Thermal equilibrium spin torque: Near-field radiative angular momentum transfer in magneto-optical media

”. Physical Review B, 103, 12.Spin and orbital angular momentum of light plays a central role in quantum nanophotonics as well as topological electrodynamics. Here, we show that the thermal radiation from finite-size bodies comprising nonreciprocal magneto-optical materials can exert a spin torque even in global thermal equilibrium. Moving beyond the paradigm of near-field heat transfer, we calculate near-field radiative angular momentum transfer between finite-size nonreciprocal objects by combining Rytov's fluctuational electrodynamics with the theory of optical angular momentum. We prove that a single magneto-optical cubic particle in nonequilibrium with its surroundings experiences a torque in the presence of an applied magnetic field (T-symmetry breaking). Furthermore, even in global thermal equilibrium, two particles with misaligned gyrotropy axes experience equal-magnitude torques with opposite signs which tend to align their gyrotropy axes parallel to each other. Our results are universally applicable to semiconductors like InSb (magnetoplasmas) as well as Weyl semimetals which exhibit the anomalous Hall effect (gyrotropic) at infrared frequencies. Our work paves the way towards near-field angular momentum transfer mediated by thermal fluctuations for nanoscale devices.