Photonic Materials & Devices

The major expertise of our group is in the area of Photonic Materials and Devices. The breadth of our research puts us in a unique position consisting of advancements across the EM spectrum from THz to UV.

While we work on a diverse range of topics, the following key projects will provide an insight into some of our contributions in this area:

1) Thermal photonics materials
2) Dipole-Dipole Interactions in Nanophotonics
3) Electron Energy Loss Spectroscopy
4) Extreme-Skin Depth Waveguides
5) Topological Optical N-insulators

Photonic_Materials_Devices

Scroll down to read more about these projects.

Thermal Photonic Materials

-

Thermal Electrodynamics

'THERMAL METAMATERIAL’ INNOVATION COULD HELP BRING WASTE-HEAT HARVESTING TECHNOLOGY TO POWER PLANTS, FACTORIES

An international research team has used a "thermal metamaterial" to control the emission of radiation at high temperatures, an advance that could bring devices able to efficiently harvest waste heat from power plants and factories.

thermal materials

IN HIGH TEMPERATURES, A NEW CLASS OF CERAMICS CONTROLS HEAT RADIATION

Manufacturers frequently use coatings to protect the structural stability of engines or power generators operating at high temperatures. 

thermal materials

NEW ANTENNA TECH TO EQUIP CERAMIC COATINGS WITH HEAT RADIATION CONTROL

The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don’t control heat radiation, limiting the performance of the engine.

thermal materials

CONTROLLING HEAT WITH CERAMIC NANOTUBES

 

New ceramic nanotubes could prolong aircraft engine coatings by controlling hightemperature heat radiation. Idha Valeur reports.

Thermal Electrodynamics

EXPLOITING LOSS

 

Metamaterials operating at frequency ranges in which the dielectric permittivity is close to zero have been discussed for use across a wide range of optical applications.

Dipole-dipole Interactions in Nanophotonics

Single photon pulse induced transient entanglement force

We show that a single photon pulse incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction to the resonant dipole–dipole interaction (RDDI). We explicitly show that the RDDI force induced by the single photon pulse fundamentally arises from the two-body transient entanglement between the atoms. This single photon pulse induced entanglement force can be continuously tuned from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate that the entanglement force can be enhanced by more than three orders of magnitude if the atomic interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped single photon pulses as a powerful tool to manipulate this entanglement force and also provides a new approach to witness transient atom–atom entanglement.


Yang, Li-Ping, Chinmay Khandekar, Tongcang Li, and Zubin Jacob. "Single photon pulse induced transient entanglement force." New Journal of Physics 22, no. 2 (2020): 023037.

 

Super-Coulombic atom–atom interactions in hyperbolic media

Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.


Super-Coulombic atom-atom interactions in hyperbolic media CL Cortes, Z Jacob Nature Communications 8 (1), 14144 (2017)

 

Observation of long-range dipole-dipole interactions in hyperbolic metamaterials

Dipole-dipole interactions (Vdd) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials.


Observation of long-range dipole-dipole interactions in hyperbolic metamaterials WD Newman, CL Cortes, A Afshar, K Cadien, A Meldrum, R Fedosejevs, Science Advances 4 (10), eaar5278 (2018)

Electron Energy Loss Spectroscopy

Strong nanoscale light–matter interaction is often accompanied by ultraconfined photonic modes and large momentum polaritons existing far beyond the light cone. A direct probe of such phenomena is difficult due to the momentum mismatch of these modes with free space light, however, fast electron probes can reveal the fundamental quantum and spatially dispersive behavior of these excitations. Here, we use momentum-resolved electron energy loss spectroscopy (q-EELS) in a transmission electron microscope to explore the optical response of plasmonic thin films including momentum transfer up to wavevectors (q) significantly exceeding the light line wave vector. We show close agreement between experimental q-EELS maps, theoretical simulations of fast electrons passing through thin films and the momentum-resolved photonic density of states (q-PDOS) dispersion. Although a direct link between q-EELS and the q-PDOS exists for an infinite medium, here we show fundamental differences between q-EELS measurements and the q-PDOS that must be taken into consideration for realistic finite structures with no translational invariance along the direction of electron motion. Our work paves the way for using q-EELS as the preeminent tool for mapping the q-PDOS of exotic phenomena with large momenta (high-q) such as hyperbolic polaritons and spatially dispersive plasmons.


 

Extreme Skin-depth Waveguides

Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7±1.0 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.


 

Selected papers on extreme skin-depth waveguides:

Transparent subdiffraction optics: nanoscale light confinement without metal S Jahani, Z Jacob Optica 1 (2), 96-100

Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration S Jahani, S Kim, J Atkinson, JC Wirth, F Kalhor, AA Noman, WD Newman, Nature communications 9 (1), 1893 (2018)

TRAPPING LIGHT THAT DOESN'T BOUNCE OFF TRACK FOR FASTER ELECTRONICS

WEST LAFAYETTE, Ind. —  Replacing traditional computer chip components with light-based counterparts will eventually make electronic devices faster due to the wide bandwidth of light. 

Jacob light

An anisotropic metamaterial waveguide cladding keeps light travel on track throughout a computer chip, preventing leaked and jumbled bits of information.

Jahani, Saman, et al. "Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration." Nature communications 9.1 (2018): 1893.

 

Topological optical N-insulators

Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases

Topological phases of matter arise in distinct fermionic and bosonic flavors. The fundamental differences between them are encapsulated in their rotational symmetries—the spin. Although spin quantization is routinely encountered in fermionic topological edge states, analogous quantization for bosons has proven elusive. To this end, we develop the complete electromagnetic continuum theory characterizing 2+1D topological bosons, taking into account their intrinsic spin and orbital angular momentum degrees of freedom. We demonstrate that spatiotemporal dispersion (momentum and frequency dependence of linear response) captures the matter-mediated interactions between bosons and is a necessary ingredient for topological phases. We prove that the bulk topology of these 2+1D phases is manifested in transverse spin-1 quantization of the photon. From this insight, we predict two unique bosonic phases—one with even parity C=±2 and one with odd C=±1. To understand the even parity phase C=±2, we introduce an exactly solvable model utilizing nonlocal optical Hall conductivity and reveal a single gapless photon at the edge. This unidirectional photon is spin-1 helically quantized, immune to backscattering, defects, and exists at the boundary of the C=±2 bosonic phase and any interface-even vacuum. The contrasting phenomena of transverse quantization in the bulk, but longitudinal (helical) quantization on the edge is addressed as the quantum gyroelectric effect. We also validate our bosonic Maxwell theory by direct comparison with the supersymmetric Dirac theory of fermions. To accelerate the discovery of such bosonic phases, we suggest two probes of topological matter with broken time-reversal symmetry: momentum-resolved electron energy-loss spectroscopy and cold atom near-field measurement of nonlocal optical Hall conductivity.

quantum gyroelectric effect

Van Mechelen, Todd, and Zubin Jacob. "Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases." Physical Review A 98, no. 2 (2018): 023842.

Photonic Dirac monopoles and skyrmions: spin-1 quantization

We introduce the concept of a photonic Dirac monopole, appropriate for photonic crystals, metamaterials and 2D materials, by utilizing the Dirac-Maxwell correspondence. We start by exploring the vacuum where the reciprocal momentum space of both Maxwell’s equations and the massless Dirac equation (Weyl equation) possess a magnetic monopole. The critical distinction is the nature of magnetic monopole charges, which are integer valued for photons but half-integer for electrons. This inherent difference is directly tied to the spin and ultimately connects to the bosonic or fermionic behavior. We also show the presence of photonic Dirac strings, which are line singularities in the underlying Berry gauge potential. While the results in vacuum are intuitively expected, our central result is the application of this topological Dirac-Maxwell correspondence to 2D photonic (bosonic) materials, as opposed to conventional electronic (fermionic) materials. Intriguingly, within dispersive matter, the presence of photonic Dirac monopoles is captured by nonlocal quantum Hall conductivity–i.e., a spatiotemporally dispersive gyroelectric constant. For both 2D photonic and electronic media, the nontrivial topological phases emerge in the context of massive particles with broken time-reversal symmetry. However, the bulk dynamics of these bosonic and fermionic Chern insulators are characterized by spin-1 and spin-½ skyrmions in momentum space, which have fundamentally different interpretations. This is exemplified by their contrasting spin-1 and spin-½ helically quantized edge states. Our work sheds light on the recently proposed quantum gyroelectric phase of matter and the essential role of photon spin quantization in topological bosonic phases.

QGEE

Van Mechelen, Todd, and Zubin Jacob. "Photonic Dirac monopoles and skyrmions: spin-1 quantization." Optical Materials Express 9, no. 1 (2019): 95-111.

Nonlocal topological electromagnetic phases of matter

In (2+1)-dimensional materials, nonlocal topological electromagnetic phases are defined as atomic-scale media which host photonic monopoles in the bulk band structure and respect bosonic symmetries (e.g., time reversal T2=+1). Additionally, they support topologically protected spin-1 edge states, which are fundamentally different than spin-12 and pseudo-spin-12 edge states arising in fermionic and pseudofermionic systems. The striking feature of the edge state is that all electric and magnetic field components vanish at the boundary, in stark contrast to analogs of Jackiw-Rebbi domain wall states. This surprising open boundary solution of Maxwell's equations, dubbed the quantum gyroelectric effect [Phys. Rev. A 98, 023842 (2018)], is the supersymmetric partner of the topological Dirac edge state where the spinor wave function completely vanishes at the boundary. The defining feature of such phases is the presence of temporal and spatial dispersion in conductivity (the linear response function). In this paper, we generalize these topological electromagnetic phases beyond the continuum approximation to the exact lattice field theory of a periodic atomic crystal. To accomplish this, we put forth the concept of microscopic photonic band structure of solids, analogous to the traditional theory of electronic band structure. Our definition of topological invariants utilizes optical Bloch modes and can be applied to naturally occurring crystalline materials. For the photon propagating within a periodic atomic crystal, our theory shows that besides the Chern invariant C∈Z, there are also symmetry-protected topological (SPT) invariants ν∈ZN which are related to the cyclic point group CN of the crystal ν=CmodN. Due to the rotational symmetries of light R(2π)=+1, these SPT phases are manifestly bosonic and behave very differently from their fermionic counterparts R(2π)=−1 encountered in conventional condensed-matter systems. Remarkably, the nontrivial bosonic phases ν≠0 are determined entirely from rotational (spin-1) eigenvalues of the photon at high-symmetry points in the Brillouin zone. Our work accelerates progress toward the discovery of bosonic phases of matter where the electromagnetic field within an atomic crystal exhibits topological properties.

SPT phases

Van Mechelen, Todd, and Zubin Jacob. "Nonlocal topological electromagnetic phases of matter." Physical Review B 99, no. 20 (2019): 205146.

Viscous Maxwell-Chern-Simons theory for topological electromagnetic phases of matter

Chern-Simons theories have been very successful in explaining integer and fractional quantum Hall phases of matter, topological insulators, and Weyl semimetals. However, it remains an open question as to whether Chern-Simons theories can be adapted to topological photonics. We develop a viscous Maxwell-Chern-Simons theory to capture the fundamental physics of a topological electromagnetic phase of matter. We show the existence of a unique spin-1 skyrmion in the viscous Hall fluid arising from a photonic Zeeman interaction in momentum space. Our work bridges the gap between electromagnetic and condensed matter topological physics while also demonstrating the central role of photon spin-1 quantization in identifying new phases of matter.

Viscous MCS Theory

Van Mechelen, Todd, and Zubin Jacob. "Viscous Maxwell-Chern-Simons theory for topological electromagnetic phases of matter." Physical Review B 102, no. 15 (2020): 155425.

Spin and Orbital Angular Momentum in Photonics


Universal spin-momentum locking of evanescent waves

We show the existence of an inherent property of evanescent electromagnetic waves: spin-momentum locking, where the direction of momentum fundamentally locks the polarization of the wave. We trace the ultimate origin of this phenomenon to complex dispersion and causality requirements on evanescent waves. We demonstrate that every case of evanescent waves in total internal reflection (TIR), surface states, and optical fibers/waveguides possesses this intrinsic spin-momentum locking. We also introduce a universal right-handed triplet consisting of momentum, decay, and spin for evanescent waves. We derive the Stokes parameters for evanescent waves, which reveal an intriguing result—every fast decaying evanescent wave is inherently circularly polarized with its handedness tied to the direction of propagation. We also show the existence of a fundamental angle associated with TIR such that propagating waves locally inherit perfect circular polarized characteristics from the evanescent wave. This circular TIR condition occurs if and only if the ratio of permittivities of the two dielectric media exceeds the golden ratio. Our work leads to a unified understanding of this spin-momentum locking in various nanophotonic experiments and sheds light on the electromagnetic analogy with the quantum spin-Hall state for electrons.


Van Mechelen, Todd, and Zubin Jacob. "Universal spin-momentum locking of evanescent waves." Optica 3, no. 2 (2016): 118-126.