Search

Search results

81 results found

Latest paper in PR Applied

Published in PR Applied, our recent work develops the theoretical and computational framework to analyze the spin angular momentum of thermal radiation from bodies with nonuniform temperature profiles. By considering a sample problem of a long silica wire held under a temperature gradient within its...

Topological Edge Plasmons in Quantum Many-Body Systems by Prof. Stephan Haas

Prof. Stephan Haas discussed how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symmetric variant, strongly localized plasmonic excitations are observed which...

Quantum analog of the maximum power transfer theorem

In our recent work in Optics Express , we discover the quantum analog of the well-known classical maximum power transfer theorem, typically used in classical circuit design. By developing a unified framework, from the Lindblad master equation and describing power delivery in dissipative quantum...

Picophotonics: Atomistic Anomalous Waves in Silicon

Light-matter interaction in materials is central to several photonic devices from lasers to detectors. Over the past decade, nanophotonics, the study of how light flows on the nanometer scale in engineered structures such as photonic crystals and metamaterials has led to important advances. This...

Latest News & Views in Light: Science and Applications

Check out our recent News & View article ‘Symmetry breaking in thermal photonics.’ in Light: Science and Applications. Thermal radiation is omnipresent and is engineered for various applications in modern photonics, such as cooling, imaging, and energy harvesting. Symmetries and symmetry breaking...

Latest review article published in ACS Photonics

We discuss the engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light–matter interactions. This Perspective aims at...

Spinning Light Waves Might be 'Locked' for Photonics Technologies

A newly described property related to the "spin" and momentum of light waves suggests potential practical applications in photonic communications and photonic circuits. Scientists already knew that light waves have an electric field that can rotate as they propagate, which is known as the polarization property of light, and that light waves carry momentum in their direction of motion. In new findings, researchers have discovered a "spin-momentum locking," meaning, for example, light waves that spin in a counterclockwise direction can only move forward, and vice versa.

Spinning Lightwaves on a One-way Street

Researchers at Purdue University have created a quantum spin wave for light. This can be a carrier of information for future nanotechnologies but with a unique twist: they only flow in one direction.

In High Temperatures, A New Class of Ceramics Controls Heat Radiation

Manufacturers frequently use coatings to protect the structural stability of engines or power generators operating at high temperatures. Ceramic shields, however, have not been able to adequately address a critical, performance-limiting factor: heat radiation. A new ceramic coating from Purdue University acts as a kind of thermal antenna, using light-matter oscillations, or polaritrons, to control the direction and electromagnetic spectrum of thermal radiation.