Farhad Khosravi, Maximilian M. Sonner, and Zubin Jacob. 7/28/2021. Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave. Science Advances, 7, 31.

Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.

Li-Ping Yang and Zubin Jacob. 9/30/2021. Non-classical photonic spin texture of quantum structured light. Communications Physics, 4,221.

Classical structured light with controlled polarization and orbital angular momentum (OAM)of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical communications, and quantum simulations. However, quantum noise and photon statistics of three-dimensional photonic angular momentum are relatively less explored. Here, we develop a quantum framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level. Our work deals with three-dimensional angular momentum observables for twisted quantum pulses beyond scalar-field theory as well as the paraxial approximation. We show that the spin density generates modulated helical texture and exhibits distinct photon statistics for Fock-state vs. coherent-state twisted pulses. We introduce the quantum correlator of photon spin density to characterize nonlocal spin noise providing a rigorous parallel with electronic spin noise. Our work can lead to quantum spin-OAM physics in twisted single-photon pulses and opens explorations for phases of light with long-range spin order.

Farid Kalhor, Li-Ping Yang, Leif Bauer, and Zubin Jacob. 10/1/2021.

Quantum sensing of photonic spin density using a single spin qubit

. Physical Review Research 3, Pp. 043007.

Nitrogen-vacancy (NV) centers in diamond have emerged as promising room-temperature quantum sensors for probing condensed matter phenomena ranging from spin liquids, two-dimensional (2D) magnetic materials, and magnons to hydrodynamic flow of current. Here we propose and demonstrate that the nitrogen-vacancy center in diamond can be used as a quantum sensor for detecting the photonic spin density, the spatial distribution of light’s spin angular momentum. We exploit a single spin qubit on an atomic force microscope tip to probe the spinning field of an incident Gaussian light beam. The spinning field of light induces an effective static magnetic field in the single spin qubit probe. We perform room-temperature sensing using Bloch sphere operations driven by a microwave field (XY8 protocol). This nanoscale quantum magnetometer can measure the local polarization of light in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally measured phase change using the NV center Hamiltonian and perturbation theory involving only virtual photon transitions. The direct detection of the photonic spin density at the nanoscale using NV centers in diamond opens interesting quantum metrological avenues for studying exotic phases of photons, nanoscale properties of structured light as well as future on-chip applications in spin quantum electrodynamics.