π − c∇A0. This shows that the gauge-invariant part of
the photon spin Sobs

M only contains information from the
propagation direction within the full plane wave expansion
[see Eq. (19)]. We note that the Sobs

M is not the total photon
spin operator [44] as it does not obey angular momentum
commutation rules. Our result clearly shows that it is only the
transverse-field sector of the total photon spin (SM).

The hallmark of our work is that our proposed Maxwellian
SAM and OAM simultaneously recovers the correct OAM
and SAM of the Dirac field. The gauge-invariant OAM of the
Dirac field obtained from the above analysis is

Lobs
D =

∫
d3xψ†x × (−ih̄∇)ψ + Lpure, (24)

where Lpure is the pure gauge contribution from the EM field
(see Appendix E). We have verified that the mean value of
Lobs

D is gauge invariant.
There is another important physical observable related to

circularly polarized photons and closely related to the photon
spin—the photon helicity. Helicity is the magnitude of spin
projection on the propagating direction of the particle, which
is a Lorentz invariant scalar. Because only Sobs

M has compo-
nents in k-direction, thus the photon helicity is given by

�M =
∫

d3k
sk,3 · k

|k| = ih̄
∫

d3k(a†
k,2ak,1−a†

k,1ak,2). (25)

We argue that our decomposition J = SD + Lobs
D + Sobs

M +
Lobs

M embodies the correct physical behavior of QED angular
momentum. We arrive at two new fundamental commutation
relations for OAM of the Dirac fields as well as Maxwell fields[

Lobs
D,i , Lobs

D, j

] = ih̄εi jkLobs
D,k, (26)[

Lobs
M,i, Lobs

M, j

] = ih̄εi jkLobs
M,k . (27)

We note the perfect symmetry once again proving that exper-
imentally observable OAM for Dirac-Maxwell fields follows
the uncertainty principle.

The definition of the Dirac spin is in agreement with previ-
ous literature, which certainly satisfies the standard angular
momentum commutation relation [SD,i, SD, j] = ih̄εi jkSD,k .
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However, the observable (gauge-invariant) photon spin oper-
ators do not obey the above mentioned symmetry of the full
photon spin operator. As shown previously [8,9], the compo-
nents of the transverse-field photon spin commute with each
other [

Sobs
M,i, Sobs

M, j

] = 0. (28)

The fundamental reason is because this latter observable spin
operator does not contain the contribution from longitudinally
polarized photons, i.e., virtual photons. We emphasize that the
full spin operators for Dirac-Maxwell fields obtained by us
exhibits the perfect symmetry (Fig. 1).

As shown in Table III, our work marks a departure from
previous decompositions [27–30]. The four parts in the gauge-
invariant decomposition of J [right-hand side of Eq. (23)]
can be measured independently in experiment. This is true
since these operators commute with each other. Specifically,
we rigorously prove that the observable parts of the spin and
OAM of light commute (see Appendix F), i.e.,[

Lobs
M,i, Sobs

M, j

] = 0. (29)

We note that the (gauge-invariant) observable part of the total
photon angular momentum Jobs

M = Lobs
M + Sobs

M does not gener-
ate the rotations in space. Thus, it is distinct from the total full
quantum angular momentum JM = LM + SM . We rigorously
prove that the observable total angular momentum operator
leads to fundamentally new angular momentum commutation
relations, i.e., [Jobs

M,i , Jobs
M, j] = ih̄εi jkLobs

M,k �= ih̄εi jkJobs
M,k .

Recently the photonic spin density has been directly mea-
sured through interaction of light with a room temperature
quantum magnetometer [50]. Nitrogen vacancy (NV) centers
in diamond function as spin qubits which are sensitive to
magnetic fields as well as magnetic field fluctuations. It was
shown that a detuned laser beam which is circularly polarized
creates energy level shifts in the ground spin states of an
NV center that are analogous to an effective static magnetic
field. The experiment shows a coherent interaction between
the local spin density vector and the NV center which is
read out using the Ramsey interference protocol. We note
that the specific physical quantity which is being measured in
this experiment is the observable photonic spin density vector
(Sobs

M ). One future possibility is for this same experiment to
be extended to vector magnetometry using an OAM beam or
pulse. In the plane perpendicular to the propagating axis, the
mean values of both the photon spin and OAM vanish. How-
ever, their quantum uncertainties are not zero [51]. Thus, the
Heisenberg’s uncertainty relations for photonic OAM opera-
tors can be verified by measuring their quantum fluctuations
in orthogonal directions. This vector measurement is possible
through the relative alignment of the NV axis and the incident
light beam. Low temperatures will be needed to extend the
coherence time of the NV center to increase the sensitivity and
measure both mean values and fluctuations of the observable
photonic spin density vector. Therefore local photonic spin
density and spin noise can be measured via a nitrogen-vacancy
(NV) center, which functions as a nano-scale photonic spin
density sensor [50]. Along similar lines, the orbital photo-
galvanic effect [52,53] could be exploited to measure the
photonic OAM density and quantum fluctuations of OAM in
the transverse plane [51].
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V. CONCLUSION

We have discovered the quantum operator of the photon
spin providing the first QED theory of angular momentum.
Our approach involves Dirac-Maxwell fields in a quantum
gauge theory framework. We have proven a perfect symme-
try between the Dirac and Maxwell quantum spin operator
commutation relations. In experiment, our theory can be ver-
ified through interaction of photonic spin density with an NV
center [50] and the interaction of OAM density with two-
dimensional materials [52,53].
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APPENDIX A: ANGULAR MOMENTUM OF LIGHT FROM
NOETHER’S THEOREM

To obtain enough polarization degrees of freedom to con-
struct the full photon spin operator, we use the following
Maxwell Lagrangian density to quantize the electromagnetic
(EM) field in the Lorenz gauge covariantly [44,47],

LM = − 1

2μ0
(∂μAν )(∂μAν ). (A1)

We note that, different from the standard EM Lagrangian
density LM,ST = −(1/4μ0)FμνFμν , LM itself is not gauge
invariant. We will show how to eliminate the gauge depen-
dence in the physical quantities via the gauge condition in the
following.

These two Lagrangian density LM and LM,ST can be con-
nected via [44,47]

LM = LM,ST − 1

2
(∂μAμ)2 + 1

2
∂μ[Aν (∂νAμ) − (∂νAν )Aμ].

(A2)
The last four divergence term can be dropped since the EM
fields are assumed to tend to 0 sufficiently fast at infinity.
Under the Lorenz gauge condition ∂μAμ = 0, these two La-
grangian densities are equivalent to each other.

Noether’s theorem tells us that if the action W = ∫
d4xL

keeps invariant under a continuous symmetry transforma-
tion, a conserved quantity can be obtained (see Chap. 2 in
Ref. [47]). Applying the Noether’s theorem to the translation
symmetry, we obtain the canonical energy-momentum tensor

�
μν
M = ∂LM

∂ (∂μAσ )
∂νAσ − gμνLM (A3)

= − 1

μ0
(∂μAσ )(∂νAσ ) + 1

2μ0
gμν (∂ρAσ )(∂ρAσ ). (A4)

This leads to the conserved four-momentum vector

Pν
M =�0,ν

M =− 1

μ0
(∂0Aσ )(∂νAσ )+ 1

2μ0
g0ν (∂ρAσ )(∂ρAσ ).

(A5)

The time component of Pν
M gives the Hamiltonian (energy) of

the system HM = P0
M = ∫

d3xHM , with Hamiltonian density

HM = − 1

2μ0

[
(∂0Aσ )(∂0Aσ ) + (∇Aσ ) · (∇Aσ )

]
. (A6)

The spatial part of Pν
M gives the momentum of the EM field

PM = ε0

∫
d3xȦσ∇Aσ , (A7)

where we have divided an extra constant c to get the correct
dimension.

Similarly, applying Noether’s theorem to the three-
dimensional rotation symmetry [47], we obtain the angular
momentum tensor density

Mμνλ
M = �

μλ
M xν − �

μν
M xλ + ∂LM

∂ (∂μAσ )
(Iνλ)στ Aτ , (A8)

where infinitesimal generator of the Lorentz group for the
vector field is given by

(Iαβ )μν = gαμgβν − gανgβμ. (A9)

This generator is a an antisymmetric matrix

(Iαβ )μν = −(Iβα )μν. (A10)

Utilizing �
μν
M and LM , we have

Mμνλ
M = �

μλ
M xν −�

μν
M xλ− 1

μ0
(∂μAσ )(gνσ gλτ −gντ gλσ )Aτ

(A11)

= �
μλ
M xν − �

μν
M xλ − 1

μ0
[(∂μAν )Aλ − (∂μAλ)Aν].

(A12)

The total angular momentum Mi j
M can be obtained from

the angular momentum density Mμνλ
M by setting μ = 0 and

taking spatial components of ν and λ. Here, we split the total
angular momentum into two parts. The first one denotes the
OAM of light Li j

M = ∫
d3x(�0 j

M xi − �0i
Mx j ) and the second

part describes the “intrinsic” angular momentum (the spin) of
the vector field Si j

M = − 1
μ0

∫
d3x[(∂0Ai )Aj − (∂0Aj )Ai], with

i, j = x, y, z. It is straightforward to see that, in terms of three-
vectors with relation Jk

M = 1
2εi jkMi j [47], the OAM and SAM

of light can be rewritten as

LM = 1

μ0c

∫
d3x(∂0Aμ)x × ∇Aμ, (A13)

SM = − 1

μ0c

∫
d3x[(∂0A) × A]. (A14)

APPENDIX B: QUANTUM COMMUTATION RELATIONS
FOR ANGULAR MOMENTA

We now show how to obtain the standard quantum commu-
tation relations for the angular momentum of light within the
canonical quantization framework. We first define the canoni-
cal conjugate momentum of light

πμ = ∂LM

∂ (∂0Aμ)
= − 1

μ0
∂0Aμ. (B1)
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Then, we can rewrite the Hamiltonian, SAM, and OAM of the photon as

HM = − 1

2μ0

∫
d3x

[
μ2

0π
μπμ + (∇Aμ) · (∇Aμ)

]
, (B2)

SM = 1

c

∫
d3xπ × A, (B3)

LM = −1

c

∫
d3xπμx × ∇Aμ. (B4)

The EM field is quantized by postulating the equal-time commutation relations,

[Aμ(x, t ), πν (x′, t )] = ih̄cgμνδ3(x − x′), (B5)

[Aμ(x, t ), Aν (x′, t )] = [πμ(x, t ), πν (x′, t )] = 0. (B6)

We now verify the canonical angular momentum commutation relations

[LM,i, LM, j] = 1

c2

∫
d3x

∫
d3x′[πm(x)(x × ∇)iAm(x), πm′ (x′)(x′ × ∇′) jAm′ (x′)]

= − ih̄

c

∫
d3x

∫
d3x′{πm(x′)(x′ × ∇′) jδ

3(x − x′)(x × ∇)iAm(x) − πm(x)(x × ∇)iδ
3(x − x′)(x′ × ∇′) jAm(x′)

}
(B7)

= − ih̄

c

∫
d3x{πm(x)(x × ∇) j (x × ∇)iAm(x) − πm(x)(x × ∇)i(x × ∇) jAm(x)} (B8)

= − ih̄

c

∫
d3x{πm(x)εi jk (x × ∇)kAm(x)} = ih̄εi jkLM,k, (B9)

[SM,i, SM, j] = 1

c2
εiklε jk′l ′

∫
d3x

∫
d3x′[πk (x)Al (x), πk′ (x′)Al ′ (x′)] (B10)

= 1

c2
εiklε jk′l ′

∫
d3x

∫
d3x′{πk (x)[Al (x), πk′ (x′)]Al ′ (x′) + πk′ (x′)[πk (x), Al ′ (x′)]Al (x)} (B11)

= − ih̄

c
d3x[εiklε jll ′πk (x)Al ′ (x) − εiklε jk′kπk′ (x)Al (x)] = ih̄εi jkSM,k, (B12)

[LM,i, SM, j] = − 1

c2

∫
d3x

∫
d3x′[πm(x)(x × ∇)iAm(x), ε jklπk (x′)Al (x′)] (B13)

= ih̄

c
ε0

∫
d3x

∫
d3x′ε jkl

{
πk (x)(x × ∇)iδ

3(x − x′)Al (x′) − πk (x′)δ3(x − x′)(x × ∇)iAl (x)
}

(B14)

= − ih̄

c
ε0

∫
d3x

∫
d3x′ε jkl{[(x × ∇)iπk (x)]Al (x) + πk (x)(x × ∇)iAl (x)} (B15)

= − ih̄

c
ε0

∫
d3x

∫
d3x′ε jkl{−πk (x)(x × ∇)iAl (x) + πk (x)(x × ∇)iAl (x)} = 0, (B16)

where we have used the partial integral techniques and the identities

εikmε jlm = δi jδkl − δilδkm. (B17)

APPENDIX C: KEY ROLE OF LONGITUDINAL DEGREES OF FREEDOM

To clearly show the role of polarization degrees of the Maxwell fields, we perform the plane-wave expansions to the field
operators as given in Eqs. (17) and (18). The plane-wave expansion of the Dirac field has been well studied. Here, we mainly
focus on the expansion of the SAM and OAM of photons. The polarization unit vectors in Eqs. (17) and (18) satisfy the four-
dimensional orthonormal conditions

εμ(k, λ)εμ(k, λ′) = gλλ′ . (C1)

and the covariant completeness relation [47]

3∑
λ=0

gλλεμ(k, λ)εν (k, λ) = gμν, (C2)
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where gλλ at the left-hand side denotes the sign ±1 instead of the metric tensor. Here, we emphasize that the plane-wave
expansion of πμ is not obtained via the relation in Eq. (B1). Equations (17) and (18) function more like the definition of
the ladder operators. We note that the photonic angular momentum relations in Eqs. (14)–(16) can also be verified via their
plane-wave expansions in the k-space as shown in Appendix D.

We can re-express the ladder operators ak,λ and a†
k,λ

with canonical field variables Aμ and πμ via the inverse transformation

ak,λ = gλλ

∫
d3x

√
ε0

2h̄ωk(2π )3

[
ωkAμ(x) − i

ε0
πμ(x)

]
εμ(k, λ)e−ik·x, (C3)

a†
k,λ

= gλλ

∫
d3x

√
ε0

2h̄ωk(2π )3

[
ωkAμ(x) + i

ε0
πμ(x)

]
εμ(k, λ)eik·x. (C4)

Utilizing the quantization ansatz Eqs. (B5) and (B6) for the photon, we can verify that the ladder operators satisfy the bosonic
commutations

[ak,λ, a†
k′,λ′ ] = −gλλ′δ3(k − k′), (C5)

[ak,λ, ak′,λ′ ] = [a†
k,λ

, a†
k′,λ′] = 0. (C6)

The plane-wave expansion of the Hamiltonian HM and the momentum PM of the photon have been given in the textbook
[44,47]. Here, we give some details,

HM =
∫

d3xHM = −1

2

∫ (
μ0π

μπμ + 1

μ0
(∇Aμ) · (∇Aμ)

)
d3x

= −
∫

d3x
∫

d3k
∫

d3k′∑
λλ′

h̄

4(2π )3√ωkωk′
εμ(k, λ)εμ(k′, λ′)

(
ωkωk′ +c2k · k′)[ak,λa†

k′,λ′e
−i(k−k′ )·x +a†

k,λ
ak′,λ′ei(k−k′ )·x

−ak,λak′,λ′e−i(k+k′ )·x − a†
k,λ

a†
k′,λ′e

i(k+k′ )·x] = −
∫

vd3k
h̄ωk

2

∑
λλ′

εμ(k, λ)εμ(k, λ′)(ak,λa†
k,λ′ +a†

k,λ
ak,λ′ )

= −1

2

∫
d3kh̄ωk

∑
λ

gλλ(ak,λa†
k,λ

+ a†
k,λ

ak,λ) (C7)

=
∫

d3kh̄ωk
(
a†

k,1ak,1+a†
k,2ak,2+a†

k,3ak,3−a†
k,0ak,0

)
, (C8)

where the normal-ordering has been taken in the last step. We note that the counterrotating wave terms (i.e., ak,λak′,λ′ and
a†

k,λ
a†

k′,λ′) vanish due to (ωkωk′ + c2k · k′) = 0 when k = −k′. No rotating wave approximation has been taken here.
We also note that there are three main problems in the covariant quantization in the Lorenz gauge: (1) the Hamiltonian is not

gauge invariant; (2) the frequency of the scalar photon is negative; (3) the norm of the scalar-photon state can be negative, i.e.,
〈0|ak,0a†

k,0|0〉 = −1. The first two problems can be solved simultaneously by enforcing the Gupta-Bleuler constraint [54,55],
which is the quantum version of the Lorenz gauge condition. This gauge condition is essential to obtain the quantum Maxwell
equation and to remove the gauge dependence in the Lorenz-gauge quantization framework. The last problem can be solved by
exploiting Dirac’s indefinite metric in space of quantum states [54–56] (also see Chap. V in Ref. [44]).

Similarly, the momentum of the EM field is expanded as

PM = ε0

∫
d3xȦσ ∇Aσ = −1

c

∫
d3xπμ∇Aμ (C9)

=
∫

d3k
(
a†

k,1ak,1+a†
k,2ak,2+a†

k,3ak,3−a†
k,0ak,0

)
h̄k. (C10)

In the plane-wave expansion of PM , fast-oscillating counterrotating wave terms also cancel out with each other, i.e.,

1

2

∑
λλ′

∫
d3kh̄kak,λa−k,λ′εμ(k, λ)εμ(−k, λ′) = 1

4

∑
λλ′

∫
d3kh̄k(ak,λa−k,λ′+a−k,λ′ak,λ)εμ(k, λ)εμ(−k, λ′)

= 1

4

∑
λλ′

∫
d3kh̄kak,λa−k,λ′[εμ(k, λ)εμ(−k, λ′) − εμ(−k, λ′)εμ(k, λ)] = 0,

(C11)

where we have used the property [ak,λ, a−k,λ′ ] = 0 and the four-vector inner product does not dependent on the order of the two
vectors. Similar argument shows that a†

kλ
, a†

−k,λ′ terms also vanish.
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The SAM of the Maxwell field can be expanded as

SM = − 1

μ0c

∫
d3x(∂0A) × A = 1

c

∫
d3xπ × A (C12)

= ih̄

2(2π )3

∫
d3k

∫
d3k′

∫
d3x

3∑
λ,λ′=1

√
ωk

ωk′
[ak,λε(k, λ)eik·x−a†

k,λ
ε(k, λ)e−ik·x][ak′,λ′ε(k′, λ′)eik′·x+a†

k′,λ′ε(k, λ′)e−ik′ ·x] (C13)

= ih̄
∫

d3k[(a†
k,3ak,2−a†

k,2ak,3)ε(k, 1)+(a†
k,1ak,3−a†

k,3ak,1)ε(k, 2)+(a†
k,2ak,1−a†

k,1ak,2)ε(k, 3)] ≡ ih̄
∫

d3k
3∑

λ=1

sk,λ,

(C14)

with

sk,1 = (a†
k,3ak,2 − a†

k,2ak,3)ε(k, 1), (C15)

sk,2 = (a†
k,1ak,3 − a†

k,3ak,1)ε(k, 2), (C16)

sk,3 = (a†
k,2ak,1 − a†

k,1ak,2)ε(k, 3). (C17)

Now, we show that the counterrotating wave terms in the photon spin also vanish,

ih̄

2

∑
λλ′

∫
d3kak,λa−k,λ′ε(k, λ) × ε(−k, λ′) = ih̄

4

∑
λλ′

∫
d3k[ak,λa−k,λ′ + a−k,λ′ak,λ]ε(k, λ) × ε(−k, λ′)

= ih̄

4

∑
λλ′

∫
d3kak,λa−k,λ′ [ε(k, λ) × ε(−k, λ′) + ε(−k, λ′) × ε(k, λ)] = 0.

(C18)

Similar argument also applies to the terms a†
kλ

, a†
−k,λ′ .

The Maxwell OAM can be expanded as

LM = 1

μ0c

∫
d3x(∂0Aμ)x × ∇Aμ = −1

c

∫
d3xπμx × ∇Aμ (C19)

= − h̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′

3∑
λ′,λ=0

εμ(k, λ)εμ(k′, λ′)
√

ωk

ωk′
[ak,λeik·x(x × k′)a†

k′,λ′e
−ik′ ·x + a†

k,λ
e−ik·x(x × k′)ak′,λ′eik′ ·x]

= h̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′

3∑
λ,λ′=0

εμ(k, λ)εμ(k′, λ′)
√

ωk

ωk′
[ak,λa†

k′,λ′e
ik·x(k′ × x)e−ik′ ·x + a†

k,λ
ak′,λ′e−ik′ ·x(k′ × x)eik·x]

= ih̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′

3∑
λ,λ′=0

εμ(k, λ)εμ(k′, λ′)
√

ωk

ωk′
[ak,λa†

k′,λ′e
ik·x(k′ × ∇k′ )e−ik′ ·x − a†

k,λ
ak′,λ′e−ik·xk′ × ∇k′eik′ ·x]

= − ih̄

2

∫
d3k

3∑
λ=0

gλλ[ak,λ(k × ∇k)a†
k,λ

− a†
k,λ

(k × ∇k)ak,λ] = ih̄
∫

d3k
3∑

λ=0

gλλa†
k,λ

(k × ∇k)ak,λ. (C20)

Here, gλλ is the element of the metric tensor and we have used the identity εμ(k, λ)εμ(k, λ′) = gλ,λ′
. Now, we show that the

counterrotating wave terms in the OAM of light also vanish,

ih̄

2

∑
λλ′

∫
d2k[ak,λ(k × ∇k)a−k,λ′ ]εμ(k, λ)εμ(−k, λ′) = − ih̄

2

∑
λλ′

∫
d2k[a−k,λ′ (k × ∇k)ak,λ]εμ(k, λ)εμ(−k, λ′)

= − ih̄

2

∑
λλ′

∫
d2k[ak,λ(k × ∇k)a−k,λ′]εμ(k, λ)εμ(−k, λ′) = 0,

where we have performed the partial integral in the first step and used the fact that the four-vector inner product
εμ(k, λ)εμ(−k, λ′) is independent on k.

023165-11



YANG, KHOSRAVI, AND JACOB PHYSICAL REVIEW RESEARCH 4, 023165 (2022)

Utilizing the generators of the SO(3) rotation group, we
can re-express the photon spin in the same form of the Dirac
spin

SM = h̄
∫

d3kφ
†
k ŝφk, (C21)

where the column vector φk = [ak,1, ak,2, ak,3]T is the field
operator of the Maxwell field in wave-vector space and the
3 × 3 matrix ŝ = ∑3

λ=1 ŝλε(k, λ) is the spin operator of the
Maxwell field with

ŝ1 =
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦, ŝ2 =

⎡
⎣ 0 0 i

0 0 0
−i 0 0

⎤
⎦,

ŝ3 =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦, (C22)

satisfying the commutation relation [ŝi, ŝ j] = iεi jk ŝk .
In Chap. 2 of the textbook in Ref. [57], the authors defined

the four-vector photon spin operator as the quantum Stokes
parameter operators

�0 =
∫

d3k(a†
k,1ak,1 + a†

k,2ak,2), (C23)

�1 =
∫

d3k(a†
k,1ak,2 + a†

k,2ak,1), (C24)

�2 = i
∫

d3k(a†
k,2ak,1 − a†

k,1ak,2), (C25)

�3 =
∫

d3k(a†
k,1ak,1 − a†

k,2ak,2). (C26)

However, this definition has two serious problems. First, none
of these four operators is an integer-spin operator, because
an extra factor 2 exists in the commutation relations, i.e.,
[�i, � j] = 2iεi jk�k . Second, the direction of this “photon
spin” is completely undetermined, because they are con-
structed in a phase space instead of the real spacetime. This is
significantly different from our defined photon spin operators
or the Dirac spin operators as shown in the following.

In the following, we will use the expansion of the electric
field E = −c(∂0A + ∇A0) = cμ0π − c∇A0 and the magnetic

field B = ∇ × A,

E(x) = i
∫

d3k

√
h̄ωk

2ε0(2π )3
{[ak,1ε(k, 1) + ak,2ε(k, 2)

+ (ak,3 − ak,0)ε(k, 3)]eik·x − H.c.
}
, (C27)

B(x) = i

c

∫
d3k

√
h̄ωk

2ε0(2π )3

× {[ak,1ε(k, 2) − ak,2ε(k, 1)]eik·x − H.c.}. (C28)

APPENDIX D: ANGULAR COMMUTATION RELATIONS
REVISIT

Utilizing the commutation relations of the ladder operators
[ak,λ, a†

k′,λ′ ] = −gλλ′δ3(k − k′), we now recheck the commu-
tation relations of SM and LM . We start from the photon spin

[SM,iSM, j] = −h̄2
∫

d3k
∫

d3k′[sk,λ, sk′,λ′ ]εi(k, λ)ε j (k, λ′)

(D1)

= −h̄2
∫

d3kελλ′λ′′εi(k, λ)ε j (k, λ′)sk,λ′′ , (D2)

where we have used the expansion ei = εi(k, λ)ε(k, λ) (λ =
1, 2, 3) of the unit vectors ei (i = x, y, z) of a local fixed
coordinate with the k-dependent polarization vectors ε(k, λ)
and the relation [sk,λ, sk′,λ′ ] = δ3(k − k′)ελλ′λ′′sk,λ′′ for sk,λ in
Eqs. (C17)–(C17). The cross product of two unit vectors will
give

(ei × e j )λ′′ = ελλ′λ′′εi(k, λ)ε j (k, λ′) = εi jlεl (k, λ′′). (D3)

Then, we obtain the stand commutation relation for SAM of
the Maxwell field

[SM,i, SM, j] = −h̄2
∫

d3kεi jl sk,λ′′εl (k, λ′′) = ih̄εi jl SM,l .

(D4)
Similarly, we check the OAM commutation relation

[LM,i, LM, j] = −h̄2
∫

d3k
∫

d3k′ ∑
λ,λ′

[a†
k,λ

(k × ∇k)iak,λ, a†
k′,λ′ (k

′ × ∇k′ ) jak′,λ′ ] (D5)

= h̄2
∫

d3k
∫

d3k′ ∑
λ

gλλ[a†
k,λ

(k × ∇k)iδ
3(k − k′)(k′ × ∇k′ ) jak′,λ − a†

k′,λ(k′ × ∇k′ ) jδ
3(k − k′)(k × ∇k)iak,λ]

(D6)

= −h̄2
∫

d3k
∑

λ

gλλ{[(k × ∇k)ia
†
k,λ

](k × ∇k) jak,λ − [
(k × ∇k) ja

†
k,λ

]
(k × ∇k)iak,λ} (D7)

= h̄2
∫

d3k
∑

λ

gλλ{a†
k,λ

[(k × ∇k)i(k × ∇k) j − (k × ∇k) j (k × ∇k)i]ak,λ} (D8)

= −h̄2
∫

d3k
∑

λ

gλλa†
k,λ

εi jk (k × ∇k)kak,λ = ih̄εi jkLM,k . (D9)
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Finally, we show that SM and LM commute with each other

[SM,i, LM, j] =
[

ih̄
∫

d3ksk,λεi(k, λ), LM, j

]
= 0, (D10)

where we have used the fact that[
ih̄

∫
d3ksk1εi(k, λ), LM, j

]

= −h̄2
∫

d3k
∫

d3k′gλλεi(k, λ)[(a†
k,3ak,2 − a†

k,2ak,3), a†
k′,λ(k′ × ∇k′ )iak′,λ] (D11)

= h̄2
∫

d3k
∫

d3k′εi(k, λ)[a†
k,3(k × ∇k)iak,2 − a†

k,3(k × ∇k)iak,2 − a†
k,2(k × ∇k) jak,3 + a†

k,2(k × ∇k) jak,3] = 0, (D12)

and [ih̄
∫

d3ksk2, LM, j] = [ih̄
∫

d3ksk3, LM, j] = 0.

APPENDIX E: GAUGE-INVARIANT ANGULAR
MOMENTUM OBSERVABLES

In this section, we show how to recover the gauge in-
variance of the QED angular momentum. To fully solve this
problem, we start from the Lagrangian density of the com-
bined Dirac-Maxwell fields,

LQED = ih̄cψ̄γ μ∂μψ − mc2ψ̄ψ

− 1

2μ0
(∂μAν )(∂μAν ) − qcψ̄γμAμψ, (E1)

where ψ is the Dirac field operator, ψ̄ = ψ†γ 0, and
γ 0 = β, γ i = βαi, i = 1, 2, 3, (E2)

with

β =
[

I 0
0 −I

]
, αi =

[
0 σi

σi 0

]
, (E3)

the 2 × 2 identity matrix I , and the Pauli matrices σi.
From the Noether’s theorem, we obtain the total angu-

lar momentum of the system J = SD + LD + SM + LM . The
SAM and OAM of the Dirac field have been well studied and
understood

SD = 1

2
h̄

∫
d3xψ†�̂ψ, (E4)

LD =
∫

d3xψ†x × pψ, (E5)

where

�̂ =
[
σ̂ 0
0 σ̂

]
(E6)

is the Dirac spin operator. Utilizing the anticommutation rules
of the Dirac field,

[ψr (x, t ), ψ†
r′ (x′, t )]+ = δrr′δ3(x − x′), (E7)

[ψr (x, t ), ψr′ (x′, t )]+ = [ψ†
r (x, t ), ψ†

r′ (x′, t )]+ = 0, (E8)

we can verify the commutation relations for the angular mo-
mentum of the Dirac field,

[SD,i, SD, j] = ih̄εi jkSD,k, (E9)

[LD,i, LD, j] = ih̄εi jkLD,k, (E10)

[LD,i, SD, j] = 0. (E11)

We can easily check that the angular momenta of the Dirac
and Maxwell fields commute with each other, because the
quantum operators of these two fields act on different Hilbert
spaces.

To obtain the gauge-invariant parts of the SAM and OAM
of photons, we split both the vector potential A = A⊥ + A‖
and the canonical momentum operator π = π⊥ + π‖ into
transverse and longitudinal parts [29], where

∇ · A⊥ = 0, ∇ × A‖ = 0, (E12)

∇ · π⊥ = 0, ∇ × π‖ = 0. (E13)

Then, the total photon spin can be split into three parts,

SM = 1

c

∫
d3x[π⊥ × A⊥ + π‖ × A⊥ + π⊥ × A‖], (E14)

where the contribution from π‖ × A‖ is zero. The gauge-
invariant part of the photon spin is

Sobs
M = 1

c

∫
d3xπ⊥ × A⊥ = ih̄

∫
d3k(a†

k,2ak,1−a†
k,1ak,2)ε(k, 3).

(E15)
Similarly, the total OAM of the photon can be split into

LM = 1

c

∫
d3x[π j

⊥x × ∇Aj
⊥ + π

j
‖ x × ∇Aj

‖ − π0x × ∇A0],

(E16)
and its gauge-invariant part is given by

Lobs
M = 1

c

∫
d3xπ j

⊥x × ∇Aj
⊥ =−ih̄

∫
d3k

∑
λ=1,2

a†
k,λ

(k × ∇k)ak,λ.

(E17)

Using the relations between the transverse part of π and E, we
can rewrite Sobs

M and Lobs
M as

Sobs
M = ε0

∫
d3xE⊥ × A⊥, (E18)

Lobs
M = ε0

∫
d3xE j

⊥x × ∇Aj
⊥, (E19)

which reduce to the angular momentum of the classical trans-
verse EM field exactly.

The gauge-invariant OAM of the Dirac field is given by

Lobs
D = LD + LM + SM − Lobs

M − Sobs
M ≡ LD + Lpure, (E20)
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where

Lpure = 1

c

∫
d3x[π‖ × A⊥ + π⊥ × A‖ + π

j
‖ x × ∇Aj

‖

− π0x × ∇A0], (E21)

is a pure-gauge contribution. We note that Lpure contains the
OAM of both longitudinal and scalar photons.

The pure-gauge term Lpure = Lpure,S + Lpure,L contains the
contributions from both the photon spin

Lpure,S = 1

c

∫
d3x(π‖ × A⊥ + π⊥ × A‖) (E22)

and the photon OAM

Lpure,L = 1

c

∫
d3x(π j

‖ x × ∇Aj
‖ − π0x × ∇A0). (E23)

We show that Lpure,S will vanish except some surface terms.
Using the relations

π⊥ × A‖ = (π⊥ · ∇)x × A‖ − x × (π⊥ · ∇)A‖, (E24)

π‖ × A⊥ = (π‖ · ∇)x × A⊥ − x × (π‖ · ∇)A⊥, (E25)

we rewrite Lpure,S as

Lpure,S =
∫

d3x

[
1

c
(π⊥ · ∇)x × A‖ − 1

c
x × (π⊥ · ∇)A‖

+1

c
(π‖ · ∇)x × A⊥ − 1

c
x × (π‖ · ∇)A⊥

]
. (E26)

Then, using the identity

(π⊥ · ∇)x × A‖ = ∇ · [π⊥(x × A‖)] − (∇ · π⊥)(x × A‖)

= ∇ · [π⊥(x × A‖)],

(π‖ · ∇)x × A⊥ = ∇ · [π‖(x × A⊥)] − (∇ · π‖)(x × A⊥),

we have

Lpure,S =
∫

d3x

[
−1

c
x × (π⊥ · ∇)A‖ − 1

c
(∇ · π‖)

× (x × A⊥) − 1

c
x × (π‖ · ∇)A⊥

]
, (E27)

where we have neglected the surface integrals of π⊥(x × A‖)
and π‖(x × A⊥).

Now, we perform the plane-wave expansion for the remain-
ing three terms in Lpure,S,

−
∫

d3xx × (π⊥ · ∇)A‖ = 0, (E28)

−1

c

∫
d3x(∇ · π‖)(x × A⊥) (E29)

= h̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′ ∑

λ=1,2

√
ωk

ωk′
|k|[ak,3eik·x + a†

k,3e−ik·x]x × ε(k′, λ)[ak′,λeik′ ·x + a†
k′,λe−ik′·x] (E30)

= ih̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′ ∑

λ=1,2

√
ωk

ωk′
|k|[−ak,3∇keik·x + a†

k,3∇ke−ik·x] × ε(k′, λ)[ak′,λeik′ ·x + a†
k′,λe−ik′ ·x] (E31)

= ih̄

2

∫
d3k

∫
d3k′ ∑

λ=1,2

√
ωk

ωk′
|k|[a†

k,3∇k × ε(k′, λ)ak′,λδ
3(k − k′) − ak,3∇k × ε(k′, λ)a†

k′,λδ
3(k − k′)

+a†
k,3∇k × ε(k′, λ)a†

k′,λδ
3(k + k′) − ak,3∇k × ε(k′, λ)ak′,λδ

3(k + k′)] (E32)

= ih̄

2

∫
d3k

∑
λ=1,2

|k|[a†
k,3∇k × ε(k, λ)ak,λ − ak,3∇k × ε(k, λ)a†

k,λ
+ a†

k,3∇k × ε(−k, λ)a†
−k,λ

− ak,3∇k × ε(−k, λ)a−k,λ],

(E33)

−1

c

∫
d3xx × (π‖ · ∇)A⊥ (E34)

= h̄

2(2π )3

∫
d3x

∫
d3k

∫
d3k′ ∑

λ=1,2

√
ωk

ωk′

k · k′

|k| [ak,3eik·x − a†
k,3e−ik·x]x × ε(k′, λ)[ak′,λeik′ ·x − a†

k′,λe−ik′ ·x] (E35)

= − ih̄

2

∫
d3k

∫
d3k′ ∑

λ=1,2

√
ωk

ωk′

k · k′

|k| [a†
k,3∇k × ε(k′, λ)ak′,λδ

3(k − k′) − ak,3∇k × ε(k′, λ)a†
k′,λδ

3(k − k′)

−a†
k,3∇k × ε(k′, λ)a†

k′,λδ
3(k + k′) + ak,3∇k × ε(k′, λ)ak′,λδ

3(k + k′)] (E36)

= − ih̄

2

∫
d3k

∑
λ=1,2

|k|[a†
k,3∇k × ε(k, λ)ak,λ − ak,3∇k × ε(k, λ)a†

k,λ
+ a†

k,3∇k × ε(−k, λ)a†
−k,λ

− ak,3∇k × ε(−k, λ)a−k,λ].

(E37)

Here, we see Lpure,S vanishes.
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Thus, only the OAM of the light contributes to the OAM
of the Dirac field

Lpure =Lpure,L = ih̄
∫

d3k(a†
k,0k × ∇kak,0−a†

k,3k × ∇kak,3).

(E38)

Next, we show how to remove the gauge-dependence in Lobs
D

by enforcing the Gupta-Bleuler gauge constraint.

1. Gupta-Bleuler condition in the Lorenz gauge

To guarantee that the Lagrangian LQED gives the correct
motion equations, we need to add the gauge constraint on
the four-potential Aμ. In classical electrodynamics, the Lorenz
condition ∂μAμ = 0 has been applied [58]. However, this
gauge condition cannot be generalized as an operator identity
directly. We can easily verify that [57]

[∂μAμ(x, t ), Aν (x′, t )] = ih̄cμ0g0,νδ
3(x − x′) �= 0. (E39)

Thus, ∂μAμ cannot be a zero operator. This problem has
been solved by Gupta and Bleuler independently [54,55], by
enforcing the following constraint for all physical state |�〉

∂μA(+)
μ |�〉 = 0, 〈�|∂μA(−)

μ = 0, (E40)

where A(+)
μ and A(−)

μ are the positive and negative frequency
parts of Aμ, respectively. The summation of the positive and
negative frequency parts recovers the classical Lorenz-gauge
condition,

〈�|∂μAμ|�〉 = 〈�|(∂μA(+)
μ + ∂μA(−)

μ )|�〉 = 0. (E41)

Thus, the Gupta-Bleuler condition is the quantum version of
the Lorenz gauge condition. Bleuler has also generalized the
upper constraint to the case when the EM field is coupled to
a charge. However, as shown in the Chap. V of Ref. [44],
a more straightforward way is to calculate the Heisenberg
equation for A(+)

0 after performing the plane-wave expansion
of Aμ.

The full Hamiltonian describing the interaction of Dirac-
Maxwell fields in the Lorenz gauge is given by [44]

H = HD + HT
M + HL

M + HS
M + HT

int + HL
int + HS

int, (E42)

with the Dirac Hamiltonian

HD =
∫

d3xψ†(x, t )(cα · p + βmc2)ψ (x, t ), (E43)

the transverse, longitudinal, and scalar modes of the Maxwell
field

HT
M =

∫
h̄ωk(a†

k,1ak,1 + a†
k,2ak,2)d3k, (E44)

HL
M =

∫
h̄ωka†

k,3ak,3d3k, (E45)

HS
M = −

∫
h̄ωka†

k,0ak,0d3k. (E46)

Using the definitions of the charge density and current opera-
tors,

ρe(x) = qψ†(x)ψ (x), (E47)

je(x) = qcψ†(x)αψ (x), (E48)

the interaction parts are given by

HT
int + HL

int = −
∫

d3x je(x) · A(x)

=−
∫

d3kh̄ωk

3∑
λ=1

[
a†

k,λ
ξ(k) · ε(k, λ) + H.c.

]
,

(E49)

HS
int = c

∫
d3xρe(x)A0(x)

=
∫

d3kh̄ωk[ξ0(k)a†
k,0 + ξ ∗

0 (k)ak,0], (E50)

where

ξ0(k) = c

h̄ωk

√
h̄

2ε0ωk(2π )3

∫
d3xρe(x)e−ik·x, (E51)

ξ(k) = 1

h̄ωk

√
h̄

2ε0ωk(2π )3

∫
d3x je(x)e−ik·x. (E52)

We now give the Gupta-Bleuler condition for the coupled
Dirac-Maxwell fields. In the Heisenberg picture, the motion
equation of the scalar field is given by

ȧk,0 = i

h̄
[H, ak,0] = −iωk[ak,0 − ξ0(k)]. (E53)

Here, we see that the time-dependence of the scalar annihi-
lation operator does not follow the free-field one ak,0(t ) �=
ak,0(0) exp−iωkt , due to the coupling to the Dirac field.

The Gupta-Bleuler condition requires that the four-
divergence of the positive frequency part of Aμ acting on any
physical state |�〉 equals zero. To hold for all plane-wave
modes, this requires [44][

1

c
ȧk,λ + i|k|ak,3

]
|�〉 = i|k|[ak,3 − ak,0 + ξ0(k)]|�〉 = 0,

(E54)
i.e.,

[ak,3 − ak,0 + ξ0(k)]|�〉 = 0. (E55)

We emphasize that the Gupta-Bleuler condition for the com-
bined system in the Lorenz gauge is different from the
free-space one [47,54], which do not have the shift ξ0(k).

Applying the Gupta-Bleuler constraint Eq. (E55) and its
Hermitian conjugate to Eq. (E38), we have

〈�|Lpure|�〉 = ih̄
∫

d3k{〈�|[a†
k,3 + ξ ∗

0 (k)](k × ∇k)[ak,3 + ξ0(k)]|�〉 − 〈�|ξ0(k)(k × ∇k)a†
k,3|�〉} (E56)

= ih̄
∫

d3k{〈�|[ξ ∗
0 (k)(k × ∇k)ak,3 − ξ0(k)(k × ∇k)a†

k,3]|�〉 + 〈�|ξ0(k)(k × ∇k)ξ ∗
0 (k)|�〉}. (E57)
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The last term vanishes due to the identity,

ξ0(−k)(−k × ∇−k)ξ ∗
0 (−k) = ξ ∗

0 (k)(k × ∇k)ξ0(k), (E58)

where we have used the fact ξ0(−k) = ξ ∗
0 (k). Using the following plane-wave expansion,

−q
∫

d3xψ†x × A‖ψ = −
∫

d3x
∫

d3k

√
h̄

2ε0ωk(2π )3
ρe(x)x × [ak,3ε(k, 3)eik·x + a†

k,3ε(k, 3)e−ik·x] (E59)

=
∫

d3x
∫

d3k

√
h̄

2ε0ωk(2π )3
ρe(x)[ak,3ε(k, 3) × xeik·x + a†

k,3ε(k, 3) × xe−ik·x] (E60)

=
∫

d3x
∫

d3k

√
h̄

2ε0ωk(2π )3
ρe(x)

[
ak,3

k
|k| × (−i∇k)eik·x + a†

k,3

k
|k| × (i∇k)e−ik·x

]
(E61)

= i
∫

d3x
∫

d3k

√
h̄

2ε0ωk(2π )3
ρe(x)

[
eik·x k

|k| × ∇kak,3 − e−ik·x k
|k| × ∇ka†

k,3

]
(E62)

= ih̄
∫

d3k
[
ξ ∗

0 (k)(k × ∇k)ak,3 − ξ0(k)(k × ∇k)a†
k,3

]
, (E63)

we have

〈�|Lpure|�〉 = 〈�| − q
∫

d3xψ†x × A‖ψ |�〉, (E64)

which guarantees that the mean value 〈�|Lobs
D |�〉 is gauge invariant.

APPENDIX F: COMMUTATION RELATIONS FOR THE OBSERVABLES

In Table II, we summarize the commutation relations between the angular momenta of the QED system for both canonical and
gauge-invariant decompositions. In this section, we focus on the commutation relations for the gauge-invariant decomposition
of the total QED angular momentum, which is given by: J = Lobs

D + SD + Lobs
M + Sobs

M .
It is easy to check that [

Sobs
M,i, Sobs

M, j

] = 0. (F1)

Because the photon spin for plane-wave modes sk,3 = (a†
k,2ak,1 − a†

k,1ak,2)ε(k, 3) with different k commutes, i.e., [sk,3, sk′,3] = 0.
For a single plane wave, the three components of sk,3 in a local coordinate frame also commute with other.

Utilizing the relation

−h̄2
∫

d3k
∫

d3k′[a†
k,λ

(k × ∇k)iak,λ, a†
k′,λ′ (k

′ × ∇k′ ) jak′,λ′ ]

= h̄2
∫

d3k
∫

d3k′gλλ[a†
k,λ

(k × ∇k)iδ
3(k − k′)(k′ × ∇k′ ) jak′,λ − a†

k′,λ(k′ × ∇k′ ) jδ
3(k − k′)(k × ∇k)iak,λ] (F2)

= −h̄2
∫

d3kgλλ{[(k × ∇k)ia
†
k,λ

](k × ∇k) jak,λ − [
(k × ∇k) ja

†
k,λ

]
(k × ∇k)iak,λ} (F3)

= h̄2
∫

d3kgλλ{a†
k,λ

[(k × ∇k)i(k × ∇k) j − (k × ∇k) j (k × ∇k)i]ak,λ} = −h̄2
∫

d3k
∑

λ

gλλa†
k,λ

εi jk (k × ∇k)kak,λ, (F4)

we can verify that Lobs
M still satisfies the standard angular momentum commutation relation[

Lobs
M,i, Lobs

M, j

] = ih̄εi jkLobs
M,k . (F5)

We can also show that[
Sobs

M,i, Lobs
M, j

] = h̄2
∫

d3k
∫

d3k′ ∑
λ=1,2

εi(k, 3)[a†
k,2ak,1 − a†

k,1ak,2, a†
k′,λ(k′ × ∇k′ ) jak′,λ] (F6)

= h̄2
∫

d3kεi(k, 3)
[
a†

k,2(k × ∇k) jak,1 − a†
k,2(k × ∇k) jak,1 + a†

k,1(k × ∇k) jak,2 − a†
k,1(k × ∇k) jak,2

] = 0. (F7)

023165-16



QUANTUM FIELD THEORY FOR SPIN OPERATOR OF THE … PHYSICAL REVIEW RESEARCH 4, 023165 (2022)

Since Lobs
D does not contain transverse Maxwell modes, then

we can easily obtain[
Lobs

D,i , Sobs
M, j

] = [
Lobs

D,i , Lobs
M, j

] = 0. (F8)

From Eqs. (E11) and (F4), we can verify that[
Lobs

D,i , Lobs
D, j

] = ih̄εi jkLobs
D,k . (F9)

APPENDIX G: ANGULAR MOMENTUM OPERATORS
FROM THE STANDARD QED LAGRANGIAN IN

COULOMB GAUGE

The modern gauge field theory for QED is based on the
gauge invariance of the standard Lagrangian density [59–61]

LQED,ST = ih̄cψ̄γ μ∂μψ−mc2ψ̄ψ−qcψ̄γμAμψ

− 1

4μ0
FμνFμν. (G1)

In this Appendix, we show how to obtain the gauge-invariant
decomposition of the angular momentum from the standard
QED Lagrangian.

Following the Neother’s theorem, Jaffe and Manohar have
given a decomposition of the total angular momentum of QED
J = SD + LD + SM,JM + LM,JM [27,32]. The SAM and OAM
of the Maxwell field are given by

SM,JM = ε0

∫
d3xE × A, (G2)

LM,JM = ε0

∫
d3xE jx × ∇Aj . (G3)

Similar to the canonical decomposition obtained from the
Lorenz gauge, LD, SM,JM, and LM,JM are not gauge invariant.
There is another problem that the longitudinal part of the
electric field cannot be quantized. As explained in Chap. II
of the text book in Ref. [44], both the scalar potential A0 and
the longitudinal vector potential A‖ are redundant dynamical
variables, which can be eliminated via the Euler-Lagrange
equation for A0 and the Coulomb gauge condition ∇ · A = 0
(i.e., A‖ = 0). The reduced QED Lagrangian in the Coulomb
gauge is given by

L′
QED,ST = ih̄c

∫
d3x

{
ψ̄γ μ∂μψ−mc2ψ̄ψ

−
∫

d3x′ ρe(x)ρe(x′)
8πε0|x − x′| − qcψ†α · A⊥ψ

+ 1

2μ0
[(∂0A⊥)2 − (∇ × A⊥)2]

}
. (G4)

The quantization of the Dirac-Maxwell fields is actually based
on this reduced Lagrangian density.

The quantization procedure of the Dirac field does not
change. The canonical momentum of the EM field is given
by [44,47]

π⊥ = 1

μ0
∂0A⊥ = − 1

cμ0
E⊥. (G5)

The quantization of the EM field in the Coulomb gauge can be
achieved by postulating the following commutation relation:

[Ai
⊥(x, t ), E j

⊥(x′, t )] = i
h̄

ε0
δ

i j
⊥ (x − x′), (G6)

where

δ
i j
⊥ (x − x′) = 1

(2π )3

∫
d3keik·x

(
δi j − kik j

|k|2
)

(G7)

is the transverse delta function.
In the Coulomb gauge, the longitudinal part of the quantum

field operator A vanishes, i.e., A‖ = 0. The OAM angular mo-
mentum automatically reduces to our defined gauge-invariant
OAM of the photon,

LM,JM = L′
M = ε0

∫
d3xE j

⊥x × ∇Aj
⊥. (G8)

By splitting both the electric field E and the vector potential
A into transverse and longitudinal parts, we have

SM,JM = ε0

∫
d3x[E⊥ × A⊥ + E⊥ × A‖ + E‖ × A⊥],

(G9)
where the second term vanishes in the Coulomb gauge. Using
the relations

E‖ × A⊥ = (E‖ · ∇)x × A⊥ − x × (E‖ · ∇)A⊥, (G10)

and integral by parts, we have

ε0

∫
d3xE‖ × A⊥

= −ε0

∫
d3x[(∇ · E‖)x × A⊥ + x × (E‖ · ∇)A⊥],

(G11)

where we have neglected a boundary term during the partial
integral. Now, we use plane-wave expansion to verify that
the two terms in Eq. (G11) actually cancel out. Since the
longitudinal electric field E‖(x) has not been quantized in
Coulomb gauge, we expand E‖(x)

E‖(x) = i
∫

d3k

√
h̄ωk

2ε0(2π )3
(αkeik·x − α∗

ke−ik·x)
k
|k| , (G12)

with classical functions α−k = α∗
k . Using the same techniques

in evaluating Eqs. (E29) and (E34), we have

ε0

∫
d3x(∇ · E‖)x × A⊥

= −ε0

∫
d3xx × (E‖ · ∇)A⊥

= ih̄
∑
λ=1,2

∫
d3k|k|[αk∇k×ε(k, λ)a†

k,λ

− α∗
k∇k×ε(k, λ)ak,λ]. (G13)

Finally, we obtain the gauge-invariant decomposition of the
QED angular momentum J = L + SD + Lobs

M + Sobs
M , which

recovers the results obtained in the Lorenz quantization frame-
work. We note that in the Coulomb gauge, the pure gauge
contribution to the OAM of the Dirac field disappears.

023165-17



YANG, KHOSRAVI, AND JACOB PHYSICAL REVIEW RESEARCH 4, 023165 (2022)

APPENDIX H: CONTRAST WITH PREVIOUS
DECOMPOSITIONS

In the review article in Ref. [32], the authors have listed
another five decompositions of the QED angular momentum
[26–30], which are equivalent to each other except a surface
term. Some of the decompositions did not separate the SAM
and OAM of the photon [26,28]. The rest decompositions have
applied the the classical Gauss law ∇ · E(x) = ρe(x)/ε0 to a
term ε0(∇ · E‖)x × A‖ [27,29,30]. We can show that in those
decomposition, the OAM of the Dirac field, the SAM of the
photon, and the OAM of the photon do not commute with each
other, which means they cannot be measured independently in
experiment. In Table III, we contrast our decomposition of the
QED angular momentum with previous results.

In the following, we show some problems about the com-
mutation relations in previous decompositions. We note that
the longitudinal electric field cannot be quantized with the
standard QED Lagrangian density LQED,ST. In the following,
we use the quantum operators of the electric field Eq. (C27)
obtained by quantizingLQED in the Lorenz gauge to check the
commutation relations.

1. The Belinfante and Ji decompositions

In Belinfante and Ji decompositions, the total angular mo-
mentum of photons has not been decomposed into spin and
OAM contributions. Using the plane-wave expansion of the
electric field Eq. (C27) and magnetic field Eq. (C28), we
expand the angular momentum of the photon as

JM = ε0

∫
d3xx × (E × B) (H1)

= − 1

2c

∫
d3x

∫
d3k

∫
d3k′ h̄

√
ωkωk′

(2π )3
x × [−(ak,1a†

k′,1ei(k−k′ )·x + a†
k,1ak′,1e−i(k−k′ )·x)ε(k, 1) × ε(k′, 2)

+ (ak,2a†
k′,2ei(k−k′ )·x + a†

k,2ak′,2e−i(k−k′ )·x)ε(k, 2) × ε(k′, 1)] + · · · (H2)

= − 1

2c

∫
d3x

∫
d3k

∫
d3k′ h̄

√
ωkωk′

(2π )3
[−i(ak,1a†

k′,1∇k′ei(k−k′ )·x − a†
k,1ak′,1∇k′e−i(k−k′ )·x) × ε(k, 1) × ε(k′, 2)

+ i(ak,2a†
k′,2∇k′ei(k−k′ )·x − a†

k,2ak′,2∇k′e−i(k−k′ )·x)ε(k, 2) × ε(k′, 1)] + · · · (H3)

= − 1

2c

∫
d3k

∫
d3k′h̄ωk[−i(ak,1a†

k′,1∇k′δ(k − k′) − a†
k,1ak′,1∇k′δ(k − k′)) × ε(k, 3)

− i(ak,2a†
k′,2∇k′δ(k − k′) − a†

k,2ak′,2∇k′δ(k − k′)) × ε(k, 3)] + · · · (H4)

= −ih̄
∫

d3k
ωk

2c
{[ak,1∇ka†

k,1 − a†
k,1∇kak,1 + ak,2∇ka†

k,2 − a†
k,2∇kak,2] × ε(k, 3) − [(ak,3 − ak,0)∇ka†

k,2

− (a†
k,3 − a†

k,0)∇kak,2] × ε(k, 2) + [(ak,3 − ak,0)∇ka†
k,1 − (a†

k,3 − a†
k,0)∇kak,1] × ε(k, 1)} (H5)

= −ih̄
∫

d3k
ωk

2c
{2[ak,1∇ka†

k,1 + ak,2∇ka†
k,2] × ε(k, 3) − [(ak,3 − ak,0)∇ka†

k,2 − (a†
k,3 − a†

k,0)∇kak,2] × ε(k, 2)

+ [(ak,3 − ak,0)∇ka†
k,1 − (a†

k,3 − a†
k,0)∇kak,1] × ε(k, 1)}. (H6)

It can be verified that this form of the total angular momentum of light does not satisfy the angular momentum commutation
relation, because the last two parts in Eq. (H6) commute with each other, i.e., [(ak,3 − ak,0), (a†

k,3 − a†
k,0)] = 0. We find that the

EM field has a contribution to the angular momentum of the Dirac field both in Belinfante and Ji decompositions. We can also
verify that this part does not commute with JM . Thus, in these two decompositions, the angular momenta of the photon and the
Dirac field cannot be measured independently in experiment.

2. The Jaffe–Manohar decomposition

The Jaffe–Manohar decomposition reads J = SD + LD + SM,JM + LM,JM [27,32], where the SAM and OAM of the Maxwell
field are given by

SM,JM = ε0

∫
d3xE × A, (H7)

LM,JM = ε0

∫
d3xE jx × ∇Aj, (H8)

respectively. This decomposition has been known to be gauge noninvariant [32]. However, we show there are also some problems
in their commutation relations.
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The plane-wave expansion of SM,JM and LM,JM are given by

SM,JM = i
h̄

2

∫
d3k{[a†

k,3ak,2 + (a†
k,3 − a†

k,0)ak,2]ε(k, 1) + [a†
k,1ak,3 + a†

k,1(ak,3 − ak,0)]ε(k, 2) + 2a†
k,2ak,1ε(k, 3) − H.c.}, (H9)

LM,JM = −ih̄
∫

d3k

{
a†

k,1(k × ∇k)ak,1 + a†
k,2(k × ∇k)ak,2 + 1

2
[(a†

k,3 − a†
k,0)(k × ∇k)ak,3 + a†

k,3(k × ∇k)(ak,3 − ak,0)]

}
. (H10)

Using the commutation relations of the ladder operators
Eqs. (C5) and (C6), we can see that SM,JM and LM,JM commute
with each other, but none of them satisfy the standard angular
momentum commutation relations, i.e.,[

Si
M,JM, S j

M,JM

] �= ih̄εi jkSk
M,JM, (H11)[

Li
M,JM, L j

M,JM

] �= ih̄εi jkLk
M,JM. (H12)

The problem still comes from the fact [(ak,3 − ak,0), (a†
k,3 −

a†
k,0)] = 0.

3. The Chen et al. and the Wakamatsu decompositions

To solve the gauge dependent problem, Chen et al. split
the gauge field A into physical (transverse) and pure-gauge
(longitudinal) parts, i.e., A = A⊥ + A‖. Then, they put the
gauge dependent parts in SM,JM and LM,JM into LD. Finally,
they obtained the “guage-invariant” decomposition of the
the QED angular momentum J = SD + LD,Chen + SM,Chen +
LM,Chen, where the OAM of the Dirac field, SAM, and OAM
of the Maxwell field are given by

LD,Chen =
∫

d3x[−ih̄ψ†x × ∇ψ − qx × A‖], (H13)

SM,Chen = ε0

∫
d3xE × A⊥, (H14)

LM,Chen = ε0

∫
d3xE jx × ∇Aj

⊥. (H15)

Their plane-wave expansion are given by

LD,Chen = −ih̄
∫

d3xψ†x × ∇ψ − ih̄
∫

d3k[ξ ∗
0 (k)

× (k × ∇k)ak,3−ξ0(k)(k × ∇k)a†
k,3], (H16)

SM,Chen = ih̄

2

∫
d3k[(a†

k,3 − a†
k,0)ak,2ε(k, 1)

+ a†
k,1(ak,3 − ak,0)ε(k, 2)

+ 2a†
k,2ak,1ε(k, 3)−H.c.], (H17)

LM,Chen = −ih̄
∫

d3k[a†
k,1(k × ∇k)ak,1 + a†

k,2(k × ∇k)ak,2].

(H18)

We can verify that LD,Chen and SM,Chen do not satisfy the
standard commutation relation, i.e.,[

Li
D,Chen, L j

D,Chen

] �= ih̄εi jkLk
D,Chen, (H19)[

Si
M,Chen, S j

M,Chen

] �= ih̄εi jkSk
M,Chen. (H20)

We can also verify that [LD,Chen, SM,Chen] �= 0 and
[SM,Chen, LM,Chen] �= 0, which means these three quantities
cannot be measured independently.

Similar issues also exist in Wakamatsu decomposition.
Before apply the classcial Gauss’s law, Wakamatsu decom-
position should be given by J = SD + LD,Wak + SM,Wak +
LM,Wak, where

LD,Wak =
∫

d3x[−ih̄ψ†x × ∇ψ − q)x × A], (H21)

SM,Wak = ε0

∫
d3xE × A⊥, (H22)

LM,Wak = ε0

∫
d3xE jx × ∇Aj

⊥ + ε0(∇ · E )x × A⊥. (H23)

We can also show that these three quantities do not commute
with each other.
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