Jacob, Zubin. 2012. “Quantum Plasmonics”. MRS Bulletin 37 (8): 761-67.

Surface plasmon polaritons, combined excitations of light and free electrons of a metal, have emerged as an alternative information carrier for nanoscale circuitry due to their ability to confine light far below the size of the wavelength. They hold the potential to act as a revolutionary bridge between current diffraction-limited microphotonics and bandwidth-limited nanoelectronics. Interestingly, the nanoscale confinement achievable by plasmons also increases the interaction with quantum emitters, paving the way for quantum applications. Exotic non-classical properties of light such as entanglement and squeezing can be embedded into plasmons and faithfully transmitted and received. Recently, it was also shown that unique coupled plasmonic excitations can be engineered on the nanoscale with artificial media (metamaterials) to enhance and control light-matter interaction. A major departure from the conventional classical description of the plasmon is under development. The aim is to incorporate the “wave” nature of matter manifested in ultra-small metallic nanoparticles and the “particle” nature of light, which can play a role in future integrated circuits with capabilities of quantum information processing. This article reviews developments in the field of quantum nanophotonics, an exciting frontier of plasmonic applications ranging from single photon sources and quantum information transfer to single molecule sensing.

Cortes, C. L., W. Newman, S. Molesky, and Zubin Jacob. 2012. “Quantum nanophotonics using hyperbolic metamaterials”. Journal of Optics 14 (6).

Engineering optical properties using artificial nanostructured media known as metamaterials has led to breakthrough devices with capabilities from super-resolution imaging to invisibility. In this paper, we review metamaterials for quantum nanophotonic applications, a recent development in the field. This seeks to address many challenges in the field of quantum optics using advances in nanophotonics and nanofabrication. We focus on the class of nanostructured media with hyperbolic dispersion that have emerged as one of the most promising metamaterials with a multitude of practical applications from subwavelength imaging, nanoscale waveguiding, biosensing to nonlinear switching. We present the various design and characterization principles of hyperbolic metamaterials and explain the most important property of such media: a broadband enhancement in the electromagnetic density of states. We review several recent experiments that have explored this phenomenon using spontaneous emission from dye molecules and quantum dots. We finally point to future applications of hyperbolic metamaterials, using the broadband enhancement in the spontaneous emission to construct single-photon sources.

Krishnamoorthy, Harish N. S., Zubin Jacob, Evgenii Narimanov, Ilona Kretzschmar, and Vinod M. Menon. 2012. “Topological Transitions in Metamaterials”. Science 336 (6078): 205-9.

Light-matter interactions can be controlled by manipulating the photonic environment. We uncovered an optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states—an effect that can be used to engineer this interaction. We describe a transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that this topological transition manifests itself in increased rates of spontaneous emission of emitters positioned near the metamaterial. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.

Molesky, Sean, Christopher J. Dewalt, and Zubin Jacob. 2012. “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics”. Optics Express 21 (S1): A90-A110.

We propose a method for engineering thermally excited far field electromagnetic radiation using epsilon-near-zero metamaterials and introduce a new class of artificial media: epsilon-near-pole metamaterials. We also introduce the concept of high temperature plasmonics as conventional metamaterial building blocks have relatively poor thermal stability. Using our approach, the angular nature, spectral position, and width of the thermal emission and optical absorption can be finely tuned for a variety of applications. In particular, we show that these metamaterial emitters near 1500 K can be used as part of thermophotovoltaic devices to surpass the full concentration Shockley-Queisser limit of 41%. Our work paves the way for high temperature thermal engineering applications of metamaterials.