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Abstract: Spectro-polarimetric imaging in the long-wave infrared (LWIR) region plays a
crucial role in applications from night vision and machine perception to trace gas sensing and
thermography. However, the current generation of spectro-polarimetric LWIR imagers suffer
from limitations in size, spectral resolution and field of view (FOV). While meta-optics-based
strategies for spectro-polarimetric imaging have been explored in the visible spectrum, their
potential for thermal imaging remains largely unexplored. In this work, we introduce a novel
approach for spectro-polarimetric decomposition by combining large-area stacked meta-optical
devices with advanced computational imaging algorithms. The co-design of a stack of spinning
dispersive metasurfaces along with compressive sensing and dictionary learning algorithms
allows simultaneous spectral and polarimetric resolution without the need for bulky filter wheels
or interferometers. Our spinning-metasurface-based spectro-polarimetric stack is compact (<
10 x 10 x 10 cm), robust, and offers a wide field of view (20.5°). We show that the spectral
resolving power of our system substantially enhances performance in machine learning tasks
such as material classification, a challenge for conventional panchromatic thermal cameras. Our
approach represents a significant advance in the field of thermal imaging for a wide range of
applications including heat-assisted detection and ranging (HADAR).

© 2024

1. Introduction

The demand for high-resolution, information-rich image data has been amplified by the widespread
industry adoption of machine learning algorithms [1–6]. Meta-optics-enabled spectral and
polarimetric imaging exhibits potential in meeting these rising data demands of learning
algorithms within the visible spectrum [7–15]. Yet, the integration of meta-optics with infrared
thermal imaging remains a relatively unexplored domain. Recent strides in heat-assisted detection
and ranging (HADAR) have demonstrated the potential of thermal imaging [16] for machine
perception tasks utilizing the infrared spectrum and the atmospheric transparency window.
By combining spectral-resolved thermal imaging with artificial intelligence, HADAR offers a
platform for machine perception through pitch darkness like broad daylight [16]. Here, our goal is
to show that integrating meta-optics with infrared thermal imaging emerges as a crucial enabling
factor for such next generation machine vision algorithms. Our work offers a pathway for realizing
compact spectro-polarimetric thermal imagers beyond the conventional technologies which use
push-broom, filter-wheel or interferometer modules. This new class of thermal imagers enhances
the ability of machine learning algorithms for capturing information such as temperature, material
composition, and surface morphology.

Within the broad thermal infrared spectrum, the long-wave infrared (LWIR) region stands
out as especially advantageous for heat-assisted detection and ranging, as most objects at
room temperature radiate thermal energy at these wavelengths (Fig. 1a). Moreover, the LWIR
atmospheric transmission window facilitates the thermal radiation signal to propagate long
distances [17]. However, the blurry nature of thermal images poses a significant challenge
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Fig. 1. Long-wave infrared (LWIR) spectro-polarimetric thermal imaging. (a) The
room-temperature blackbody radiation (shown in red) and the atmospheric transmission
spectrum (shown as a shaded area). The LWIR spectral region is crucial for thermal
imaging due to its peaked room-temperature thermal radiation spectrum and the
atmospheric transparency window. (b-d) Conventional methods for spectral imaging,
such as using a mosaic sensor (b), a filter wheel (c), or interferometry (d), either pose
limitations or are infeasible for LWIR thermal imaging. (e) In this study, we propose
a new approach for spectro-polarimetric thermal imaging, achieved by combining
large-area spinning metasurfaces and compressive sensing reconstruction algorithms

for machine vision algorithms. For example, perception tasks such as semantic segmentation
and ranging rely on texture and contrast for learning features and show poor performance with
panchromatic thermal imagery [18]. HADAR overcomes the blurry nature of thermal images
by decomposing the LWIR thermal radiation into its spectral channels [16]. Unfortunately, the
commonly used mosaic filter technique for spectral decomposition (Fig. 1b) [19–24] falls short
for LWIR thermal imaging due to the restricted pixel count in LWIR focal plane arrays. Current
HADAR spectral imagers rely on cumbersome filter wheels (Fig. 1c) with restricted spectral
resolution, or fragile and bulky interferometers (Fig. 1d) with a confined field of view (FOV) [16].
Such constraints considerably hinder the widespread applicability and adoption of HADAR.

To address these limitations, in this work, we harness the capabilities of large-area meta-optics



in the infrared domain to create a platform for spectro-polarimetric thermal imaging. We
achieve spectral decomposition by designing the dispersion and polarization through stacked
metasurfaces, while the spectral reconstruction is accomplished using compressive sensing and
dictionary learning algorithms. Our designs employ 2D structures with large feature sizes (> 1𝜇𝑚),
which can be made using photo-lithography techniques, facilitating large-area fabrication and
scalable manufacturing. Despite its compact form, our Spinning MetaCam delivers exceptional
spectral resolution across diverse materials and can effectively unveil subtle polarimetric feature,
enabling applications such as material classification . By leveraging meta-optics and advanced
computational spectroscopy methods, we demonstrate three times higher accuracy for machine
vision tasks than conventional panchromatic thermal imaging. In the future, the angular speed of
the spinning stage can be increased to enable real-time video leading to widespread adoption of
HADAR technology similar to RADAR, LIDAR, and SONAR.

2. Design of Spinning Metasurface Stack

The architecture of our spinning-metasurface based spectro-polarimetric imaging system is
depicted in Fig. 1e. It comprises of a broadband linear polarizer, three anisotropic and dispersive
metasurfaces, and an LWIR imaging sensor. The polarizer is utilized to polarize the incoming
thermal radiation signals, and the metasurfaces are utilized to realize spectral filtering. We design
the metasurfaces with high anisotropy to produce distinct spectral responses for orthogonal
polarizations. Additionally, the metasurfaces’ dispersion rotates different wavelengths of radiation
to varying polarization orientations. By using the metasurfaces in tandem and axially spinning
the polarizer and metasurfaces to different angles, we obtain tunable transmission spectra
that sample the incident thermal radiation in its spectral and polarimetric channels. We then
reconstruct unknown spectra of imaging targets using compressive sensing and dictionary learning
algorithms. Dictionary learning generates a set of basis functions that represent the unknown
spectra in a sparse format [25]. Compressive sensing enables accurate reconstruction of the
sparse spectra from limited number of measurements [26]. Combining these two techniques
enables accurate and stable spectral reconstruction in the presence of noise and measurement
errors [27]. The four-dimensional spectro-polarimetric data generated by our system offers a
wealth of physical information about an imaging target, making it a valuable tool for physics-
driven machine vision [5, 28], facilitating various tasks such as object detection and semantic
segmentation [29, 30].

To quantitatively describe the mechanism of the spinning-angle-controlled transmission
spectra, we represent the spectro-polarimetric response of the metasurfaces using Jones matrices.
Assuming that the transmission axis of the input linear polarizer is at 0 degrees relative to x-axis,
the Jones matrix 𝐽𝑖 of a metasurface i with the principal axis (p) at a spinning angle 𝜃𝑖 relative to
the x-axis can be expressed as:

𝐽𝑖 (𝜃𝑖 , 𝜆) = 𝑅(−𝜃𝑖) · 𝐽𝑀𝑖
(𝜆) · 𝑅(𝜃𝑖)

=


𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)



𝑡𝑖 𝑝 (𝜆) 0

0 𝑡𝑖𝑠 (𝜆)



𝑐𝑜𝑠(𝜃𝑖) 𝑠𝑖𝑛(𝜃𝑖)

−𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)


(1)

where R is the rotation matrix, 𝐽𝑀𝑖 contains the anisotropic transmission of the metasurface 𝑡𝑖 𝑝
and 𝑡𝑖𝑠 along the two principle axes p and s.

The Jones matrix of the three-metasurface assembly is given by:

𝐽 (Θ, 𝜆) = 𝐽1 (𝜃1, 𝜆) · 𝐽2 (𝜃2, 𝜆) · 𝐽3 (𝜃3, 𝜆) · (2)

Thus, the total transmission spectrum of the three spinning metasurfaces strongly depends on
the spinning-angle combinations Θ = (𝜃1, 𝜃2, 𝜃3) when the constituted metasurfaces are strongly



Fig. 2. Design and characterization of the spinning metasurfaces. (a-c) Schematics
of the three different metasurface devices. (d) An optical microscope image of a
fabricated metasurface. Inset: an optical image of a 1-inch-diameter device used for
the imaging experiments, highlighting the large-area uniformity. (e) The measured
polarized transmission spectra (𝑡𝑖 𝑝 and 𝑡𝑖𝑠) of the three metasurfaces (M1 - M3),
displaying strong anisotropy and distinctive dispersion. (f) The generated tunable
transmission spectra by our spinning metasurface stack. The upper boundary of colored
areas represents the transmission spectra corresponding to specific spinning angle
combinations of the three metasurfaces. The colored areas highlight the differences
between the generated transmission spectra. The low correlation between the generated
transmission spectra is crucial for improving spectral reconstruction performance.
Inset: an optical image of integrated spinning-metasurface module based on motorized
rotatory mounts. The overall size of the module is smaller than 10 cm x 10 cm x 10
cm, making it a promising platform for next-generation high-contrast LWIR thermal
imaging. (g) The normalized spatial transmittance of the module at two representative
spinning angle combinations Θ = (0◦, 0◦, 0◦) shown at the top and Θ = (90◦, 90◦, 90◦)
illustrated at the bottom. The red circles correspond to a transmittance value of 0.5.
Note that the spatial transmittance remains relatively consistent across all different Θ
combinations, considering that the field of view is primarily limited by the diameters of
the metasurface devices. The estimated field of view of the imaging system across the
LWIR range is approximately 20.5◦.

anisotropic and dispersive, i.e. 𝑡𝑖 𝑝 (𝜆) ≠ 𝑡𝑖𝑠 (𝜆) (see Supplemental Document for the detailed
analysis). We note that large differences between the spectral responses of the three metasurfaces
(M1, M2, M3) are also introduced to minimize the correlations between the generated spectra,
which can significantly improve the spectral reconstruction performance [31]. We note that the
metasurfaces do not necessitate rotation at fixed angular frequencies during the imaging process.
As depicted in Eq. 2, it is the static angular positioning of the metasurfaces that is pivotal for
selectively filtering the incident thermal radiation in its spectral content. We emphasize that our
design generates a large set of distinct transmission spectra with only three metasurfaces, while the
total number of spectra in traditional mosaic array is limited to the number of metasurfaces/filters
used [7, 8, 19–23].

Accordingly, we design the metasurfaces and experimentally achieve three key characteristics
for optimized spectro-polarimetric imaging performance: 1) Strong anisotropy and dispersion for



efficient wavelength decomposition; 2) High transmission and low self-emission for high signal
to noise ratio (SNR); 3) Small angular dependence for a large FOV. The unit cell of the three
designed metasurfaces are shown in Fig. 2 a-c. Strong dispersive anisotropy of the transmission
spectra can be observed in Fig. 2e. Additionally, we emphasize that large-area devices are
generally required for imaging applications to ensure sufficient numerical aperture. All the
metasurfaces designed here have feature sizes larger than 1 𝜇𝑚. Large-area devices (25.4mm
in diameter) with high structural quality and uniformity (Fig. 2d) can be rapidly fabricated by
standard photo-lithography techniques, enabling scalable manufacturing for practical applications.
This is in strong contrast to recent works on miniaturized spectrometers [32–40], where the
device footprint is on the micrometer scale and thus not suitable for imaging applications.

The tunable transmission spectra produced by our spinning metasurfaces are shown in Fig. 2f.
The distinct spectra are a result of the tuned spinning-angle combination Θ. We integrate the
three fabricated metasurfaces tandemly via compact rotatory mounts to independently control the
rotation of each metasurface (Inset of Fig. 2f). We also optimize the spinning-angle combinations
of the three spinning metasurfaces using genetic algorithms to generate largely uncorrelated
transmission spectra for optimal spectral reconstruction performance (see Supplemental Document
for details). Additionally, we note that increasing the number of metasurfaces can further improve
the spectral resolution, but simultaneously reduces the SNR as the peak transmissions of the
LWIR devices are limited to around 0.6 (see Supplemental Document figure S5 for details).
However, our method has the potential to scale up into the hyperspectral regime by adding more
high-transmission LWIR metasurfaces.

We also evaluate the FOV of our imaging module by integrating it with an LWIR thermal
camera and capturing images of a large area uniform blackbody. To determine the spatial
transmission efficiency, we normalize the signal counts of each pixel by the counts at the center
of the images. We also define the angular range with transmittance above 0.5 as the effective
FOV of a system. As seen in Fig. 2g, our spinning metasurface module has an FOV of around
20.5 degrees, which is difficult to achieve with interferometer-based spectral imagers.

3. Algorithm Design for Spectral Reconstruction

To extract the unknown spectro-polarimetric properties of various imaging targets, we use a
combination of dictionary learning and compressive sensing algorithms in the reconstruction
process. The tunable transmission spectra produced by our spinning metasurfaces (shown in Fig.
2f) are not narrowband, which means that the collected raw signals at different spinning-angle
combinations Θ do not directly reflect the spectral radiance at different wavelengths. Instead,
the collected signal 𝐼 (Θ) at each pixel can be described as an integral of the spectral response
function 𝑅(Θ, 𝜆) multiplied by the ground truth spectrum 𝑃(𝜆) that we wish to obtain, i.e.
𝐼 (Θ) =

∫ 𝜆max
𝜆min

𝑅(Θ, 𝜆)𝑃(𝜆)d𝜆. To solve for this equation, we discretize the spectral range of
interest and express it in a tensor form as shown in Eq. 3:

𝐼Θ = 𝑅Θ𝜆𝑃𝜆 (3)

We emphasize that directly solving Eq. 3 does not produce accurate spectral reconstructions
[33, 41]. In theory, we can use measured signals 𝐼Θ and the pre-calibrated response function
𝑅𝜃𝜆 to directly determine unknown spectra 𝑃𝜆 at each pixel of a scene. However, in practice,
two limitations impede the performance of spectral reconstruction: the problem becomes
underdetermined when there are many discretized wavelength bands, and measurement noise
affects both 𝐼Θ and 𝑅Θ𝜆, making the direct reconstruction method unstable and the results
inaccurate.

To enhance both the precision and consistency of spectral reconstruction, we leverage the
capabilities of compressive sensing and dictionary learning algorithms to solve Eq. 3 (Fig. 3). Our



Fig. 3. Schematic of the spectral reconstruction process. The measured raw signal
(a) can be expressed by the pre-calibrated spectral response function (b) of the
imaging system multiplied by the spectrum of an imaging target (c). For the spectral
reconstrcution, the unknown spectrum 𝑃𝜆 is projected onto a sparse representation
basis 𝐷𝑘𝜆 using dictionary learning (c and d). This sparse representation 𝜙𝑘 is
then used for compressive sensing based reconstruction (e). The use of compressive
sensing and dictionary learning in the reconstruction process significantly improves the
reconstruction accuracy, making the spinning-metasurface-based spectro-polarimetric
imaging more robust against noise and measurement errors.

approach begins with dictionary learning, a process we employ to generate a dictionary comprised
of 32 basis functions, designated as 𝐷. The spectra utilized for the dictionary learning are derived
from the infrared emissivity spectra drawn from the ECOSTRESS Spectral Library [42, 43], as
well as blackbody thermal radiation spectra across various temperatures. The resultant dictionary
can provide sparse representations for any thermal radiation spectrum in the space of spectra we
are studying. We point out the efficiency of this sparse coding is fundamentally linked to the
prevalent spectral similarities found within the LWIR thermal radiation spectra. We thus project
the unknown spectrum 𝑃𝜆 as a linear combination of the basis functions in the dictionary (Fig. 3
c and d). We have,

𝑃𝜆 = 𝐷𝜆𝑘𝜙𝑘 (4)

where 𝜙𝑘 is a sparse coding of the spectrum 𝑃𝜆. With this sparse representation, the spectral
reconstruction problem can be solved by first obtaining 𝜙recon:

𝜙recon = arg min
𝜙𝑘

∥𝜙𝑘 ∥1

s.t. ∥𝐼Θ − 𝑅Θ𝜆𝑃𝜆∥2 = ∥𝐼Θ − 𝐴Θ𝑘𝜙𝑘 ∥2 < 𝜖
(5)

where 𝐴Θ𝑘 = 𝑅Θ𝜆𝐷𝜆𝑘 , and 𝜖 is the residual error. Finally, the spectra 𝑃𝜆 at each pixel of a scene
is reconstructed by

𝑃recon = 𝐷
𝜆𝑘
𝜙recon (6)

Our reconstruction method significantly improves the reconstruction accuracy, making the



spinning-metasurface-based spectro-polarimetric imaging more robust against noise and measure-
ment errors.

4. Spectro-Polarimetric Imaging and Machine Vision

Fig. 4. Spectro-polarimetric thermal imaging results. (a) An optical image of the
’PURDUE’ imaging target that is constructed from titanium letters on a glass substrate
(75mm x 50mm). Inset: a zoomed-in optical microscope image of the micro-structures
in the letters, which generate distinctive spectral and polarimetric signatures. (b-
e) Reconstructed spectra of four representative pixels (corresponding to the letter
’R’, ’U’, ’E’ and the glass substrate, respectively) compared with the ground truth
spectra measured by a Fourier-transform infrared spectrometer. (f) Reconstructed
spectral frames at 6 representative wavelengths. The contrast between different frames
demonstrates that the system can effectively reveal the LWIR spectral properties of
various materials and structures. (g-h) Degree-of-linear-polarization and angle-of-
linear-polarization frames. Distinctive polarimetric signatures can be observed for
each letter in the images. (i) Simulated spectral reconstruction results. The ground
truth spectra (solid lines) are Gaussian peaks with 0.6 𝜇𝑚 FWHM centered at different
wavelengths (8.5 𝜇𝑚, 9.3 𝜇𝑚, 10.2 𝜇𝑚, 11 𝜇𝑚, 11.8 𝜇𝑚, 12.7 𝜇𝑚, and 13.5 𝜇𝑚). The
reconstructed spectra (dotted lines) show good agreements with the ground truth.

To evaluate the performance of our prototype imaging system, we conduct experiments using
a custom-designed "PURDUE" target made of letters constructed from titanium and a glass
substrate (Fig. 4a). Each letter has unique micro-grating structures (Inset of Fig. 4a) that generate
distinctive spectro-polarimetric signatures in the thermal radiation signal. The glass substrate
also features a characteristic emission peak around 11 𝜇𝑚. Note that we heat the image target
to 150◦𝐶 to generate high signal intensity. The reconstructed spectra of four representative
pixels are shown in Fig. 4 b-e. We compare them with the ground truth spectra measured by
a Fourier-transform infrared spectrometer, validating the effectiveness of our reconstruction



approach. The reconstructed spectral frames (Fig. 4f) also exhibit high contrasts between different
wavelengths, demonstrating that the system can effectively reveal the LWIR spectral properties of
different targets. We note that the relatively low reconstruction accuracy at shorter wavelengths
(8 - 10 𝜇𝑚) results from the low transmission (low SNR) and the high correlation (similarity)
between the tuned spectra (Fig. 2f).

To characterize the spectral resolution of our system, we conduct a numerical simulation of
the spectral reconstruction performance using Gaussian peaks centered at varying wavelengths.
This testing method is a widely adopted way to determine the fundamental resolution constraints
of reconstruction-based spectroscopy [21, 22, 24, 33, 35, 41]. The simulation incorporates the
tunable transmission spectrum set (as depicted in Fig. 2f) produced by the spinning-metasurface
module, and utilizes the same dictionary learning and compressive sensing algorithms previously
discussed. Fig. 4i reveals that Gaussian peaks with a 0.6 µm full width at half maximum (FWHM)
centered above 10 µm can be precisely reconstructed with negligible mean square errors (MSE).
Additional simulations also show that our system is capable of detecting narrower spectral peaks
with FWHM as low as 0.1 micron (see Supplemental Document figure S4 for details). We again
observe that the performance of spectral reconstruction is dependent on wavelength. A higher
level of accuracy is achieved at longer wavelengths due to the significant differences between the
tuned transmission spectra in this region (Fig. 2f). This implies that we could further enhance
the spectral resolving power by refining the design of the metasurfaces and generate a broader
array of mutually uncorrelated tunable transmission spectra.

We also obtain the polarimetric information including degree of the linear polarization (DOLP)
and the angle of linear polarization (AoLP) using the designed system. For polarimetric imaging,
we collectively rotate the spinning metasurfaces and the input polarizer, selecting four different
polarizations (0◦, 90◦, 45◦ and −45◦) while maintaining the same spectral transmission. We
use the first three Stokes parameters to quantify the polarimetric information associated with
each pixel, i.e. 𝑆0 = 𝐼0 + 𝐼90, 𝑆1 = 𝐼0 − 𝐼90, and 𝑆2 = 𝐼45 − 𝐼−45, where 𝐼0, 𝐼90, 𝐼45 and
𝐼−45 are the light intensity at polarization angles of 0◦, 90◦, 45◦ and −45◦, respectively. The
DoLP and AoLP are then calculated at each wavelength through DoLP =

√︃
𝑆2

1 + 𝑆2
2/𝑆0 and

AoLP = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑆2/𝑆1). As shown in Fig. 4 g and h, we can clearly distinguish between different
letters based on their polarimetric signatures in the thermal radiation signal. The four-dimensional
spatial-spectro-polarimetric data-tesseract provides significantly more insight associated with an
object, making it a powerful tool for a wide range of imaging applications.

To prove the effectiveness and reveal the potential of Spinning MetaCam, we conduct numerical
tests demonstrating its applicability in material classification. Fig. 5a shows that our spinning
metasurfaces can accurately reconstruct the LWIR thermal radiation spectra of a diverse range
of materials commonly found in everyday life (ground truth obtained from the ECOSTRESS
Spectral Library [42, 43]). These results also highlight the spectral fidelity and universality
of our spectral reconstruction method. Employing these thermal radiation spectra, we execute
material classification by identifying the material whose ground truth spectrum exhibits the
least mean square error (MSE) when compared to the reconstructed spectrum. We repeat
this spectral reconstruction and material detection procedure 100 times for each material, and
use the outcomes to generate a confusion matrix (see Supplemental Document for details).
Fig. 5b and Fig. 5c compare the resulting confusion matrices derived with and without the
use of spinning metasurfaces, while maintaining a consistent noise level of 5%. Without the
spinning metasurfaces, material classification relies solely on the integrated intensity of the
thermal radiation over the LWIR region. This approach exhibits a low precision for most
materials, being effective only for those materials with substantially disparate thermal radiation
intensities, such as metallic paint. In stark contrast, material classification significantly improves
in accuracy when the spectra collected by the Spinning MetaCam is utilized. We note that
instances of lower accuracy only arise when there is a pronounced similarity in the LWIR spectra



Fig. 5. Material classification using Spinning MetaCam. (a) Simulated spectral
reconstruction results for materials commonly found in everyday life. (b) Calculated
confusion matrix illustrating material classification without the use of spinning meta-
surfaces. The classification in this case is solely reliant on the integrated intensity of
thermal radiation within the LWIR region. (c) Calculated confusion matrix presenting
material classification with spinning metasurfaces incorporated. The inclusion of
spectral information substantially augments the performance of material classification,
improving the mean average precision from 0.293 to 0.834.

of materials, as observed between construction glass and felsic. For a more quantitative analysis,
we perform the material classification test at varying noise levels ranging from 1% to 10%,
and subsequently calculate the mean average precision (mAP) [44]. Representing the overall
accuracy of classification for all classes of materials at all different noise levels, the mAP reaches
an impressively high value of 0.834, providing a significant improvement from the low mAP of
0.293 obtained without the spinning metasurfaces.

5. Conclusion

Our results provide an innovative approach for spectro-polarimetric thermal imaging by combining
meta-optics and computational spectral reconstruction. The low-SWaP (size, weight, and power)
system opens the door for physics-driven machine vision. The high-dimensional thermal image
data can significantly improve the performance of tasks such as depth estimation, object detection,
and semantic segmentation when only radiative heat signal is available. Furthermore, we foresee
that spectro-polarimetric thermal imaging can also be a powerful tool for scientific research,
allowing for non-destructive characterization in the infrared region to investigate a wide range
of novel physical phenomena, such as anisotropic thermal conduction [45] and directional or
nonreciprocal radiative heat transfer [46–48]. Overall, our work provides a key development



in the rapidly growing field of thermal imaging, offering a pivotal technology for heat-assisted
detection and ranging.
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