News

QuantumModel

Quantum Model Unlocks New Approach to Single-Photon Detection

To become more pervasive in daily life, quantum technology needs to better detect single particles of light, called photons, carrying quantum information. The problem is that each photon is a very weak signal, making it difficult for measurement devices to efficiently detect them. Purdue University engineers have proposed a new quantum resource that could help design the next generation of single-photon detectors.
See also: Quantum causality
Read More
Thermal

In High Temperatures, A New Class of Ceramics Controls Heat Radiation

Manufacturers frequently use coatings to protect the structural stability of engines or power generators operating at high temperatures. Ceramic shields, however, have not been able to adequately address a critical, performance-limiting factor: heat radiation. A new ceramic coating from Purdue University acts as a kind of thermal antenna, using light-matter oscillations, or polaritrons, to control the direction and electromagnetic spectrum of thermal radiation.
Read More
Thermal

New Antenna Tech to Equip Ceramic Coatings with Heat Radiation Control

The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don’t control heat radiation, limiting the performance of the engine. Researchers at Purdue University have engineered ceramic “nanotubes” that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.
Read More