Solid-state spin qubits have emerged as promising quantum information platforms but are susceptible to magnetic noise. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near nanostructured lossy material components essential in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum sensing and computing, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a theoretical framework to control low-frequency magnetic fluctuation noise for enhancing spin qubit quantum sensing and computing performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. We further apply our theoretical framework to control noise effects in realistic quantum computing devices and quantum sensing applications. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.
Quantum Detectors & Sensors
Spatiotemporal Optical Vortices (STOVs) are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain. Depending on the tilt of the helical phase front, STOVs can carry both longitudinal and transverse orbital angular momentum (OAM). Although STOVs have gained significant interest in the recent years, the current understanding is limited to the semi-classical picture. Here, we develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit. We demonstrate that quantum STOV states, such as Fock and coherent twisted photon pulses, display non-vanishing longitudinal OAM fluctuations that are absent in conventional monochromatic twisted pulses. We show that these quantum fluctuations exhibit a unique texture, i.e. a spatial distribution which can be used to experimentally isolate these quantum effects. Our findings represent a step towards the exploitation of quantum effects of structured light for various applications such as OAM-based encoding protocols and platforms to explore novel light-matter interaction in 2D material systems.
The total angular momentum of light has received attention for its application in a variety of phenomena such as optical communication, optical forces, and sensing. However, the quantum behavior including the commutation relations has been relatively less explored. Here, we derive the correct commutation relation for the total angular momentum of light using both relativistic and non-relativistic approaches. An important outcome of our work is the proof that the widely assumed quantum commutation relation for the total observable angular momentum of light is fundamentally incorrect. Our work will motivate experiments and lead to new insights on the quantum behavior of the angular momentum of light.
High-fidelity quantum gate operations are essential for achieving scalable quantum circuits. In spin qubit quantum computing systems, metallic gates and antennas that are necessary for qubit operation, initialization, and readout, also cause detrimental effects by enhancing fluctuations of electromagnetic fields. Therefore, evanescent wave Johnson noise (EWJN) caused by near-field thermal and vacuum fluctuations becomes an important unmitigated noise, which induces the decoherence of spin qubits and limits the quantum gate operation fidelity. Here, we first develop a macroscopic quantum electrodynamics theory of EWJN to account for the dynamics of two spin qubits interacting with metallic circuitry. Then we propose a numerical technique based on volume integral equations to quantify EWJN strength in the vicinity of nanofabricated metallic gates with arbitrary geometry. We study the limits to two-spin-qubit gate fidelity from EWJN-induced relaxation processes in two experimentally relevant quantum computing platforms: (a) the silicon quantum dot system and (b) nitrogen-vacancy centers in diamond. Finally, we introduce a Lindbladian engineering method to optimize the control pulse sequence design and show its enhanced performance over Hamiltonian engineering in mitigating the influence of thermal and vacuum fluctuations. Our work leverages advances in computational electromagnetics, fluctuational electrodynamics, and open quantum systems to suppress the effects of near-field thermal and vacuum fluctuations and reach the limits of two-spin-qubit gate fidelity.
Quantum causality is an emerging field of study that has the potential to greatly advance our understanding of quantum systems. In this paper, we put forth a theoretical framework for merging quantum information science and causal inference by exploiting entropic principles. For this purpose, we leverage the tradeoff between the entropy of hidden cause and the conditional mutual information of observed variables to develop a scalable algorithmic approach for inferring causality in the presence of latent confounders (common causes) in quantum systems. As an application, we consider a system of three entangled qubits and transmit the second and third qubits over separate noisy quantum channels. In this model, we validate that the first qubit is a latent confounder and the common cause of the second and third qubits. In contrast, when two entangled qubits are prepared and one of them is sent over a noisy channel, there is no common confounder. We also demonstrate that the proposed approach outperforms the results of classical causal inference for the Tubingen database when the variables are classical by exploiting quantum dependence between variables through density matrices rather than joint probability distributions. Thus, the proposed approach unifies classical and quantum causal inference in a principled way.
The concept of photonic frequency-momentum (ω-q) dispersion has been extensively studied in artificial dielectric structures such as photonic crystals and metamaterials. However, the ω-q dispersion of electrodynamic waves hosted in natural materials at the atomistic level is far less explored. Here, we develop a Maxwell Hamiltonian theory of matter combined with the quantum theory of atomistic polarization to obtain the electrodynamic dispersion of natural materials interacting with the photon field. We apply this theory to silicon and discover the existence of anomalous atomistic waves. These waves occur in the spectral region where propagating waves are conventionally forbidden in a macroscopic theory. Our findings demonstrate that natural media can host a variety of yet to be discovered waves with subnanometer effective wavelengths in the picophotonics regime.
We discover the quantum analog of the well-known classical maximum power transfer theorem. Our theoretical framework considers the continuous steady-state problem of coherent energy transfer through an N-node bosonic network coupled to an external dissipative load. We present an exact solution for optimal power transfer in the form of the maximum power transfer theorem known in the design of electrical circuits. Furthermore, we introduce the concept of quantum impedance matching with Thevenin equivalent networks, which are shown to be exact analogs to their classical counterparts. Our results are applicable to both ordered and disordered quantum networks with graph-like structures ranging from nearest-neighbor to all-to-all connectivities. This work points towards universal design principles adapting ideas from the classical regime to the quantum domain for various quantum optical applications in energy harvesting, wireless power transfer, and energy transduction.
We derive a unified quantum theory of coherent and incoherent energy transfer between two atoms (donor and acceptor) valid in arbitrary Markovian nanophotonic environments. Our theory predicts a fundamental bound ????=????+??ηmax=γaγd+γa for energy transfer efficiency arising from the spontaneous emission rates γd and γa of the donor and acceptor. We propose the control of the acceptor spontaneous emission rate as a new design principle for enhancing energy transfer efficiency. We predict an experiment using mirrors to enhance the efficiency bound by exploiting the dipole orientations of the donor and acceptor. Of fundamental interest, we show that while quantum coherence implies the ultimate efficiency bound has been reached, reaching the ultimate efficiency does not require quantum coherence. Our work paves the way towards nanophotonic analogues of efficiency-enhancing environments known in quantum biological systems.
The fluctuational electrodynamic investigation of thermal radiation from nonequilibrium or nonisothermal bodies remains largely unexplored because it necessarily requires volume integration over the fluctuating currents inside the emitter, which quickly becomes computationally intractable. Here, we put forth a formalism combining fast calculations based on modal expansion and fluctuational electrodynamics to accelerate research at this frontier. We employ our formalism on a sample problem: a long silica wire held under temperature gradient within its cross section. We discover that the far-field thermal emission carries a nonzero spin, which is constant in direction and sign, and interestingly, is transverse to the direction of the power flow. We clearly establish the origin of this transverse spin as arising from the nonequilibrium intermixing of the cylindrical modes of the wire, and not from any previously studied or intuitively expected origins such as chiral or nonisotropic materials and geometries, magnetic materials or fields, and mechanical rotations. This finding of nonequilibrium spin texture of emitted heat radiation can prove useful for advancing the noninvasive thermal metrology or infrared-imaging techniques.
Generation of a local magnetic field at the nanoscale is desirable for many applications such as spin-qubit-based quantum memories. However, this is a challenge due to the slow decay of static magnetic fields. Here, we demonstrate a photonic spin density (PSD)-induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond. This locally induced magnetic field is a result of coherent interaction between the optical excitation and the NV centers. We demonstrate an optically induced spin rotation on the Bloch sphere exceeding 10 degrees which has potential applications in all-optical coherent control of spin qubits.
All elementary particles in nature can be classified as fermions with half-integer spin and bosons with integer
spin. Within quantum electrodynamics (QED), even though the spin of the Dirac particle is well defined, there
exist open questions on the quantized description of the spin of the gauge field particle—the photon. Using quantum field theory, we discover the quantum operators for the spin angular momentum (SAM) SM = (1/c) d3xπ × A and orbital angular momentum (OAM) LM = −(1/c) d3xπμx × ∇Aμ of the photon, where πμ is the conjugate canonical momentum of the gauge field Aμ. We also reveal a perfect symmetry between the angular momentum commutation relations for Dirac fields and Maxwell fields. We derive the well-known OAM and SAM of classical electromagnetic fields from the above-defined quantum operators. Our work shows that the spin and OAM operators commute, which is important for simultaneously observing and separating the SAM and OAM. The correct commutation relations of orbital and spin angular momentum of the photon have applications in quantum optics, topological photonics as well as nanophotonics and can be extended in the future for the spin structure of nucleons.
Generation of local magnetic field at the nanoscale is desired for many applications such as spinqubit-based quantum memories. However, this is a challenge due to the slow decay of static magnetic fields. Here, we demonstrate photonic spin density (PSD) induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond. This locally induced magnetic field is a result of coherent interaction between the optical excitation and the NV centers. We demonstrate an optically induced spin rotation on the Bloch sphere exceeding 10 degrees which has potential applications in all optical coherent control of spin qubits.
Quantum Machine Learning (QML) is an emerging research area advocating the use of quantum computing for advancement in machine learning. Since the discovery of the capability of Parametrized Variational Quantum Circuits (VQC) to replace Artificial Neural Networks, they have been widely adopted to different tasks in Quantum Machine Learning. However, despite their potential to outperform neural networks, VQCs are limited to small scale applications given the challenges in scalability of quantum circuits. To address this shortcoming, we propose an algorithm that compresses the quantum state within the circuit using a tensor ring representation. Using the input qubit state in the tensor ring representation, single qubit gates maintain the tensor ring representation. However, the same is not true for two qubit gates in general, where an approximation is used to have the output as a tensor ring representation. Using this approximation, the storage and computational time increases linearly in the number of qubits and number of layers, as compared to the exponential increase with exact simulation algorithms. This approximation is used to implement the tensor ring VQC. The training of the parameters of tensor ring VQC is performed using a gradient descent based algorithm, where efficient approaches for backpropagation are used. The proposed approach is evaluated on two datasets: Iris and MNIST for the classification task to show the improved accuracy using more number of qubits. We achieve a test accuracy of 83.33% on Iris dataset and a maximum of 99.30% and 76.31% on binary and ternary classification of MNIST dataset using various circuit architectures. The results from the IRIS dataset outperform the results on VQC implemented on Qiskit, and being scalable, demonstrates the potential for VQCs to be used for large scale Quantum Machine Learning applications.
Quantum causality is an emerging field of study which has the potential to greatly advance our understanding of quantum systems. In this paper, we put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles. For this purpose, we leverage the tradeoff between the entropy of hidden cause and conditional mutual information of observed variables to develop a scalable algorithmic approach for inferring causality in the presence of latent confounders (common causes) in quantum systems. As an application, we consider a system of three entangled qubits and transmit the second and third qubits over separate noisy quantum channels. In this model, we validate that the first qubit is a latent confounder and the common cause of the second and third qubits. In contrast, when two entangled qubits are prepared and one of them is sent over a noisy channel, there is no common confounder. We also demonstrate that the proposed approach outperforms the results of classical causal inference for Tubingen database when the variables are classical by exploiting quantum dependence between variables through density matrices rather than joint probability distributions. Thus, the proposed approach unifies classical and quantum causal inference in a principled way.
One of the fundamental predictions of quantum mechanics is the occurrence of random fluctuations in a vacuum caused by zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect1, and it has been studied both theoretically2,3 and experimentally4-9. The Casimir effect can dominate the interaction between microstructures at small separations and is essential for micro-and nanotechnologies10,11. It has been utilized to realize nonlinear oscillation12, quantum trapping13, phonon transfer14,15, and dissipation dilution16. However, a non-reciprocal device based on quantum vacuum fluctuations remains an unexplored frontier. Here we report quantum-vacuum-mediated non-reciprocal energy transfer between two micromechanical oscillators. We parametrically modulate the Casimir interaction to realize a strong coupling between the two oscillators with different resonant frequencies. We engineer the system's spectrum such that it possesses an exceptional point17-20 in the parameter space and explore the asymmetric topological structure in its vicinity. By dynamically changing the parameters near the exceptional point and utilizing the non-adiabaticity of the process, we achieve non-reciprocal energy transfer between the two oscillators with high contrast. Our work demonstrates a scheme that employs quantum vacuum fluctuations to regulate energy transfer at the nanoscale and may enable functional Casimir devices in the future.
Quantum causality is an emerging field of study which has the potential to greatly advance our understanding of quantum systems. One of the most important problems in quantum causality is linked to this prominent aphorism that states correlation does not mean causation. A direct generalization of the existing causal inference techniques to the quantum domain is not possible due to superposition and entanglement. We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles. For this purpose, we leverage the concept of conditional density matrices to develop a scalable algorithmic approach for inferring causality in the presence of latent confounders (common causes) in quantum systems. We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links, where it is validated that the input before noise as a latent confounder is the cause of the noisy outputs. We also demonstrate that the proposed approach outperforms the results of classical causal inference even when the variables are classical by exploiting quantum dependence between variables through density matrices rather than joint probability distributions. Thus, the proposed approach unifies classical and quantum causal inference in a principled way. This successful inference on a synthetic quantum dataset can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a significant portion of its emission solid angle. This effect fundamentally arises from the strong infrared gyrotropy or nonreciprocity of these materials, which primarily depends on the momentum separation between Weyl nodes in the band structure. We clarify the dependence of this effect on the underlying physical parameters and highlight that the spectral bandwidth of CP thermal emission increases with increasing momentum separation between the Weyl nodes. We also demonstrate, using the recently developed thermal discrete dipole approximation (TDDA) computational method, that finite-size bodies of magnetic Weyl semimetals can emit spectrally broadband CP thermal light, albeit over smaller portion of the emission solid angle compared to the planar slabs. Our work identifies unique fundamental and technological prospects of magnetic Weyl semimetals for engineering thermal radiation and designing efficient CP light sources.
Nitrogen-vacancy (NV) centers in diamond have emerged as promising room-temperature quantum sensors for probing condensed matter phenomena ranging from spin liquids, two-dimensional (2D) magnetic materials, and magnons to hydrodynamic flow of current. Here we propose and demonstrate that the nitrogen-vacancy center in diamond can be used as a quantum sensor for detecting the photonic spin density, the spatial distribution of light’s spin angular momentum. We exploit a single spin qubit on an atomic force microscope tip to probe the spinning field of an incident Gaussian light beam. The spinning field of light induces an effective static magnetic field in the single spin qubit probe. We perform room-temperature sensing using Bloch sphere operations driven by a microwave field (XY8 protocol). This nanoscale quantum magnetometer can measure the local polarization of light in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally measured phase change using the NV center Hamiltonian and perturbation theory involving only virtual photon transitions. The direct detection of the photonic spin density at the nanoscale using NV centers in diamond opens interesting quantum metrological avenues for studying exotic phases of photons, nanoscale properties of structured light as well as future on-chip applications in spin quantum electrodynamics.
Classical structured light with controlled polarization and orbital angular momentum (OAM)of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical communications, and quantum simulations. However, quantum noise and photon statistics of three-dimensional photonic angular momentum are relatively less explored. Here, we develop a quantum framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level. Our work deals with three-dimensional angular momentum observables for twisted quantum pulses beyond scalar-field theory as well as the paraxial approximation. We show that the spin density generates modulated helical texture and exhibits distinct photon statistics for Fock-state vs. coherent-state twisted pulses. We introduce the quantum correlator of photon spin density to characterize nonlocal spin noise providing a rigorous parallel with electronic spin noise. Our work can lead to quantum spin-OAM physics in twisted single-photon pulses and opens explorations for phases of light with long-range spin order.
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
When a neutral sphere is rotating near a surface in vacuum, it will experience a frictional torque due to quantum and thermal electromagnetic fluctuations. Such vacuum friction has attracted many interests but has been too weak to be observed. Here we investigate the vacuum frictional torque on a barium strontium titanate (BST) nanosphere near a BST surface. BST is a perovskite ferroelectric ceramic that can have large dielectric responses at GHz frequencies. At resonant rotating frequencies, the mechanical energy of motion can be converted to electromagnetic energy through resonant photon tunneling, leading to a large enhancement of the vacuum friction. The calculated vacuum frictional torques at resonances at subGHz and GHz frequencies are several orders larger than the minimum torque measured by an optically levitated nanorotor recently, and are thus promising to be observed experimentally. Moreover, we calculate the vacuum friction on a rotating sphere near a layered surface for the first time. By optimizing the thickness of the thin-film coating, the frictional torque can be further enhanced by several times.
Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultraviolet frequencies. Despite recent experimental successes, a predictive model to describe the detection event in these detectors is needed to optimize the detection metrics. Here, we propose a probabilistic criterion for single-photon detection based on single-vortex (flux quanta) crossing the width of the nanowire. Our model makes a connection between the dark counts and photon counts near the detection threshold. The finite-difference calculations demonstrate that a change in the bias current distribution as a result of the photon absorption significantly increases the probability of single-vortex crossing even if the vortex potential barrier has not vanished completely. We estimate the instrument response function and show that the timing uncertainty of this vortex tunneling process corresponds to a fundamental limit in timing jitter of the click event. We demonstrate a trade-space between this intrinsic (quantum) timing jitter, quantum efficiency, and dark count rate in TaN, WSi, and NbN superconducting nanowires at different experimental conditions. Our detection model can also explain the experimental observation of exponential decrease in the quantum efficiency of SNSPDs at lower energies. This leads to a pulse-width dependency in the quantum efficiency, and it can be further used as an experimental test to compare across different detection models.
We show that a single photon pulse incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction to the resonant dipole–dipole interaction (RDDI). We explicitly show that the RDDI force induced by the single photon pulse fundamentally arises from the two-body transient entanglement between the atoms. This single photon pulse induced entanglement force can be continuously tuned from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate that the entanglement force can be enhanced by more than three orders of magnitude if the atomic interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped single photon pulses as a powerful tool to manipulate this entanglement force and also provides a new approach to witness transient atom–atom entanglement.
Nearly all thermal radiation phenomena involving materials with linear response can be accurately described via semi-classical theories of light. Here, we go beyond these traditional paradigms to study a nonlinear system that, as we show, requires quantum theory of damping. Specifically, we analyze thermal radiation from a resonant system containing a χ (2) nonlinear medium and supporting resonances at frequencies ω1 and ω2 ≈ 2ω1, where both resonators are driven only by intrinsic thermal fluctuations. Within our quantum formalism, we reveal new possibilities for shaping the thermal radiation. We show that the resonantly enhanced nonlinear interaction allows frequency-selective enhancement of thermal emission through upconversion, surpassing the well-known blackbody limits associated with linear media. Surprisingly, we also find that the emitted thermal light exhibits non-trivial statistics (g (2) (0) , ∼2) and biphoton intensity correlations (at two distinct frequencies). We highlight that these features can be observed in the near future by heating a properly designed nonlinear system, without the need for any external signal. Our work motivates new interdisciplinary inquiries combining the fields of nonlinear photonics, quantum optics and thermal science.
We study the interplay of electron and photon spin in nonreciprocal materials. Traditionally, the primary mechanism to design nonreciprocal photonic devices has been magnetic fields in conjunction with magnetic oxides, such as iron garnets. In this work, we present an alternative paradigm that allows tunability and reconfigurability of the nonreciprocity through spintronic approaches. The proposed design uses the high spinorbit coupling (SOC) of a narrow-band-gap semiconductor (InSb) with ferromagnetic dopants. A combination of the intrinsic SOC and a gate-applied electric field gives rise to a strong external Rashba spin-orbit coupling (RSOC) in a magnetically doped InSb film. The RSOC which is gate alterable is shown to adjust the magnetic permeability tensor via the electron g factor of the medium. We use electronic band structure calculations (k · p theory) to show that the gate-adjustable RSOC manifest itself in the nonreciprocal coefficient of photon fields via shifts in the Kerr and Faraday rotations. In addition, we show that photon spin properties of dipolar emitters placed in the vicinity of a nonreciprocal electromagnetic environment are distinct from reciprocal counterparts. The Purcell factor (Fp) of a spin-polarized emitter (right-handed circular dipole) is significantly enhanced due to a larger g factor while a left-handed dipole remains essentially unaffected. Our search for novel nonreciprocal material platforms can lead to electron-spin-controlled reconfigurable photonic devices.