Switching Purcell effect with nonlinear epsilon-near-zero media

Saman Jahani, Hangqi Zhao, and Zubin Jacob. 7/12/2018.

Switching Purcell effect with nonlinear epsilon-near-zero media

. Applied Physics Letters, 113.
Copy at https://is.gd/t4W4GP


An optical topological transition is defined as the change in the photonic iso-frequency surface around epsilon-near-zero (ENZ) frequencies which can considerably change the spontaneous emission of a quantum emitter placed near a metamaterial slab. Here, we show that due to the strong Kerr nonlinearity at ENZ frequencies, a high-power pulse can induce a sudden transition in the topology of the iso-frequency dispersion curve, leading to a significant change in the transmission of propagating as well as evanescent waves through the metamaterial slab. This evanescent wave switch effect allows for the control of spontaneous emission through modulation of the Purcell effect. We develop a theory of the enhanced nonlinear response of ENZ media to s and p polarized inputs and show that this nonlinear effect is stronger for p polarization and is almost independent of the incident angle. We perform finite-difference time-domain simulations to demonstrate the transient response of the metamaterial slab to an ultrafast pulse and fast switching of the Purcell effect at the sub-picosecond scale. The Purcell factor changes at ENZ by almost a factor of three which is an order of magnitude stronger than that away from ENZ. We also show that due to the inhomogeneous spatial field distribution inside the multilayer metal-dielectric super-lattice, a unique spatial topological transition metamaterial can be achieved by the control pulse induced nonlinearity. Our work can lead to ultra-fast control of quantum phenomena in ENZ metamaterials.

Last updated on 05/28/2021