One of the fundamental predictions of quantum mechanics is the occurrence of random fluctuations in a vacuum caused by zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect1, and it has been studied both theoretically2,3 and experimentally4-9. The Casimir effect can dominate the interaction between microstructures at small separations and is essential for micro-and nanotechnologies10,11. It has been utilized to realize nonlinear oscillation12, quantum trapping13, phonon transfer14,15, and dissipation dilution16. However, a non-reciprocal device based on quantum vacuum fluctuations remains an unexplored frontier. Here we report quantum-vacuum-mediated non-reciprocal energy transfer between two micromechanical oscillators. We parametrically modulate the Casimir interaction to realize a strong coupling between the two oscillators with different resonant frequencies. We engineer the system's spectrum such that it possesses an exceptional point17-20 in the parameter space and explore the asymmetric topological structure in its vicinity. By dynamically changing the parameters near the exceptional point and utilizing the non-adiabaticity of the process, we achieve non-reciprocal energy transfer between the two oscillators with high contrast. Our work demonstrates a scheme that employs quantum vacuum fluctuations to regulate energy transfer at the nanoscale and may enable functional Casimir devices in the future.
Quantum
When a neutral sphere is rotating near a surface in vacuum, it will experience a frictional torque due to quantum and thermal electromagnetic fluctuations. Such vacuum friction has attracted many interests but has been too weak to be observed. Here we investigate the vacuum frictional torque on a barium strontium titanate (BST) nanosphere near a BST surface. BST is a perovskite ferroelectric ceramic that can have large dielectric responses at GHz frequencies. At resonant rotating frequencies, the mechanical energy of motion can be converted to electromagnetic energy through resonant photon tunneling, leading to a large enhancement of the vacuum friction. The calculated vacuum frictional torques at resonances at subGHz and GHz frequencies are several orders larger than the minimum torque measured by an optically levitated nanorotor recently, and are thus promising to be observed experimentally. Moreover, we calculate the vacuum friction on a rotating sphere near a layered surface for the first time. By optimizing the thickness of the thin-film coating, the frictional torque can be further enhanced by several times.
Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultraviolet frequencies. Despite recent experimental successes, a predictive model to describe the detection event in these detectors is needed to optimize the detection metrics. Here, we propose a probabilistic criterion for single-photon detection based on single-vortex (flux quanta) crossing the width of the nanowire. Our model makes a connection between the dark counts and photon counts near the detection threshold. The finite-difference calculations demonstrate that a change in the bias current distribution as a result of the photon absorption significantly increases the probability of single-vortex crossing even if the vortex potential barrier has not vanished completely. We estimate the instrument response function and show that the timing uncertainty of this vortex tunneling process corresponds to a fundamental limit in timing jitter of the click event. We demonstrate a trade-space between this intrinsic (quantum) timing jitter, quantum efficiency, and dark count rate in TaN, WSi, and NbN superconducting nanowires at different experimental conditions. Our detection model can also explain the experimental observation of exponential decrease in the quantum efficiency of SNSPDs at lower energies. This leads to a pulse-width dependency in the quantum efficiency, and it can be further used as an experimental test to compare across different detection models.
We show that a single photon pulse incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction to the resonant dipole–dipole interaction (RDDI). We explicitly show that the RDDI force induced by the single photon pulse fundamentally arises from the two-body transient entanglement between the atoms. This single photon pulse induced entanglement force can be continuously tuned from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate that the entanglement force can be enhanced by more than three orders of magnitude if the atomic interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped single photon pulses as a powerful tool to manipulate this entanglement force and also provides a new approach to witness transient atom–atom entanglement.
Nearly all thermal radiation phenomena involving materials with linear response can be accurately described via semi-classical theories of light. Here, we go beyond these traditional paradigms to study a nonlinear system that, as we show, requires quantum theory of damping. Specifically, we analyze thermal radiation from a resonant system containing a χ (2) nonlinear medium and supporting resonances at frequencies ω1 and ω2 ≈ 2ω1, where both resonators are driven only by intrinsic thermal fluctuations. Within our quantum formalism, we reveal new possibilities for shaping the thermal radiation. We show that the resonantly enhanced nonlinear interaction allows frequency-selective enhancement of thermal emission through upconversion, surpassing the well-known blackbody limits associated with linear media. Surprisingly, we also find that the emitted thermal light exhibits non-trivial statistics (g (2) (0) , ∼2) and biphoton intensity correlations (at two distinct frequencies). We highlight that these features can be observed in the near future by heating a properly designed nonlinear system, without the need for any external signal. Our work motivates new interdisciplinary inquiries combining the fields of nonlinear photonics, quantum optics and thermal science.
We study the interplay of electron and photon spin in nonreciprocal materials. Traditionally, the primary mechanism to design nonreciprocal photonic devices has been magnetic fields in conjunction with magnetic oxides, such as iron garnets. In this work, we present an alternative paradigm that allows tunability and reconfigurability of the nonreciprocity through spintronic approaches. The proposed design uses the high spinorbit coupling (SOC) of a narrow-band-gap semiconductor (InSb) with ferromagnetic dopants. A combination of the intrinsic SOC and a gate-applied electric field gives rise to a strong external Rashba spin-orbit coupling (RSOC) in a magnetically doped InSb film. The RSOC which is gate alterable is shown to adjust the magnetic permeability tensor via the electron g factor of the medium. We use electronic band structure calculations (k · p theory) to show that the gate-adjustable RSOC manifest itself in the nonreciprocal coefficient of photon fields via shifts in the Kerr and Faraday rotations. In addition, we show that photon spin properties of dipolar emitters placed in the vicinity of a nonreciprocal electromagnetic environment are distinct from reciprocal counterparts. The Purcell factor (Fp) of a spin-polarized emitter (right-handed circular dipole) is significantly enhanced due to a larger g factor while a left-handed dipole remains essentially unaffected. Our search for novel nonreciprocal material platforms can lead to electron-spin-controlled reconfigurable photonic devices.
Hexagonal boron nitride nanostructures are shown to sustain phonon–polariton modes with comparable performances to plasmon–polariton modes in graphene but with lower losses.
The traditional approaches of exciting plasmons consist of either using electrons (e.g., electron energy loss spectroscopy) or light (Kretchman and Otto geometry) while more recently plasmons have been excited even by single photons. A different approach: thermal excitation of a plasmon resonance at high temperatures using alternate plasmonic media was proposed by S. Molesky et al. [Opt. Express 21, A96–A110 (2013)]. Here, we show how the long-standing search for a high temperature narrowband near-field emitter for thermophotovoltaics can be fulfilled by thermally exciting plasmons. We also describe a method to control Wein's displacement law in the near-field using high temperature epsilon-near-zero metamaterials. Finally, we show that our work opens up an interesting direction of research for the field of slow light: thermal emission control.
The quantum critical detector (QCD), recently introduced for weak signal amplification [L.-P. Yang and Z. Jacob, Opt. Express 27, 10482 (2019)], functions by exploiting high sensitivity near the phase transition point of first-order quantum phase transitions (QPTs). We contrast the behavior of the first-order and the second-order quantum phase transitions in the detector. We find that the giant sensitivity, which can be utilized for quantum amplification, only exists in the first-order QPTs. We define two new magnetic order parameters to quantitatively characterize the first-order QPT of the interacting spins in the detector. We also introduce the Husimi QQ-functions as a powerful tool to show the fundamental change in the ground-state wave function of the detector during the QPTs, especially the intrinsic dynamical change within the detector during a quantum critical amplification. We explicitly show the high figures of merit of the QCD via the quantum gain and the signal-to-quantum noise ratio. Specifically, we predict the existence of a universal first-order QPT in the interacting-spin system resulting from two competing ferromagnetic orders. Our results motivate new designs of weak signal detectors by engineering first-order QPTs, which are of fundamental significance in the search for new particles, quantum metrology, and information science.
We propose a quantum critical detector (QCD) to amplify weak input signals. Our detector exploits a first-order discontinuous quantum-phase-transition and exhibits giant sensitivity (χ ∝ N2) when biased at the critical point. We propose a model consisting of spins with long-range interactions coupled to a bosonic mode to describe the time-dynamics in the QCD. We numerically demonstrate dynamical features of the first order (discontinuous) quantum phase transition such as time-dependent quantum gain in a system with 80 interacting spins. We also show the linear scaling with the spin number N in both the quantum gain and the corresponding signal-to-quantum noise ratio during the time evolution of the device. Our work shows that engineering first order discontinuous quantum phase transitions can lead to a device application for metrology, weak signal amplification, and single photon detection.
Over the past 15 years there has been an ongoing debate regarding the influence of the photonic environment on Förster resonance energy transfer (FRET). Disparate results corresponding to enhancement, suppression and null effect of the photonic environment have led to a lack of consensus between the traditional theory of FRET and experiments. Here we show that the quantum electrodynamic theory (QED) of FRET near an engineered nanophotonic environment is exactly equivalent to an effective near-field model describing electrostatic dipole-dipole interactions. This leads to an intuitive and rigorously exact description of FRET, previously unavailable, bridging the gap between experimental observations and theoretical interpretations. Furthermore, we show that the widely used concept of Purcell factor variation is only important for understanding spontaneous emission and is an incorrect figure of merit (FOM) for analyzing FRET. To this end, we analyze the figures of merit which characterize FRET in a photonic environment 1) the FRET rate enhancement factor (FET), 2) FRET efficiency enhancement factor (Feff) and 3) Two-point spectral density (SEE) which is the photonic property of the environment governing FRET analogous to the local density of states that controls spontaneous emission. Counterintuitive to existing knowledge, we show that suppression of the Purcell factor is in fact necessary for enhancing the efficiency of the FRET process. We place fundamental bounds on the FRET figures of merit arising from material absorption in the photonic environment as well as key properties of emitters including intrinsic quantum efficiencies and orientational dependence. Finally, we use our approach to conclusively explain multiple recent experiments and predict regimes where the FRET rate is expected to be enhanced, suppressed or remain the same. Our work paves for a complete theory of FRET with predictive power for designing the ideal photonic environment to control FRET.
Topological phases of matter arise in distinct fermionic and bosonic flavors. The fundamental differences between them are encapsulated in their rotational symmetries—the spin. Although spin quantization is routinely encountered in fermionic topological edge states, analogous quantization for bosons has proven elusive. To this end, we develop the complete electromagnetic continuum theory characterizing 2+1D topological bosons, taking into account their intrinsic spin and orbital angular momentum degrees of freedom. We demonstrate that spatiotemporal dispersion (momentum and frequency dependence of linear response) captures the matter-mediated interactions between bosons and is a necessary ingredient for topological phases. We prove that the bulk topology of these 2+1D phases is manifested in transverse spin-1 quantization of the photon. From this insight, we predict two unique bosonic phases—one with even parity C = ±2 and one with odd C = ±1. To understand the even parity phase C = ±2, we introduce an exactly solvable model utilizing nonlocal optical Hall conductivity and reveal a single gapless photon at the edge. This unidirectional photon is spin-1 helically quantized, immune to backscattering, defects, and exists at the boundary of the C = ±2 bosonic phase and any interface-even vacuum. The contrasting phenomena of transverse quantization in the bulk, but longitudinal (helical) quantization on the edge is addressed as the quantum gyroelectric effect. We also validate our bosonic Maxwell theory by direct comparison with the supersymmetric Dirac theory of fermions. To accelerate the discovery of such bosonic phases, we suggest two probes of topological matter with broken time-reversal symmetry: momentum-resolved electron energy-loss spectroscopy and cold atom near-field measurement of nonlocal optical Hall conductivity.
Single atoms form a model system for understanding the limits of single-photon detection. Here, we develop a non-Markovian theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existence of a finite rise time in the probability of excitation of the atom during the absorption event which is infinitely fast in previous Markov theories. This rise time is governed by the bandwidth of the atom-field interaction spectrum and leads to a fundamental jitter in time stamping the absorption event. Our theoretical framework captures both the weak and strong atom-field coupling regimes and sheds light on the spectral matching between the interaction bandwidth and single-photon Fock state pulse spectrum. Our work opens questions whether such jitter in the absorption event can be observed in a multimode realistic single-photon detector. Finally, we also shed light on the fundamental differences between linear and nonlinear detector outputs for single-photon Fock-state vs coherent-state pulses.
Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT-symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.
Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.