Search

Search results

273 results found

Spinning Light Waves Might be 'Locked' for Photonics Technologies

A newly described property related to the "spin" and momentum of light waves suggests potential practical applications in photonic communications and photonic circuits. Scientists already knew that light waves have an electric field that can rotate as they propagate, which is known as the polarization property of light, and that light waves carry momentum in their direction of motion. In new findings, researchers have discovered a "spin-momentum locking," meaning, for example, light waves that spin in a counterclockwise direction can only move forward, and vice versa.

Spinning Lightwaves on a One-way Street

Researchers at Purdue University have created a quantum spin wave for light. This can be a carrier of information for future nanotechnologies but with a unique twist: they only flow in one direction.

In High Temperatures, A New Class of Ceramics Controls Heat Radiation

Manufacturers frequently use coatings to protect the structural stability of engines or power generators operating at high temperatures. Ceramic shields, however, have not been able to adequately address a critical, performance-limiting factor: heat radiation. A new ceramic coating from Purdue University acts as a kind of thermal antenna, using light-matter oscillations, or polaritrons, to control the direction and electromagnetic spectrum of thermal radiation.