Photon detectors based on type-2 superconductors have found widespread applications from on-chip quantum computing to quantum remote sensing. Here, we develop the theory for a new class of type-1.5 superconducting nanowire single photon detectors (SNSPDs) based on two bandgap superconductors with high transition temperatures such as MgB2 (Tc ~38.6K). We show that vortex-vortex interactions in two component condensates lead to a unique operating regime where single photons can seed multiple vortices within a hotspot. We also show that dark counts are suppressed in the type-1.5 regime compared to the widely studied type-2 SNSPDs. Our work opens the door for exploring the unique vortex physics of two-gap superconductors for quantum device applications.
Publications
2025
Metasurfaces have emerged as powerful tools for controlling spontaneous emission, offering unprecedented control over light-matter interactions at sub-wavelength scales. While metasurfaces are traditionally utilized for shaping coherent electromagnetic waves, they have recently extended their capabilities to control incoherent or spontaneous emission. This examines review how metasurfaces can enhance and precisely control properties of thermal, luminescent, and quantum emission. In thermal emission, metasurfaces enable control over spatial, temporal, and spin coherence, offering new possibilities for applications such as energy harvesting, radiative cooling and heat assisted ranging and detection. For luminescent emission, metasurfaces significantly improve emission rates, quantum efficiency, and directionality, driving innovations in lighting and display technologies. For controlling quantized spontaneous emission, metasurfaces are instrumental in enhancing single-photon sources and enabling novel functionalities in quantum states through photon-pair generation, which is vital for quantum communication, meteorology, and computing. Despite these advancements several challenges to increase the operational bandwidths, accelerate and develop simulation strategies, and fabrication complexities persist. Emerging trends are also dicussed, such as dynamic metasurfaces and their integration with nanophotonic platforms, which could further expand the capabilities of light-emitting metasurfaces.
2024
Recent years have seen significant advancements in exploring novel light-matter interactions such as hyperbolic dispersion within natural crystals. However, current studies have predominantly concentrated on local optical response of materials characterized by a dielectric tensor without spatial dispersion. Here, we investigate the nonlocal response in optically-active crystals with screw symmetries, revealing their lossless, super-dispersive properties compared to traditional optical response functions. We leverage this universal nonlocal dispersion, i.e. the dispersion of optical rotatory power, to explore a novel spectral de-multiplexing scheme compared to conventional gratings, prisms and metasurfaces. We design and demonstrate an ‘Nonlocal-Cam’ - a camera that exploits nonlocal dispersion through sampling of polarized spectral states and the application of computational spectral reconstruction algorithms. The Nonlocal-Cam captures information in both laboratory and outdoor field experiments which is unavailable to traditional intensity cameras - the spectral texture of polarization. Merging the fields of nonlocal electrodynamics and computational imaging, our work paves the way for exploiting nonlocal optics of optically active materials in a variety of applications, from biological microscopy to physics-driven machine vision and remote sensing.
Global conservation laws of angular momentum (AM) are well-known in the theory of light–matter interaction. However, local conservation laws, i.e. the conservation law of AM at every point in space, remain unexplored especially in the context of relativistic Dirac–Maxwell fields. Here, we use the QED Lagrangian and Noether’s theorem to derive a new local conservation law of AM for Dirac–Maxwell fields in the form of the continuity relation for linear momentum. We separate this local conservation law into four coupled motion equations for spin and orbital AM (OAM) densities. We introduce a helicity current tensor, OAM current tensor, and spin–orbit torque in the motion equations to shed light on the local dynamics of spin-OAM interaction and AM exchange between Maxwell and Dirac fields. We elucidate how our results translate to classical electrodynamics using the example of plane wave interference as well as a dual-mode optical fiber. Our results shine light on AM phenomena related to the relativistic interaction of electromagnetic waves and Dirac fields.
The Rayleigh limit and low signal-to-noise ratio (SNR) scenarios pose significant limitations to optical imaging systems used in remote sensing, infrared thermal imaging, and space domain awareness. In this study, we introduce a stochastic sub-Rayleigh imaging (SSRI) algorithm to localize point objects and estimate their positions, brightnesses, and number in low SNR conditions, even below the Rayleigh limit. Our algorithm adopts a maximum likelihood approach and exploits the Poisson distribution of incoming photons to overcome the Rayleigh limit in low SNR conditions. In our experimental validation, which closely mirrors practical scenarios, we focus on conditions with closely spaced sources within the sub-Rayleigh limit (0.49–1.00 R) and weak signals (SNR less than 1.2). We use the Jaccard index and Jaccard efficiency as a figure of merit to quantify imaging performance in the sub-Rayleigh region. Our approach consistently outperforms established algorithms such as Richardson–Lucy and CLEAN by 4X in the low SNR, sub-Rayleigh regime. Our SSRI algorithm allows existing telescope-based optical/infrared imaging systems to overcome the extreme limit of sub-Rayleigh, low SNR source distributions, potentially impacting a wide range of fields, including passive thermal imaging, remote sensing, and space domain awareness.
Spatiotemporal Optical Vortices (STOVs) are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain. Depending on the tilt of the helical phase front, STOVs can carry both longitudinal and transverse orbital angular momentum (OAM). Although STOVs have gained significant interest in the recent years, the current understanding is limited to the semi-classical picture. Here, we develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit. We demonstrate that quantum STOV states, such as Fock and coherent twisted photon pulses, display non-vanishing longitudinal OAM fluctuations that are absent in conventional monochromatic twisted pulses. We show that these quantum fluctuations exhibit a unique texture, i.e. a spatial distribution which can be used to experimentally isolate these quantum effects. Our findings represent a step towards the exploitation of quantum effects of structured light for various applications such as OAM-based encoding protocols and platforms to explore novel light–matter interaction in 2D material systems.
Solid-state spin qubits have emerged as promising quantum information platforms but are susceptible to magnetic noise. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near nanostructured lossy material components essential in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum sensing and computing, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a theoretical framework to control low-frequency magnetic fluctuation noise for enhancing spin qubit quantum sensing and computing performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. We further apply our theoretical framework to control noise effects in realistic quantum computing devices and quantum sensing applications. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.
The Rayleigh limit and low Signal-to-Noise Ratio (SNR) scenarios pose significant limitations to optical imaging systems used in remote sensing, infrared thermal imaging, and space domain awareness. In this study, we introduce a Stochastic Sub-Rayleigh Imaging (SSRI) algorithm to localize point objects and estimate their positions, brightnesses, and number in low SNR conditions, even below the Rayleigh limit. Our algorithm adopts a maximum likelihood approach and exploits the Poisson distribution of incoming photons to overcome the Rayleigh limit in low SNR conditions. In our experimental validation, which closely mirrors practical scenarios, we focus on conditions with closely spaced sources within the sub-Rayleigh limit (0.49-1.00R) and weak signals (SNR less than 1.2). We use the Jaccard index and Jaccard efficiency as a figure of merit to quantify imaging performance in the sub-Rayleigh region. Our approach consistently outperforms established algorithms such as Richardson-Lucy and CLEAN by 4X in the low SNR, sub-Rayleigh regime. Our SSRI algorithm allows existing telescope-based optical/infrared imaging systems to overcome the extreme limit of sub-Rayleigh, low SNR source distributions, potentially impacting a wide range of fields, including passive thermal imaging, remote sensing, and space domain awareness.
The growth in space activity has increased the need for Space Domain Awareness (SDA) to ensure safe space operations. Imaging and detecting space targets is, however, challenging due to their dim appearance, small angular size/separation, dense distribution, and atmospheric turbulence. These challenges render space targets in ground-based imaging observations as point-like objects in the sub-Rayleigh regime, with extreme brightness contrast but a low photon budget. Here, we propose to use the recently developed quantum-accelerated imaging (QAI) for the SDA challenge. We mainly focus on three SDA challenges (1) minimal a priori assumptions (2) many-object problem (3) extreme brightness ratio. We also present results on source estimation and localization in the presence of atmospheric turbulence. QAI shows significantly improved estimation in position, brightness, and number of targets for all SDA challenges. In particular, we demonstrate up to 2.5 times better performance in source detection than highly optimized direct imaging in extreme scenarios like stars with a 1000 times brightness ratio. With over 10 000 simulations, we verify the increased resolution of our approach compared to conventional state-of-the-art direct imaging paving the way towards quantum optics approaches for SDA.
Spatiotemporal Optical Vortices (STOVs) are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain. Depending on the tilt of the helical phase front, STOVs can carry both longitudinal and transverse orbital angular momentum (OAM). Although STOVs have gained significant interest in the recent years, the current understanding is limited to the semi-classical picture. Here, we develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit. We demonstrate that quantum STOV states, such as Fock and coherent twisted photon pulses, display non-vanishing longitudinal OAM fluctuations that are absent in conventional monochromatic twisted pulses. We show that these quantum fluctuations exhibit a unique texture, i.e. a spatial distribution which can be used to experimentally isolate these quantum effects. Our findings represent a step towards the exploitation of quantum effects of structured light for various applications such as OAM-based encoding protocols and platforms to explore novel light-matter interaction in 2D material systems.